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We study fluctuations of the error term for the number of integer lattice points lying
inside a three-dimensional Cygan–Korányi ball of large radius. We prove that the
error term, suitably normalized, has a limiting value distribution which is absolutely
continuous, and we provide estimates for the decay rate of the corresponding density
on the real line. In addition, we establish the existence of all moments for the
normalized error term, and we prove that these are given by the moments of the
corresponding density.
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1. Introduction, notation and statement of results

1.1. Introduction

Given an integer q � 1, let

Nq(x) =
∣∣{z ∈ Z2q+1 : |z|Cyg � x

}∣∣
be the counting function for the number of integer lattice points which lie inside a
(2q + 1)-dimensional Cygan–Korányi ball of large radius x > 0, where | |Cyg is the
Cygan–Korányi norm defined by

|u|Cyg =
((
u2

1 + · · · + u2
2q

)2

+ u2
2q+1

)1/4

.

The problem of estimating Nq(x) arises naturally from the homogeneous structure
imposed on the q-th Heisenberg group Hq (when realized over R2q+1), namely, we
have

Nq(x) =
∣∣Z2q+1 ∩ δxB

∣∣,
where δxu = (xu1, . . . , xu2q, x

2u2q+1) with x > 0 are the Heisenberg dilations, and
B =

{
u ∈ R2q+1 : |u|Cyg � 1

}
is the unit ball with respect to the Cygan–Korányi
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norm (see [4, 6] for more details). It is clear that Nq(x) will grow for large x like
vol(B)x2q+2, where vol(·) is the Euclidean volume, and we shall be interested in the
error term resulting from this approximation. In particular, in the present paper, we
investigate the nature in which N1(x) fluctuates around its expected value vol(B)x4.

Definition. Let q � 1 be an integer. For x > 0, define

Eq(x) = Nq(x) − vol
(B)x2q+2,

and set κq = sup
{
α > 0 :

∣∣Eq(x)
∣∣� x2q+2−α

}
.

We shall refer to the lattice point counting problem for (2q + 1)-dimensional
Cygan–Korányi balls as the problem of determining the value of κq. This problem
was first considered by Garg et al. [4], who established the lower bound κq � 2 for
all integers q � 1. Before we proceed to state our main results, we recall what is
known for this lattice point counting problem.

For q = 1, the lower bound of Garg et al. was proven by the author to be sharp,
that is κ1 = 2 (see [5], theorem 1.1, and note that a different normalization is used
for the exponent of the error term). Thus, the lattice point counting problem for
three-dimensional Cygan–Korányi balls is settled.

The behaviour of the error term Eq(x) in the lattice point counting problem
for (2q + 1)-dimensional Cygan–Korányi balls with q > 1 is of an entirely differ-
ent nature compared to the case q = 1, and is closely related to the behaviour
of the error term in the Gauss circle problem. In the higher-dimensional case
q � 3, the best result available to date is |Eq(x)| � x2q−2/3 which was proved
by the author ([6], theorem 1), and we also have ([6], theorem 3) the Ω-result
Eq(x) = Ω(x2q−1(log x)1/4(log log x)1/8). It follows that 8

3 � κq � 3. In regards to
what should be the conjectural value of κq in the case of q � 3, it is known ([6],
theorem 2) that Eq(x) has order of magnitude x2q−1 in mean-square, which leads
to the conjecture that κq = 3. The case q = 2 marks somewhat of a transition
point between q = 1 and the higher-dimensional case q � 3 in which the error term
changes its behaviour. It is known (unpublished) that E2(x) has order of magnitude
bounded by x3 log3 x in mean square, leading to the conjectural value κ2 = 3.

To see how the two cases q = 1 and q > 1 differ, let rCyg(n; q) =
∣∣{z ∈ Z2q+1 :

‖z‖4
Cyg = n

}∣∣, so that

Nq(x) =
∑

n � x4

rCyg(n; q).

The arithmetical function rCyg(n; q) exhibits a dichotomous behaviour depending
on whether q = 1 or q > 1, and this in turn dictates the behaviour of the error
term Eq(x) as we now explain. The main point to notice is that rCyg(n; q) may be
expressed as

rCyg(n; q) =
∑

m2+�2=n

r2q(m),

where r2q(m) is the counting function for the number of representation of the integer
m as a sum of 2q-squares. Using classical results on the representation of inte-
gers by positive-definite binary quadratic forms, it can be shown that rCyg(n; q) �
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n
q−1
2 r2(n) for q � 3, while for q = 2, rCyg(n; 2) obeys a similar growth rate with

slight variation, namely n1/2r2(n)/ log log 3n� rCyg(n; 2) � n1/2r2(n) log log 3n.
Ignoring this slight variation, it follows that rCyg(n; q) grows roughly like n

q−1
2 r2(n)

for q > 1. This estimate together with partial summation implies that

Nq(x) � x2q−2
∑

n � x4

r2(n) ; q > 1.

By expanding both sides above into main term and error term, one should expect
that Eq(x) for q > 1 should grow for large x > 0, roughly like x2q−2E(x4), where
E(y) =

∑
n�y r2(n) − πy is the error term in the Gauss circle problem.

This is in sharp contrast to what happens in the case q = 1, where to begin with
one notes that rCyg(n; 1) cannot be effectively estimated (in the same manner as was
done for q > 1) in terms of r2(n). As we shall see however, E1(x) can be modelled by
means of the smoothed error term R(y) =

∑
n�y r2(n)(1 − n/y)1/2 − 2π

3 y, and we
have (see § 2.2, proof of proposition 2.1) that E1(x) grows for large x > 0 roughly
like x2R(x2).

We now turn to the main objective of the current paper, which concerns the
nature in which N1(x) fluctuates around its expected value vol(B)x4. Our interest in
understanding these fluctuations is motivated by trying to quantify (in the measure-
theoretic sense) the set of xs for which ±E1(x) can be large relative to x2 (recall
that κ1 = 2 unconditionally). For instance, theorem 1.2 of [5] guarantees that the
sets {x > 0 : E1(x)/x2 > a} are unbounded for any real number a, and it is natural
to ask what can be said about their relative measure.

To that end, let Ê1(x) = E1(x)/x2 be the suitably normalized error term, and for
X > 0 let dνX,1 be the distribution given by∫

I
dνX,1(α) =

1
X

meas
{
X < x < 2X : Ê1(x) ∈ I} ,

where I is an interval (not necessarily finite) on the real line. Our goal will be
to establish the weak convergence of the distributions dνX,1, as X → ∞, to an
absolutely continuous distribution dν1(α) = P1(α)dα, and obtain decay estimates
for its defining density P1(α). In order to put the results of this paper in the proper
context, we quote the corresponding results in the higher-dimensional case q � 3
([7], theorems 1 and 3) so that they can be compared with the ones appearing here,
highlighting once more distinction between the case q = 1 and q � 3.

Theorem 1.1 [7]. Let q � 3 be an integer, and let Êq(x) = Eq(x)/x2q−1 be the suit-
ably normalized error term. Then there exists a probability density Pq(α) such
that, for any (piecewise)-continuous function F satisfying the growth condition
|F(α)| � α2, we have

lim
X→∞

1
X

2X∫
X

F(Êq(x)
)
dx =

∞∫
−∞

F(α)Pq(α)dα.

The density Pq(α) can be extended to the whole complex plane C as an entire
function of α, which satisfies for any non-negative integer j � 0, and any α ∈ R,
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|α| sufficiently large in terms of j and q, the decay estimate∣∣P(j)
q (α)

∣∣ � exp
(
− |α|4−β/ log log |α|

)
,

where β > 0 is an absolute constant.

