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Abstract

A sequence of independent Bernoulli random variables with success probabilities a/(a +
b + k − 1), k = 1, 2, 3, . . . , is embedded in a marked Poisson process with intensity 1.
Using this, conditional Poisson limits follow for counts of failure strings.
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1. Introduction

Inspired by Huffer et al. (2008) we construct in this note an embedding in a marked Poisson
process of a sequence of independent Bernoulli random variables with success probabilities
a/(a+b+k−1), k = 1, 2, 3, . . . . From the embedding, conditional Poisson limit distributions
follow for the number of d-strings, that is, subsequent successes interrupted by d − 1 failures
in the sequence. A special case is the Poisson limits for the number of small cycles in a random
permutation biased by the number of cycles.

Other methods have previously been used to obtain such limits; see Arratia et al. (2003),
Holst (2007), Holst (2008), Huffer et al. (2008), and the references therein. The embedding
technique gives much more concise and transparent derivations and a better understanding of
why the Poisson limits occur in such cases.

2. The embedding

Let P, Z1, Z2, Z3, . . . be independent random variables, where the Zs are exponential with
mean 1 and 0 < P ≤ 1. The waiting time for a Z to exceed log(1/P ) is

L0 = min

{
k : Zk > log

(
1

P

)}
,

having the following conditional geometric distribution:

P(L0 = � | P = p) = (1 − p)�−1p, � = 1, 2, . . . .

By the lack of memory property of the exponential distribution, the excess X1 = ZL0−log(1/P )

is exponentially distributed with mean 1 and independent of (P, L0). Set T1 = X1.
For a > 0, the waiting time

L1 = min

{
k > L0 : Zk > log

(
1

P

)
+ T1

a

}
− L0
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has the conditional distribution

P(L1 = � | P = p, T1 = t) = (1 − pe−t/a)�−1pe−t/a, � = 1, 2, . . . .

The excess X2 = ZL0+L1 − log(1/P ) − T1/a is exponentially distributed with mean 1 and
independent of (P, L0, L1, T1). Set T2 = T1 + X2.

Analogously, the waiting time L2 for the next Z to exceed log(1/P ) + T2/a is geometric as
above and the excess X3 is exponential with mean 1 and independent of (P, L0, L1, L2, T1, T2).
Set T3 = T2 + X3.

In the same way, define the waiting times L3, L4, . . . , the excesses X4, X5, . . . , and the
random variables T4, T5, . . . . The sequence of ‘records’, T1, T2, T3, . . . , is a Poisson process
with intensity 1. Conditional on P = p, {(Ti, Li), i = 1, 2, 3, . . .} is a marked Poisson process
with the marking distribution

P(Li = � | P = p, Ti = t) = (1 − pe−t/a)�−1pe−t/a, � = 1, 2, . . . .

To indicate the times for the records, we introduce the Bernoulli random variables Ik = 1 if
k ∈ {L0, L0 +L1, L0 +L1 +L2, . . .}, otherwise Ik = 0. For P ≡ 1 and a = 1, the I s indicate
ordinary records among the Zs. Rényi’s theorem shows that these indicators are independent
with P(In = 1) = 1/n. The theorem below generalizes this well-known result.

We say that a random variable P with density

f (p) = �(a + b)

�(a)�(b)
pa−1(1 − p)b−1, 0 < p < 1,

is Beta(a, b), where a > 0 and b > 0; Beta(a, 0) is interpreted as P ≡ 1. Recall that

E(P k(1 − P)n−k) = akbn−k

(a + b)n
.

We use the notation sn = s(s + 1) · · · (s + n − 1) for rising factorials.

Theorem 2.1. Let P be Beta(a, b), a > 0 and b ≥ 0. Then the record indicators,
I1, I2, I3, . . . , are independent random variables with P(In = 1) = a/(a + b + n − 1).

Proof. We give a proof for the case in which b > 0. The proof is easily modified for b = 0,
that is, for P ≡ 1.