We are going to establish an analogue of the above result in the case of q = 1,
where the suitable normalization of the error term is given by Ê1(x) = E1(x)/x2.
We shall see once the distinction between the case q = 1 and the higher-dimensional
case q � 3, this time with respect to the probability density Pq(α).

1.2. Statement of the main results

Theorem 1.2. Let Ê1(x) = E1(x)/x2 be the suitably normalized error term. Then
Ê1(x) has a limiting value distribution in the sense that, there exists a probability
density P1(α) such that, for any (piecewise)-continuous function F of polynomial
growth we have

lim
X→∞

1
X

2X∫
X

F(Ê1(x)
)
dx =

∞∫
−∞

F(α)P1(α)dα. (1.1)

The density P1(α) satisfies for any non-negative integer j � 0, and any α ∈ R, |α|
sufficiently large in terms of j, the decay estimate∣∣P(j)

1 (α)
∣∣ � exp

(
−π

2
|α| exp

(
ρ|α|)), (1.2)

where ρ > 0 is an absolute constant.

Remark 1. In the particular case where F(α) = αj with j � 1 an integer, we have

lim
X→∞

1
X

2X∫
X

Êj
1(x)dx =

∞∫
−∞

αjP1(α)dα ,

thereby establishing the existence of all moments (see the remark following proposi-
tion 5.1 in § 5 regarding quantitative estimates).

Remark 2. Note that the decay estimates (1.2) for the probability density in the
case where q = 1 are much stronger compared to the corresponding ones in the
higher-dimensional case q � 3 as stated in the introduction. Also, note that whereas
for q � 3, the density Pq(α) extends to the whole complex plane as an entire function
of α, and in particular is supported on all of the real line, theorem 1.1 above makes
no such claim in the case of q = 1.

Our next result gives a closed-form expression for all the integral moments of the
density P1(α).
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Theorem 1.3. Let j � 1 be an integer. Then the j-th integral moment of P1(α) is
given by

∞∫
−∞

αjP1(α)dα =
j∑

s=1

∑
�1+···+�s=j

�1, ... ,�s�1

j!
	1! · · · 	s!

∞∑
m1, ... ,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i), (1.3)

where the series on the right-hand side (RHS) of (1.3) converges absolutely. For
integers m, 	 � 1, the term Ξ(m, 	) is given by

Ξ(m, 	) = (−1)�

(
1√
2π

)�
μ2(m)
m�

∑
e1,...,e�=±1

∞∑
k1,...,k�=1

e1k1+···+e�k�=0

�∏
i=1

r2
(
mk2

i

)
k2

i

, (1.4)

where μ(·) is the Möbius function, and r2(·) is the counting function for the number
of representation of an integer as the sum of two squares. For 	 = 1 the sum in (1.4)
is void, so by definition Ξ(m, 1) = 0. In particular, it follows that

∫∞
−∞ αP1(α)dα =

0, and
∫∞
−∞ αjP1(α)dα < 0 for j ≡ 1 (2) greater than one.

Remark 3. There is a further distinction between the case q = 1, and the higher-
dimensional case q � 3 in the following aspect. For q = 1, P1(α) is the probability
density corresponding to the random series

∑∞
m=1 φ1,m(Xm), where the Xm are

independent random variables uniformly distributed on the segment [0, 1], and the
φ1,m(t) are real-valued continuous functions, periodic of period 1, given by (see § 3)

φ1,m(t) = −
√

2
π

μ2(m)
m

∞∑
k=1

r2
(
mk2

)
k2

cos (2πkt) .

This is in sharp contrast to the higher-dimensional case q � 3, where the corre-
sponding functions φq,m(t) (see [7], § 2 theorem 4) are aperiodic. Also, the presence
of the factor 1/m in φ1,m(t), as apposed to 1/m3/4 in φq,m(t) for q � 3, is the rea-
son for why we obtain the much stronger decay estimates (1.2) compared to the
higher-dimensional case q � 3.

Remark 4. Let us remark that one may view the density P1(α) as belonging to a
certain family of densities considered by Yuk-Kam Lau and Kai-Man Tsang, which
have been shown to admit moment expansion of similar form (see [11], theorem 1).
We also refer the reader to [1, 2, 16] for analogous results for lattice point statistics
in Euclidean setting.

Notation and conventions. The following notation will occur repeatedly
throughout this paper. We use the Vinogradov asymptotic notation �, as well
as the Big-O notation. For positive quantities X, Y > 0 we write X � Y , to mean
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that X � Y � X. In addition, we define

(1) r2(m) =
∑

a2+b2=m

1 ; where the representation runs over a, b ∈ Z .

(2) μ(m) =

⎧⎨⎩
1 ; m = 1
(−1)� ; if m = p1 · · · p�, with p1, . . . , p� distinct primes
0 ; otherwise

(3) ψ(t) = t− [t] − 1/2, where [t] = max{m ∈ Z : m � t}.

2. A Voronöı-type series expansion for E1(x)/x2

In this section, we develop a Voronöı-type series expansion for E1(x)/x2. The main
result we shall set out to prove is the following.

Proposition 2.1. Let X > 0 be large. Then for X � x � 2X we have

E1(x)/x2 = −
√

2
π

∑
m � X2

r2(m)
m

cos
(
2π

√
mx
)− 2x−2T

(
x2
)

+Oε

(
X−1+ε

)
, (2.1)

for any ε > 0, where for Y > 0, T (Y ) is given by

T (Y ) =
∑

0 � m � Y

r2(m)ψ
((
Y 2 −m2

)1/2
)
.

Remark 5. It is not difficult to show that
∣∣x−2T (x2)

∣∣� x−θ for some θ > 0, and
so one may replace this term by this bound which simplifies (2.1). However, we have
chosen to retain the term x−2T (x2) as we are going to show later on (see § 3.1)
that its average order is much smaller.

The proof of proposition 2.1 will be given in § 2.2. We shall first need to establish
several results regarding weighted integer lattice points in Euclidean circles.

2.1. Weighted integer lattice points in Euclidean circles

We begin this subsection by proving lemma 2.2, which will then be combined
with lemma 2.3 to prove proposition 2.1.

Lemma 2.2. For Y > 0, let

R(Y ) =
∑

0 � m � Y

r2(m)
(
1 − m

Y

)1/2

− 2π
3
Y.

Then

R(Y ) = − 1
2π

∑
m � M

r2(m)
m

cos
(
2π

√
mY

)
+Oε

(
Y −1/2+ε

)
, (2.2)

for any ε > 0, where M as any real number which satisfies M � Y .
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Proof. Let Y > 0 be large, T � Y a parameter to be specified later, and set δ =
1

log Y . Write φ for the continuous function on R>0 defined by φ(t) = (1 − t)1/2 if
t ∈ (0, 1], and φ(t) = 0 otherwise. We have

∑
0 � m � Y

r2(m)
(
1 − m

Y

)1/2
= 1 +

∞∑
m=1

r2(m)φ
(m

Y

)
= 1 +

1

2πi

1+δ+i∞∫
1+δ−i∞

Z(s)φ̌(s)Y sds

= 1 +
1

2πi

1+δ+iT∫
1+δ−iT

Z(s)φ̌(s)Y sds + O

(
Y T−3/2

∞∑
m=1

r2(m)

m1+δ

(
1 + min

{
T,

1

| log Y
m |

}))

= 1 +
1

2πi

1+δ+iY∫
1+δ−iY

Z(s)φ̌(s)Y sds + Oε
(
Y −1/2+ε),

(2.3)
where φ̌(s) = Γ(s)Γ(3/2)

Γ(s+3/2) is the Mellin transform of φ, and Z(s) =
∑∞

m=1 r2(m)m−s

with �(s) > 1. In estimating (2.3), we have made use of Stirling’s asymptotic
formula for the gamma function (see [10], A.4 (5.113))

Γ(σ + it) =
√

2π(it)σ− 1
2 e−

π
2 |t|
( |t|
e

)it(
1 +O

(
1
|t|
))

, (2.4)

valid uniformly for α < σ < β with any fixed α, β ∈ R, provided |t| is large enough
in terms of α and β.

The Zeta function Z(s), initially defined for �(s) > 1, admits an analytic contin-
uation to the entire complex plane, except at s = 1 where it has a simple pole with
residue π, and satisfies the functional equation [3]

π−sΓ(s)Z(s) = π−(1−s)Γ(1 − s)Z(1 − s) . (2.5)

Now, s(s− 1)Z(s)φ̌(s)Y s is regular in the strip −δ � �(s) � 1 + δ, and by Stirling’s
asymptotic formula (2.4) together with the functional equation (2.5), we obtain the
bounds

∣∣s(s− 1)Z(s)φ̌(s)Y s
∣∣� Y (log Y )

(
1 + |s|)1/2; �(s) = 1 + δ∣∣s(s− 1)Z(s)φ̌(s)Y s

∣∣� (log Y )
(
1 + |s|)3/2+2δ;�(s) = −δ.

(2.6)

On recalling that T � Y , it follows from the Phragmén–Lindelöf principle that

∣∣Z(s)φ̌(s)Y s
∣∣� (log Y )T δ−1/2

(
Y

T

)σ

� Y −1/2 log Y ; −δ � σ = �(s) � 1 + δ, |�(s)| = T.

(2.7)
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Moving the line of integration to �(s) = −δ, and using (2.7), we have by the theorem
of residues

1
2πi

1+δ+iY∫
1+δ−iY

Z(s)φ̌(s)Y sds =
{

Res
s=1

+ Res
s=0

}
Z(s)φ̌(s)Y s +

1
2πi

−δ+iY∫
−δ−iY

Z(s)φ̌(s)Y sds

+O
(
Y −1/2 log Y

)
=

2π
3
Y − 1 +

1
2πi

−δ+iY∫
−δ−iY

Z(s)φ̌(s)Y sds

+O
(
Y −1/2 log Y

)
.

(2.8)
Inserting (2.8) into the RHS of (2.3), and applying the functional equation (2.5),
we arrive at

R(Y ) =
1

2
√
π

∞∑
m=1

r2(m)
m

Jm +Oε

(
Y −1/2+ε

)
, (2.9)

where

Jm =
1

2πi

−δ+iT∫
−δ−iT

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds. (2.10)

Now, let M > 0 be a real number which satisfies M � Y . We then specify the
parameter T by making the choice T = π

√
MY . Clearly, we have T � Y . We are

going to estimate Jm separately for m � M and m > M .
Suppose first that m > M . We have∣∣∣∣Γ(1 − s)

(
π2mY

)s
Γ(s+ 3/2)

∣∣∣∣� T−1/2
(
mT−2π2Y

)σ
= T−1/2

(m
M

)σ

� Y −1/2m−δ; −1
4

� σ = �(s) � −δ, |�(s)| = T.

(2.11)

Moving the line of integration to �(s) = −1
4 , and using (2.11), we obtain

Jm =
1

2πi

− 1
4+iT∫

− 1
4−iT

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds+O
(
Y −1/2m−δ

)
. (2.12)

By Stirling’s asymptotic formula (2.4) it follows that

∣∣Jm

∣∣� (
mY

)−1/4
{

1 +
∣∣∣∣

T∫
1

exp
(
ifm(t)

)
dt
∣∣∣∣ }+ Y −1/2m−δ, (2.13)
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where fm(t) = −2t log t+ 2t+ t log (π2mY ). Trivial integration and integration by
parts give

∣∣∣∣
T∫

1

exp
(
ifm(t)

)
dt
∣∣∣∣� min

{
T,

1
log m

M

}
. (2.14)

Inserting (2.14) into (2.13), and then summing over all m > M , we obtain

∑
m>M

r2(m)
m

∣∣Jm

∣∣� Y −1/4
∑

m>M

r2(m)
m5/4

(
1 + min

{
T,

1
log m

M

})
+ Y −1/2 log Y

�ε Y
−1/2+ε.

(2.15)
Inserting (2.15) into (2.9), we arrive at

R(Y ) =
1

2
√
π

∑
m�M

r2(m)
m

Jm +Oε

(
Y −1/2+ε

)
. (2.16)

It remains to estimate Jm for m � M . We have∣∣∣∣Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

∣∣∣∣� T−1/2
(
mT−2π2Y

)σ
= T−1/2

(m
M

)σ

� Y −1/2 ; −δ � σ = �(s) � 1 − δ, |�(s)| = T.
(2.17)

Moving the line of integration to �(s) = 1 − δ, and using (2.17), we obtain

Jm =
1

2πi

1−δ+iT∫
1−δ−iT

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds+O
(
Y −1/2

)
. (2.18)

Extending the integral all the way to ±∞, by Stirling’s asymptotic formula (2.4)
we have

1
2πi

1−δ+iT∫
1−δ−iT

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds

=
1

2πi

1−δ+i∞∫
1−δ−i∞

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds

+O

⎛⎝Y 2

∣∣∣∣
∞∫

T

t−5/2+2δ exp
(
ifm(t)

)
dt
∣∣∣∣+ Y −1/2

⎞⎠ ,

(2.19)
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where fm(t) is defined as before. Trivial integration and integration by parts give∣∣∣∣
∞∫

T

t−5/2+2δ exp
(
ifm(t)

)
dt
∣∣∣∣� T−5/2min

{
T,

1
log M

m

}
. (2.20)

Inserting (2.19) into the RHS of (2.18), we obtain by (2.20)

Jm =
1

2πi

1−δ+i∞∫
1−δ−i∞

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds+O

(
Y −1/2

(
1 + min

{
T,

1
log m

M

}))
(2.21)

Moving the line of integration in (2.21) to �(s) = N + 1/2 with N � 1 an integer,
and then letting N → ∞, we have by the theorem of residues

1
2πi

1−δ+i∞∫
1−δ−i∞

Γ(1 − s)
(
π2mY

)s
Γ(s+ 3/2)

ds =
(
π
√
mY

)1/2J3/2

(
2π

√
mY

)
, (2.22)

where for ν > 0, the Bessel function Jν of order ν is defined by

Jν(y) =
∞∑

k=0

(−1)k

k!Γ(k + 1 + ν)

(y
2

)ν+2k

.

We have the following asymptotic estimate for the Bessel function (see [9], B.4
(B.35)). For fixed ν > 0,

Jν(y) =
(

2
πy

)1/2

cos
(
y − 1

2
νπ − 1

4
π

)
+O

(
1
y3/2

)
, as y → ∞. (2.23)

Inserting (2.22) into the RHS of (2.21), we have by (2.23)

Jm = − 1√
π

cos
(
2π

√
mY

)
+O

(
Y −1/2

(
1 + min

{
T,

1
log m

M

}))
. (2.24)

Summing over all m � M , we obtain∑
m�M

r2(m)
m

Jm

= − 1√
π

∑
m�M

r2(m)
m

cos
(
2π

√
mY

)

+O

⎛⎝Y −1/2
∑

m�M

r2(m)
m

(
1 + min

{
T,

1
log m

M

})⎞⎠
= − 1√

π

∑
m�M

r2(m)
m

cos
(
2π

√
mY

)
+Oε

(
Y −1/2+ε

)
.