Consider I1, I2, . . . , In. We have

P(I1 = · · · = In = 0) = P(L0 > n) = E((1 − P)n) = bn

(a + b)n

and

P(I1 = · · · = In−1 = 0, In = 1) = P(L0 = n) = E((1 − P)n−1P) = abn−1

(a + b)n
.
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Changing variables and integrating by parts we obtain, for 1 ≤ � < n,

f0(n, a, b, �) = P(L0 = �, L1 > n − �)

= E

(
(1 − P)�−1P

∫ ∞

0
(1 − P e−x/a)n−�e−x dx

)

= E

(
(1 − P)�−1P

∫ 1

0
(1 − Pu)n−�aua−1 du

)

= E((1 − P)n−1P) + (n − �) E

(
(1 − P)�−1P 2

∫ 1

0
(1 − Pu)n−�−1ua du

)

= abn−1

(a + b)n
+ a

a + b

n − �

a + 1
f0(n − 1, a + 1, b, �).

Induction proves that

f0(n, a, b, �) = P(L0 = �, L1 > n − �) = abn

(a + b)n(b + � − 1)
.

For 1 ≤ �0, . . . , �j , �0 + · · · + �j ≤ n, set

fj (n, a, b, �0, . . . , �j ) = P(Ik = 1 if k ∈ {�0, �0 + �1, . . . , �0 + · · · + �j }, else Ik = 0).

Changing variables we find that

fj (n, a, b, �0, . . . , �j )

= P(L0 = �0, . . . , Lj = �j , Lj+1 > n − �0 − · · · − �j )

= E

(
(1 − P)�0−1P

×
∫ ∞

0
· · ·

∫ ∞

0
(1 − P e−x1/a)�1−1P e−x1/a · · · (1 − P e−(x1+···+xj )/a)�j −1

× P e−(x1+···+xj )/a(1 − P e−(x1+···+xj+1)/a)n−�0−···−�j

× e−(x1+···+xj+1) dx1 · · · dxj+1

)

= E

(
(1 − P)�0−1Paj+1

×
∫ 1

0
· · ·

∫ 1

0
(1 − Pu1)

�1−1Pu1 · · · (1 − Pu1 · · · uj )
�j −1Pu1 · · · uj

× (1 − Pu1 · · · uj+1)
n−�0−···−�j ua−1

1 · · · ua−1
j+1 du1 · · · duj+1

)

= E

(
(1 − P)�0−1Paj

×
∫ 1

0
· · ·

∫ 1

0
(1 − Pu1)

�1−1Pu
a+j−1
1 · · · (1 − Pu1 · · · uj )

�j −1Pua
j

×
(∫ 1

0
(1 − Pu1 · · · uj+1)

n−�0−···−�j aua−1
j+1 duj+1

)
du1 · · · duj

)
.
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Integration by parts gives

∫ 1

0
(1 − Pu1 · · · uj+1)

n−�0−···−�j aua−1
j+1 duj+1

= (1 − Pu1 · · · uj )
n−�0−···−�j

+ (n − �0 − · · · − �j )Pu1 · · · uj

∫ 1

0
(1 − Pu1 · · · uj+1)

n−�0−···−�j −1ua
j+1 duj+1,

implying the recursion

fj (n, a, b, �0, . . . , �j )

= a

a + b

∫ 1

0

�(a + b + 1)

�(a + 1)�(b)
pa(1 − p)b−1(1 − p)�0−1p

×
(

aj

∫ 1

0
· · ·

∫ 1

0
(1 − pu1)

�1−1pu1 · · · (1 − pu1 · · · uj−1)
�j−1−1pu1 · · · uj−1

× (1 − pu1 · · · uj )
n−1−�0−···−�j−1ua

1 · · · ua
j du1 · · · duj

+ (n − �0 − · · · − �j )a
j

∫ 1

0
· · ·

∫ 1

0
(1 − pu1)

�1−1pu1 · · · (1 − pu1 · · · uj )
�j −1

× pu1 · · · uj (1 − pu1 · · · uj+1)
n−1−�0−···−�j ua

1 · · · ua
j+1 du1 · · · duj+1

)
dp

= a

a + b

(
aj

(a + 1)j
fj−1(n − 1, a + 1, b, �0, . . . , �j−1)

+ (n − �0 − · · · − �j )
aj

(a + 1)j+1 fj (n − 1, a + 1, �0, . . . , �j )

)
.

This is satisfied by

fj (n, a, b, �0, . . . , �j )

= P(L0 = �0, . . . , Lj = �j , Lj+1 > n − �0 − · · · − �j )

= aj+1bn

(a + b)n(b + �0 − 1)(b + �0 + �1 − 1) · · · (b + �0 + · · · + �j − 1)
.

From this, it follows that I1, I2, I3, . . . are independent Bernoulli random variables with
P(Ik = 1) = a/(a + b + k − 1).

3. Poisson limits

Conditional on P = p, the marking theorem in Kingman (1993, Section 5.2) shows that the
sequences

{(Ti, Li = �), i = 1, 2, . . .}, � = 1, 2, . . . ,

are independent marked Poisson processes on the positive real line with intensities

λ�(t) = (1 − pe−t/a)�−1pe−t/a, � = 1, 2, . . . .
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Thus, the number of T s marked with �, N�, is Poisson with mean
∫ ∞

0
λ�(t) dt = a

�
(1 − (1 − p)�)

and N1, N2, . . . are conditionally independent.
Let I1, I2, I3, . . . be independent Bernoulli variables with success probabilities a/(a + b +

k − 1), k = 1, 2, . . . . By the above theorem, such a sequence can be considered as a record
indicator in an embedding where P is Beta(a, b). Consider the number of d-strings, that is,

Md =
∞∑

k=1

Ik(1 − Ik+1) · · · (1 − Ik+d−1)Ik+d ,

which, by the embedding, can be identified by Nd . Hence, conditional on P = p, the random
variables M1, M2, . . . are independent Poisson with means as above. This agrees with results
in Holst (2007) and Huffer et al. (2008).

For a = θ > 0 and b = 0, the Bernoulli variables above appear in connection with
θ -biased random permutations; see Arratia et al. (2003, pp. 95, 96). The counts of different
failure strings in 1I2 · · · In1 correspond to the number of cycles C

(n)
1 , C

(n)
2 , . . . , C

(n)
n of sizes

1, 2, . . . , n in a θ -biased random permutation of 1, 2, . . . , n. The limit counts as n → ∞ for
the number of small cycles are given by independent Poisson random variables M1, M2, . . .

with E(Md) = θ/d; cf. Arratia et al. (2003, Theorem 5.1).
Finally, consider a sequence of independent indicators, I1 ≡ 1, I2, I3, . . . , with P(Ik = 1) =

a/(a+b+k−2), k = 2, 3, . . . , where b ≥ 1. With Z exponential with mean 1 and independent
of P , which is Beta(a + 1, b − 1), we find that P ′ = P e−Z/a is Beta(a, b). Using P ′, we can
generate, by the embedding, a sequence I ′

1, I
′
2, . . . with P(I ′

k = 1) = a/(a + b + k − 1). For
k = 2, 3, . . . , set Ik = I ′

k−1 with P(Ik = 1) = a/(a + b + k − 2). Conditional on P = p, the
number of d-strings in 1I2I3 . . . is a Poisson random variable Md with mean a(1− (1−p)d)/d

and M1, M2, . . . are independent. This is in agreement with Huffer et al. (2008). For b < 1,
the distribution of Md is not conditional Poisson; see Huffer et al. (2008).

Acknowledgement

I am grateful to an anonymous referee for suggesting an extension of the original embedding.

References

Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures:A ProbabilisticApproach.
European Mathematical Society, Zürich.

Holst, L. (2007). Counts of failure strings in certain Bernoulli sequences. J. Appl. Prob. 44, 824–830.
Holst, L. (2008). The number of two consecutive successes in a Hoppe–Pólya urn. J. Appl. Prob. 45, 901–906.
Huffer, F., Sethuraman, J. and Sethuraman, S. (2008). A study of counts of Bernoulli strings via conditional

Poisson processes. To appear in Proc. Amer. Math. Soc.
Kingman, J. F. C (1993). Poisson Processes (Oxford Studies Prob. 3). Oxford University Press.

https://doi.org/10.1239/jap/1231340241 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1231340241

	1 Introduction
	2 The embedding
	3 Poisson limits
	Acknowledgement
	References