(2.25)
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Finally, inserting (2.25) into the RHS of (2.16), we arrive at

R(Y ) = − 1
2π

∑
m � M

r2(m)
m

cos
(
2π

√
mY

)
+Oε

(
Y −1/2+ε

)
. (2.26)

This concludes the proof. �

We need an additional result regarding weighted integer lattice points in
Euclidean circles. First, we make the following definition.

Definition. For Y > 0 and n � 1 an integer, define

Sn(Y ) =
(−1)n

n!
f (n)

(
2Y
) ∑

0 � m � Y

r2(m)
(
Y −m

)n+1/2
,

with f(y) =
√
y, and let

Rn(Y ) = Sn(Y ) − cnY
2,

where c0 = 23/2π
3 , c1 = − π

5
√

2
and cn = −π

∏n−1
k=1 (1− 1

2k )√
2 2nn(n+ 3

2 )
for n � 2.

We quote the following result (see [5], lemma 2.1). Here, we shall only need that
part of the lemma which concerns the case n � 1. The case n = 0 will be treated
by lemma 2.2 as we shall see later.

Lemma 2.3 [5]. For n � 1 an integer, the error term Rn(Y ) satisfies the bound∣∣Rn(Y )
∣∣� 2−nY 1/2, (2.27)

where the implied constant is absolute.

Remark 6. The proof of lemma 2.3 goes along the same line as the proof of lemma
2.2, where in fact the proof is much simpler in this case. Moreover, one can show
that the upper-bound estimate (2.27) is sharp for n = 1. For n � 2, the estimates
are no longer sharp, but they will more then suffice for our needs.

2.2. A decomposition identity for N1(x) and proof of proposition 2.1

We have everything we need for the proof of proposition 2.1. Before presenting
the proof, we need the following decomposition identity for N1(x) which we prove
in lemma 2.4 below.

Lemma 2.4. Let x > 0. We have

N1(x) = 2
∞∑

n=0

Sn

(
x2
)− 2T

(
x2
)
, (2.28)

where T (x2) is defined as in proposition 2.1.
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Proof. The first step is to execute the lattice point count as follows. By the definition
of the Cygan–Korányi norm, we have

N1(x) =
∑

m2+n2� x4

r2(m)

= 2
∑

0 � m � x2

r2(m)
(
x4 −m2

)1/2 − 2
∑

0 � m � x2

r2(m)ψ
((
x4 −m2

)1/2
)

= 2
∑

0 � m � x2

r2(m)
(
x4 −m2

)1/2 − 2T
(
x2
)
.

(2.29)
Next, we decompose the first sum using the following procedure. For 0 � m � x2

an integer, we use Taylor expansion to write

(
x4 −m2

)1/2 =
∞∑

n=0

(−1)n

n!
f (n)

(
2x2
)(
x2 −m

)n+1/2
,

with f(y) =
√
y. Multiplying the above identity by r2(m), and then summing over

the range 0 � m � x2, we have∑
0 � m � x2

r2(m)
(
x4 −m2

)1/2 =
∞∑

n=0

(−1)n

n!
f (n)

(
2x2
) ∑

0 � m � x2

r2(m)
(
x2 −m

)n+1/2

=
∞∑

n=0

Sn

(
x2
)
.

(2.30)
Inserting (2.30) into the RHS of (2.29), we obtain

N1(x) = 2
∞∑

n=0

Sn

(
x2
)− 2T

(
x2
)
. (2.31)

This concludes the proof. �

We now turn to the proof of proposition 2.1.

Proof of proposition 2.1. Let X > 0 be large, and suppose that X < x < 2X. By
the upper-bound estimate (2.27) in lemma 2.3, it follows from lemma 2.4 that

N1(x) = 2
∞∑

n=0

Sn

(
x2
)− 2T

(
x2
)

= 2
∞∑

n=0

{
cnx

4 +Rn

(
x2
)}− 2T

(
x2
)

= 2cx4 + 2R0

(
x2
)

+ 2
∞∑

n=1

Rn

(
x2
)− 2T

(
x2
)

= 2cx4 + 2R0

(
x2
)− 2T

(
x2
)

+O(x),

(2.32)
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with c =
∑∞

n=0 cn, where the infinite sum clearly converges absolutely. By the
definition of R0(Y ), it is easily verified that

R0(Y ) = 21/2Y

{ ∑
0 � m � Y

r2(m)
(
1 − m

Y

)1/2

− 2π
3
Y

}

= 21/2Y R(Y ),

(2.33)

Inserting (2.33) into the RHS of (2.32), we find that

N1(x) = 2cx4 + 23/2x2R
(
x2
)− 2T

(
x2
)

+O(x). (2.34)

We claim that 2c = vol(B). To see this, first note that by (2.2) in lemma 2.2 we
have the bound |R(x2)| � log x, and since |T (x2)| � x2, we obtain by (2.34) that
N1(x) = 2cx4 +O(x2 log x). Since N1(x) ∼ vol(B)x4 as x→ ∞, we conclude that
2c = vol(B).

Subtracting vol(B)x4 from both sides of (2.34), and then dividing throughout by
x2, we have by (2.2) in lemma 2.2 upon choosing M = X2

E1(x)/x2 = −
√

2
π

∑
m � X2

r2(m)
m

cos
(
2π

√
mx
)− 2x−2T

(
x2
)

+Oε

(
X−1+ε

)
. (2.35)

This concludes the proof of proposition 2.1. �

3. Almost periodicity

In this section, we show that the suitably normalized error term E1(x)/x2 can be
approximated, in a suitable sense, by means of certain oscillating series. From this
point onward, we shall use the notation Ê1(x) = E1(x)/x2. The main result we shall
set out to prove is the following.

Proposition 3.1. We have

lim
M→∞

lim sup
X→∞

1
X

2X∫
X

∣∣∣Ê1(x) −
∑

m � M

φ1,m

(√
mx
)∣∣∣dx = 0, (3.1)

where φ1,1(t), φ1,2(t), . . . are real-valued continuous functions, periodic of period 1,
given by

φ1,m(t) = −
√

2
π

μ2(m)
m

∞∑
k=1

r2
(
mk2

)
k2

cos (2πkt).

The proof of proposition 3.1 will be given in § 3.2. Our first task will be to deal
with the remainder term x−2T (x2) appearing in the approximate expression (2.1).
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3.1. Bounding the remainder term

This subsection is devoted to proving the following lemma.

Lemma 3.2. We have

1
X

2X∫
X

T 2
(
x2
)
dx� X2

(
logX

)4
. (3.2)

Before commencing with the proof, we need the following result on trigonometric
approximation for the ψ function (see [13]).

Vaaler’s Lemma ([13]). Let H � 1. Then there exist trigonometrical polynomials

(1) ψH(ω) =
∑

1 � h � H

ν(h) sin (2πhω)

(2) ψ∗
H(ω) =

∑
1 � h � H

ν∗(h) cos (2πhω),

with real coefficients satisfying |ν(h)|, |ν∗(h)| � 1/h, such that∣∣ψ(ω) − ψH(ω)
∣∣ � ψ∗

H(ω) +
1

2[H] + 2
.

We now turn to the proof of lemma 3.2.

Proof of lemma 3.2. Let X > 0 be large. By Vaaler’s Lemma with H = X, we have
for x in the range X < x < 2X∣∣T (x2

)∣∣� ∑
1 � h � X

1
h

∣∣∣∣ ∑
0 � m � x2

r2(m) exp
(
2πih

(
x4 −m2

)1/2
)∣∣∣∣+X. (3.3)

Applying Cauchy–Schwarz inequality we obtain

T 2
(
x2
)� (logX)

∑
1 � h � X

1
h

∣∣Sh

(
x2
)∣∣2 +X2, (3.4)

where for Y > 0 and h � 1 an integer, Sh(Y ) is given by

Sh(Y ) =
∑

0 � m � Y

r2(m) exp
(
2πih

(
Y 2 −m2

)1/2
)
.

Fix an integer 1 � h � X. Making a change of variable, we have

1
X

2X∫
X

∣∣Sh

(
x2
)∣∣2dx� 1

X4

16X4∫
X4

∣∣Sh

(√
x
)∣∣2dx

=
∑

0 � m, n � 4X2

r2(m)r2(n)Ih(m,n),

(3.5)
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where Ih(m, n) is given by

Ih(m,n) =
1
X4

16X4∫
max{m2, n2, X4}

exp
(
2πih

{(
x−m2

)1/2 − (x− n2
)1/2

})
dx. (3.6)

We have the estimate

∣∣Ih(m,n)
∣∣�

⎧⎨⎩
1 ;m = n

X2

h|m2 − n2| ;m �= n.
(3.7)

Inserting (3.7) into the RHS of (3.5), we obtain

1
X

2X∫
X

∣∣Sh

(
x2
)∣∣2dx�

∑
0 � m � 4X2

r22 (m) +X2h−1
∑

0 � m �=n � 4X2

r2(m)r2(n)∣∣m2 − n2
∣∣

� X2 logX +X2h−1
(
logX

)3
.

(3.8)

Integrating both sides of (3.4) and using (3.8), we find that

1
X

2X∫
X

T 2
(
x2
)
dx� X2

(
logX

)4
. (3.9)

This concludes the proof. �

We end this subsection by quoting the following result (see [12]) which will be
needed in subsequent sections of the paper.

Hilbert’s inequality ([12]). Let (α(λ))λ∈Λ and (β(λ))λ∈Λ be two sequences of
complex numbers indexed by a finite set Λ of real numbers. Then

∣∣∣∣ ∑
λ,ν∈Λ

λ�=ν

α(λ)β(ν)
λ− ν

∣∣∣∣�
(∑

λ∈Λ

|α(λ)|2δ−1
λ

)1/2(∑
λ∈Λ

|β(λ)|2δ−1
λ

)1/2

where δλ = min
ν∈Λ
ν �=λ

|λ− ν|, and the implied constant is absolute.

3.2. Proof of proposition 3.1

We now turn to the proof of proposition 3.1.
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Proof of proposition 3.1. Fix an integer M � 1, and let X > M1/2 be large. In the
range X < x < 2X, we have by proposition 2.1∣∣∣Ê1(x) −

∑
m � M

φ1,m

(√
mx
)∣∣∣

�ε

∣∣WM,X2(x)
∣∣+ x−2

∣∣T (x2
)∣∣+ ∑

m � M

1
m

∑
k>X/

√
m

r2
(
mk2

)
k2

+X−1+ε

�ε

∣∣WM,X2(x)
∣∣+ x−2

∣∣T (x2
)∣∣+M1/2X−1+ε,

(3.10)
where WM,X2(x) is given by

WM,X2(x) =
∑

m � X2

a(m) exp
(
2πi

√
mx
)
, (3.11)

and

a(m) =
{
r2(m)/m ;m = 	k2 with 	 > M square-free
0 ; otherwise.

Integrating both sides of (3.10), we have by lemma 3.2 and Cauchy–Schwarz
inequality

1
X

2X∫
X

∣∣∣Ê1(x) −
∑

m � M

φ1,m

(√
mx
)∣∣∣dx�ε

1
X

2X∫
X

∣∣WM,X2(x)
∣∣dx

+X−1
(
logX

)2 +M1/2X−1+ε

�ε
1
X

2X∫
X

∣∣WM,X2(x)
∣∣dx+M1/2X−1+ε

(3.12)
It remains to estimate the first term appearing on the RHS of (3.12). We have

1
X

2X∫
X

∣∣WM,X2(x)
∣∣2dx =

∑
m � X2

a2(m)

+
1

2πiX

{ ∑
m �=n � X2

a2X(m)a2X(n)√
m−√

n
−

∑
m �=n � X2

aX(m)aX(n)√
m−√

n

}
,

(3.13)
where for γ > 0 and m � 1 an integer, we define aγ(m) = a(m) exp (2πi

√
mγ). We

first estimate the off-diagonal terms. By Hilbert’s inequality, we have for γ = X, 2X∣∣∣∣ ∑
m �=n � X2

aγ(m)aγ(n)√
m−√

n

∣∣∣∣� ∑
m � X2

a2(m)m1/2 �
∑

m>M

r22 (m)m−3/2

�M−1/2 log 2M.

(3.14)
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Inserting (3.14) into the RHS of (3.13) and recalling that X > M1/2, it follows that

1
X

2X∫
X

∣∣WM,X2(x)
∣∣2dx�

∑
m>M

r22 (m)m−2 +M−1 log 2M

�M−1 log 2M.

(3.15)

Inserting (3.15) into the RHS of (3.12), applying Cauchy–Schwarz inequality and
then taking lim sup, we arrive at

lim sup
X→∞

1
X

2X∫
X

∣∣∣Ê1(x) −
∑

m � M

φ1,m

(√
mx
)∣∣∣dx�M−1/2

(
log 2M

)1/2 (3.16)

Finally, letting M → ∞ in (3.16) concludes the proof. �

4. The probability density

Having proved proposition 3.1 in the last section, in this section we turn to the
construction of the probability density P1(α). We begin by making the following
definition.

Definition. For α ∈ C and M � 1 an integer, define

MX(α;M) =
1
X

2X∫
X

exp

⎛⎝2πiα
∑

m � M

φ1,m

(√
mx
)⎞⎠dx,

and let

M(α;M) =
∏

m � M

Φ1,m(α) ; Φ1,m(α) =

1∫
0

exp
(
2πiαφ1,m(t)

)
dt ,

We quote the following result (see [8], lemma 2.3) which will be needed in
subsequent sections of the paper.

Lemma 4.1 [8]. Suppose that b1(t), b2(t), . . . , bk(t) are continuous functions from
R to C, periodic of period 1, and that γ1, γ2, . . . , γk are positive real numbers which
are linearly independent over Q. Then

lim
X→∞

1
X

2X∫
X

∏
i � k

bi(γix)dx =
∏
i � k

1∫
0

bi(t)dt. (4.1)

We now state the main result of this section.
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Proposition 4.2. (I) We have

lim
X→∞

MX(α;M) = M(α;M) . (4.2)

Moreover, if we let

Φ1(α) =
∞∏

m=1

Φ1,m(α),

then Φ1(α) defines an entire function of α, where the infinite product converges
absolutely and uniformly on any compact subset of the plane. For large |α|,
α = σ + iτ , Φ1(α) satisfies the bound

∣∣Φ1(α)
∣∣ � exp

(
−π

2

2
(
C−1

1 σ2 − C1τ
2
)|α|−1/θ(|α|) log |α| + C1|τ | log |α|

)
, (4.3)

where C1 > 1 is an absolute constant, and θ(x) = 1 − c/ log log x with c > 0 an
absolute constant.

(II) For x ∈ R, let P1(x) = Φ̂1(x) be the Fourier transform of Φ1. Then P1(x)
defines a probability density which satisfies for any non-negative integer j � 0 and
any x ∈ R, |x| sufficiently large in terms of j, the bound

∣∣P(j)
1 (x)

∣∣ � exp
(
−π

2
|x| exp

(
ρ|x|)) ; ρ =

π

5C1

. (4.4)

Proof. We begin with the proof of (I). Let α ∈ C and M � 1 an integer. We are
going to apply lemma 4.1 with bm(t) = exp (2πiαφ1,m(t)), and frequencies γm =√
m. The elements of the set B = {√m : |μ(m)| = 1} are linearly independent over

Q, and since φ1,m(t) ≡ 0 whenever
√
m /∈ B (i.e. whenever m is not square-free),

we see that the conditions of lemma 4.1 are satisfied, and thus (4.2) holds.
Now, let us show that Φ1(α) defines an entire function of α. First, we note the

following. By the definition of φ1,m(t), we have

1∫
0

φ1,m(t)dt = −
√

2
π

μ2(m)
m

∞∑
k=1

r2
(
mk2

)
k2

1∫
0

cos (2πkt)dt

= 0,

(4.5)

and we also have the uniform bound

∣∣φ1,m(t)
∣∣ � √

2
π

μ2(m)
m

∞∑
k=1

r2
(
mk2

)
k2

� 25/2π−1μ2(m)
r2(m)
m

∞∑
k=1

r2
(
k2
)

k2
� aμ2(m)

r2(m)
m

,

(4.6)
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for some absolute constant a > 0. By (4.5) and (4.6), we obtain

Φ1,m(α) =

1∫
0

exp
(
2πiαφ1,m(t)

)
dt

= 1 +O

(
|α|r2(m)

m

)2

,

(4.7)

whenever, say, m � |α|2. Since
∑∞

m=1 r
2
2 (m)/m2 <∞, it follows from (4.7) that the

infinite product
∏∞

m=1 Φ1,m(α) converges absolutely and uniformly on any compact
subset of the plane, and so Φ1(α) defines an entire function of α.

We now estimate Φ1(α) for large |α|, α = σ + iτ . Let c > 0 be an absolute
constant such that (see [15])

r2(m) � mc/ log log m : m > 2, (4.8)

and for real x > e we write θ(x) = 1 − c/ log log x. Let ε > 0 be a small absolute
constant which will be specified later, and set

	 = 	(α) =
[(
ε−1|α|

)1/θ(|α|)]
+ 1.

We are going to estimate the infinite product
∏∞

m=1 Φ1,m(α) separately for m < 	
and m � 	. In what follows, we assume that |α| is sufficiently large in terms of c and
ε. The product over m < 	 is estimated trivially by using the upper bound (4.6),
leading to ∣∣∣ ∏

m<�

Φ1,m(α)
∣∣∣ � exp

(
2πa|τ |

∑
m<�

μ2(m)
r2(m)
m

)

� exp
(
b|τ | log |α|

)
,

(4.9)

for some absolute constant b > 0.
Suppose now that m � 	. By (4.8) we have

r2(m)
m

|α| � m−θ(m)|α| �
(
ε−1|α|)− θ(m)

θ(|α|) |α| � ε (4.10)

It follows from (4.5), (4.6) and (4.10) that

Φ1,m(α) = 1 − (2πα)2

2

1∫
0

φ2
1,m(t)dt+ Rm(α), (4.11)

where the remainder term Rm(α) satisfies the bound

∣∣Rm(α)
∣∣ � {2

3
πaε exp

(
2πaε

)} (2π|α|)2
2

1∫
0

φ2
1,m(t)dt. (4.12)
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At this point, we specify ε, by choosing 0 < ε < 1
64 such that

2πaε1/2 exp
(
2πaε

)
� 1.

With this choice of ε, we have

∣∣Rm(α)
∣∣ � ε1/2 (2π|α|)2

2

1∫
0

φ2
1,m(t)dt, (4.13)

and we also note that
∣∣Φ1,m(α) − 1

∣∣ � ε < 1
2 . Thus, on rewriting (4.11) in the form

Φ1,m(α) = exp

(
− (2πα)2

2

1∫
0

φ2
1,m(t)dt+ R̃m(α)

)
, (4.14)

it follows from (4.13) that the remainder term R̃m(α) satisfies the bound

∣∣R̃m(α)
∣∣ � ε1/2(2π|α|)2

1∫
0

φ2
1,m(t)dt. (4.15)

From (4.14) and (4.15), we obtain

∏
m��

∣∣Φ1,m(α)
∣∣ � exp

(
− π2

2
(
3σ2 − 5τ2

) ∑
m � �

1∫
0

φ2
1,m(t)dt

)
. (4.16)

Now, by (4.6) we have

∑
m � �

1∫
0

φ2
1,m(t)dt � a2

∑
m � �

μ2(m)
r22 (m)
m2

, (4.17)

and since
1∫

0

φ2
1,m(t)dt = π−2μ

2(m)
m2

∞∑
k=1

r22
(
mk2

)
k4

� π−2μ2(m)
r22 (m)
m2

,

(4.18)

we also have the lower bound

∑
m � �

1∫
0

φ2
1,m(t)dt � π−2

∑
m � �

μ2(m)
r22 (m)
m2

. (4.19)

Since ∑
m � Y

μ2(m)r22 (m) ∼ hY log Y, (4.20)
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as Y → ∞ where h > 0 is some constant, we obtain by partial summation

(
3σ2 − 5τ2

) ∑
m � �

1∫
0

φ2
1,m(t)dt �

(
Aσ2 −Bτ2

)|α|−1/θ(|α|) log |α|, (4.21)

for some absolute constants A, B > 0. Inserting (4.21) into the RHS of (4.16) we
arrive at∏

m��

∣∣Φ1,m(α)
∣∣ � exp

(
−π

2

2
(
Aσ2 −Bτ2

)|α|−1/θ(|α|) log |α|
)
. (4.22)

Finally, setting C1 = 1 + max{A, A−1, B, b}, we deduce from (4.9) and (4.22)

∣∣Φ1(α)
∣∣ � exp

(
−π

2

2
(
C−1

1 σ2 − C1τ
2
)|α|−1/θ(|α|) log |α| + C1|τ | log |α|

)
. (4.23)

This completes the proof of (I).
We now turn to the proof of (II). By the definition of the Fourier transform, we

have for real x

P1(x) =

∞∫
−∞

Φ1(σ) exp
(−2πixσ

)
dσ, (4.24)

and it follows from the decay estimates (4.23) that P1(x) is of class C∞. Let us
estimate |P(j)

1 (x)| for real x, |x| sufficiently large in terms j. Let τ = τx, |τ | large,
be a real number depending on x to be determined later, which satisfies sgn(τ) =
−sgn(x). By Cauchy’s theorem and the decay estimate (4.23), we have

P(j)
1 (x) =

(−2πi
)j ∞∫

−∞
σjΦ1(σ) exp

(−2πixσ
)
dσ

=
(−2πi

)j exp
(−2π|x||τ |) ∞∫

−∞

(
σ + iτ

)jΦ1(σ + iτ) exp
(−2πixσ

)
dσ.

(4.25)
It follows that

∣∣P(j)
1 (x)

∣∣ � (2πC1|τ |
)j+1 exp

(−2π|x||τ |) ∞∫
−∞

(
σ2 + 1

)j/2∣∣Φ1

(
C1τσ + iτ

)∣∣dσ.
(4.26)

We decompose the range of integration in (4.26) as follows:

∞∫
−∞

(
σ2 + 1

)j/2∣∣Φ1

(
C1τσ + iτ

)∣∣dσ =
∫

|σ|�√
2

. . . dσ +
∫

|σ|>√
2

. . . dσ

= L1 + L2.

(4.27)
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In what follows, we assume that |τ | is sufficiently large in terms of j. In the range
|σ| �

√
2, we have by (4.23)∣∣Φ1

(
C1τσ + iτ

)∣∣ � exp
(
4C1|τ | log |τ |). (4.28)

From (4.28), it follows that L1 satisfies the bound

L1 � exp
(
5C1|τ | log |τ |). (4.29)

Referring to (4.23) once again, we have in the range |σ| > √
2∣∣Φ1

(
C1τσ + iτ

)∣∣
� exp

⎛⎝−C1|τ |
{ ∣∣∣∣ ( π2

16C2
1

) θ(|τ|)
2θ(|τ|)−1

|τ | θ(|τ|)−1
2θ(|τ|)−1σ

∣∣∣∣
2θ(|τ|)−1

θ(|τ|)
− 1
}

log |C1τσ + iτ |
⎞⎠

(4.30)

From (4.30), it follows that

L2 � 2j/2τ̃ j+1

∞∫
−∞

|σ|j exp
(
−C1|τ |

{
|σ| 2θ(|τ|)−1

θ(|τ|) − 1
}

log |C1τ τ̃σ + iτ |
)

dσ, (4.31)

where τ̃ is given by

τ̃ =
(

16C2
1

π2

) θ(|τ|)
2θ(|τ|)−1

|τ | 1−θ(|τ|)
2θ(|τ|)−1 .

We decompose the range of integration in (4.31) as follows:

∞∫
−∞

|σ|j exp
(
−C1|τ |

{
|σ| 2θ(|τ|)−1

θ(|τ|) − 1
}

log |C1τ τ̃σ + iτ |
)

dσ

=
∫

|σ|�u

. . . dσ +
∫

|σ|>u

. . . dσ = L3 + L4,

(4.32)

where u = 2
θ(|τ|)

2θ(|τ|)−1 . In the range |σ| � u we estimate trivially, obtaining

L3 � exp
(
3C1|τ | log |τ |). (4.33)

In the range |σ| > u we have |σ| 2θ(|τ|)−1
θ(|τ|) − 1 � 1

2 |σ|
2θ(|τ|)−1

θ(|τ|) � 1
2 |σ|1/2. It follows that

L4 �
∞∫

−∞
|σ|j exp

(− |σ|1/2
)
dσ. (4.34)

Combining (4.33) and (4.34), we see that L2 satisfies the bound

L2 � 2j/2+1τ̃ j+1 exp
(
3C1|τ | log |τ |). (4.35)
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From (4.29) and (4.35) we find that L1 dominates. By (4.26) and (4.27) we arrive
at ∣∣P(j)

1 (x)
∣∣ � (4πC1|τ |

)j+1 exp
(
−2π|τ |

{
|x| − 5C1

2π
log |τ |

})
(4.36)

Finally, we specify τ . We choose

τ = −sgn(x) exp
(
ρ|x|) ; ρ =

π

5C1

.

With this choice, we have the bound (recall that |x| is assumed to be large in terms
of j) ∣∣P(j)

1 (x)
∣∣ � (4πC1

)j+1 exp
(−π|x| exp

(
ρ|x|)+ (j + 1)ρ|x|)

� exp
(
−π

2
|x| exp

(
ρ|x|)). (4.37)

It remains to show that P1(x) defines a probability density. This will be a con-
sequence of the proof of theorem 1.1. This concludes the proof of proposition
4.2. �

5. Power moment estimates

Having constructed the probability density P1(α) in the previous section, our final
task, before turning to the proof of the main results of this paper, is to establish
the existence of all moments of the normalized error term Ê1(x). The main result
we shall set out to prove is the following.

Proposition 5.1. Let j � 1 be an integer. Then the j-th power moment of Ê1(x)
is given by

lim
X→∞

1
X

2X∫
X

Êj
1(x)dx =

j∑
s=1

∑
�1+···+�s=j

�1, ... ,�s�1

j!
	1! · · · 	s!

∞∑
m1, ... ,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i), (5.1)

where the series on the RHS of (5.1) converges absolutely, and for integers m, 	 � 1,
the term Ξ(m, 	) is given as in (1.4).

Remark 7. As we shall see later on, the RHS of (5.1) is simply
∫∞
−∞ αjP1(α)dα.

Also, our proof of proposition 5.1 in fact yields (5.1) in a quantitative form, namely,
we obtain 1

X

∫ 2X

X
Êj
1(x)dx =

∫∞
−∞ αjP1(α)dα+ Rj(X) with an explicit decay esti-

mate for the remainder term Rj(X). However, as our sole focus here is on
establishing the existence of the limit given on the left-hand side (LHS) of (5.1),
proposition 5.1 will suffice for our needs.

Proof. We split the proof into three cases, depending on whether j = 1, j = 2 or
j � 3.
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Case 1. j = 1. Since by definition, Ξ(m, 1) = 0 for any integer m � 1, we need to
show that 1

X

∫ 2X

X
Ê1(x)dx→ 0 as X → ∞. By proposition 2.1 and lemma 3.2, we

have

1
X

2X∫
X

Ê1(x)dx = −
√

2
π

∑
m � X2

r2(m)
m

1
X

2X∫
X

cos
(
2π

√
mx
)
dx+Oε

(
X−1+ε

)
. (5.2)

It follows that ∣∣∣∣ 1
X

2X∫
X

Ê1(x)dx
∣∣∣∣�ε

1
X

∞∑
m=1

r2(m)
m3/2

+X−1+ε

�ε X
−1+ε.

(5.3)

This proves (5.1) in the case where j = 1.

Case 2. j = 2. By proposition 2.1 and lemma 3.2, we have

1
X

2X∫
X

Ê2
1 (x)dx =

2
π2

∑
m, n � X2

r2(m)
m

r2(n)
n

1
X

×
2X∫

X

cos
(
2π

√
mx
)
cos
(
2π

√
nx
)
dx+Oε

(
X−1+ε

)
, (5.4)

Now, we have

1
X

2X∫
X

cos
(
2π

√
mx
)
cos
(
2π

√
nx
)
dx

=
1
2
1m=n +

1
4πX

1m �=n

sin
(
2π(

√
m−√

n )x
)

√
m−√

n

∣∣∣∣∣
x=2X

x=X

+O

(
1

X(mn)1/4

)
=

1
2
1m=n +

1
4πX

1m �=nK(
√

m,
√

n ) +O

(
1

X(mn)1/4

)
,

(5.5)

say. Inserting (5.5) into the RHS of (5.4), we obtain

1
X

2X∫
X

Ê2
1 (x)dx =

1
π2

∑
m � X2

r22 (m)
m2

+
1

2π3X

∑
m �=n � X2

r2(m)
m

r2(n)
n

K(
√

m,
√

n ) +Oε

(
X−1+ε

)
, (5.6)
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To estimate the off-diagonal terms, we use the identity sin t = 1
2πi (exp (it) −

exp (−it)) and then apply Hilbert’s inequality, obtaining

∣∣∣∣ ∑
m �=n � X2

r2(m)
m

r2(n)
n

K(
√

m,
√

n )

∣∣∣∣� ∞∑
m=1

r22 (m)m−3/2. (5.7)

Inserting (5.7) into the RHS of (5.6), we arrive at

1
X

2X∫
X

Ê2
1 (x)dx =

1
π2

∑
m � X2

r22 (m)
m2

+Oε

(
X−1+ε

)

=
1
π2

∞∑
m=1

r22 (m)
m2

+Oε

(
X−1+ε

)
.

(5.8)

Recalling that Ξ(m, 1) = 0, it follows that the RHS of (5.1) in the case where j = 2
is given by

∞∑
m=1

Ξ(m, 2) =
1

2π2

∞∑
m=1

μ2(m)
m2

∑
e1,e2=±1

∞∑
k1,k2=1

e1k1+e2k2=0

2∏
i=1

r2
(
mk2

i

)
k2

i

=
1
π2

∞∑
m,k=1

μ2(m)
r22
(
mk2

)
(mk2)2

=
1
π2

∞∑
m=1

r22 (m)
m2

.

(5.9)

This proves (5.1) in the case where j = 2.

Case 3. j � 3. In what follows, all implied constants in the Big O notation are
allowed to depend on j. By proposition 2.1 and lemma 3.2, together with the trivial
bound |x−2T (x2)| � 1, we have

1
X

2X∫
X

Êj
1(x)dx =

(
−
√

2
π

)j
1
X

2X∫
X

⎛⎝ ∑
m � X2

r2(m)
m

cos
(
2π

√
mx
)⎞⎠j

dx+Oε

(
X−1+ε

)
.

(5.10)
Let 1 � Y � X2 be a large parameter to be determined later. In the range X <
x < 2X, we have

( ∑
m�X2

r2(m)
m

cos
(
2π

√
mx
))j

=

( ∑
m � Y

r2(m)
m

cos
(
2π

√
mx
))j

+O

⎛⎝(logX)j−1

∣∣∣∣ ∑
Y <m � X2

r2(m)
m

exp
(
2πi

√
mx
)∣∣∣∣
⎞⎠ .

(5.11)
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We first estimate the mean-square of the second summand appearing on the RHS
of (5.11). We have

1
X

2X∫
X

∣∣∣∣ ∑
Y <m � X2

r2(m)
m

exp
(
2πi

√
mx
)∣∣∣∣2dx =

∑
Y <m � X2

r22 (m)
m2

+
1

2πiX

∑
Y <m�=n � X2

r2(m)
m

r2(n)
n

exp
(
2πi(

√
m−√

nx)
)

√
m−√

n

∣∣∣∣x=2X

x=X

.

(5.12)

Applying Hilbert’s inequality, we find that∣∣∣∣∣ ∑
Y <m�=n � X2

r2(m)
m

r2(n)
n

exp
(
2πi(

√
m−√

nx)
)

√
m−√

n

∣∣∣∣x=2X

x=X

∣∣∣∣∣� ∑
m>Y

r22 (m)m−3/2

� Y −1/2 log Y.
(5.13)

Inserting (5.13) into the RHS of (5.12), we obtain

1

X

2X∫
X

∣∣∣∣ ∑
Y <m � X2

r2(m)

m
exp

(
2πi

√
mx
)∣∣∣∣2dx =

∑
Y <m � X2

r2
2 (m)

m2
+ O

(
X−1Y −1/2 log Y

)
� Y −1 log Y + X−1Y −1/2 log Y

� Y −1 log Y.

(5.14)
Integrating both sides of (5.11), we have by (5.10), (5.14) and Cauchy–Schwarz
inequality

1

X

2X∫
X

Êj
1(x)dx =

(
−
√

2

π

)j
1

X

2X∫
X

⎛⎝ ∑
m � Y

r2(m)

m
cos
(
2π

√
mx
)⎞⎠j

dx + Oε
(
XεY −1/2)

=

( −1√
2π

)j ∑
e1,...,ej=±1

∑
m1,...,mj�Y

j∏
i=1

r2(mi)

mi

1

X

×
2X∫
X

cos

⎛⎝2π
( j∑

i=1

ei
√

mi

)
x

⎞⎠dx + Oε
(
XεY −1/2).

(5.15)
Before we proceed to evaluate the RHS of (5.15), we need the following result (see
[14], § 2 lemma 2.2). Let e1, . . . , ej = ±1, and suppose that m1, . . . , mj � Y are
integers. Then it holds

j∑
i=1

ei
√
mi �= 0 =⇒

∣∣∣∣ j∑
i=1

ei
√
mi

∣∣∣∣� Y 1/2−2j−2
, (5.16)
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where the implied constant depends only on j. It follows from (5.16) that

1
X

2X∫
X

cos

(
2π
( j∑

i=1

ei
√
mi

)
x

)
dx =

{
1 ;

∑j
i=1 ei

√
mi = 0

O
(
X−1Y 2j−2−1/2

)
;
∑j

i=1 ei
√
mi �= 0.

(5.17)
Estimate (5.17) in the case where

∑j
i=1 ei

√
mi �= 0 is somewhat wasteful, but

nevertheless it will suffice for us. Inserting (5.17) into the RHS of (5.15), we obtain

1
X

2X∫
X

Êj
1(x)dx =

( −1√
2π

)j ∑
e1,...,ej=±1

∑
m1,...,mj � Y∑ j

i=1 ei
√

mi=0

j∏
i=1

r2(mi)
mi

+Oε

(
XεY −1/2

{
1 +X−1Y 2j−2

})
. (5.18)

It remains to estimate the first summand appearing on the RHS of (5.18). Let
e1, . . . , ej = ±1. We have

∑
m1,...,mj � Y∑j

i=1 ei
√

mi=0

j∏
i=1

r2(mi)

mi
=

∑
m1,...,mj � Y

j∏
i=1

µ2(mi)

mi

∑
k1 �

√
Y/m1,...,kj �

√
Y/mj∑j

i=1 eiki
√

mi=0

j∏
i=1

r2
(
mik

2
i

)
k2

i

.

(5.19)
Now, since the elements of the set B = {√m : |μ(m)| = 1} are linearly independent
over Q, it follows that the relation

∑j
i=1 eiki

√
mi = 0 with m1, . . . , mj square-

free is equivalent to the relation
∑

i∈S�
eiki = 0 for 1 � 	 � s, where

⊎s
�=1 S� =

{1, , . . . , j} is a partition. Multiplying (5.19) by (−1/
√

2π)j , summing over all
e1, . . . , ej = ±1 and rearranging the terms in ascending order, it follows that( −1√

2π

)j ∑
e1,...,ej=±1

∑
m1,...,mj � Y∑ j

i=1 ei
√

mi=0

j∏
i=1

r2(mi)
mi

=
j∑

s=1

∑
�1+···+�s=j

�1,...,�s�1

j!
	1! · · · 	s!

∑
m1<···<ms�Y

s∏
i=1

Ξ
(
mi, 	i;

√
Y/mi

)
,

(5.20)
where for y � 1, and integers m, 	 � 1, the term Ξ(m, 	; y) is given

Ξ(m, 	; y) = (−1)�

(
1√
2π

)�
μ2(m)
m�

∑
e1,...,e�=±1

∑
k1,...,k��y

e1k1+···+e�k�=0

�∏
i=1

r2
(
mk2

i

)
k2

i

. (5.21)

Denoting by τ(·) the divisor function, we have for m square-free∑
k>y

r2
(
mk2

)
k2

� r2(m)
∑
k>y

τ2(k)
k2

� r2(m)y−1
(
log 2y

)3
. (5.22)
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Using (5.22) repeatedly, it follows that

Ξ(m, 	; y) = Ξ(m, 	) +O

(
μ2(m)r�

2(m)
m�

y−1
(
log 2y

)3)
, (5.23)

where Ξ(m, 	) is given as in (1.4). Using (5.23) repeatedly, and noting that
Ξ(m, 1; y) = 0, we have by (5.20)

( −1√
2π

)j ∑
e1,...,ej=±1

∑
m1,...,mj � Y∑ j

i=1 ei
√

mi=0

j∏
i=1

r2(mi)
mi

=
j∑

s=1

∑
�1+···+�s=j

�1,...,�s�1

j!
	1! · · · 	s!

∑
m1<···<ms�Y

s∏
i=1

Ξ(mi, 	i) +O
(
Y −1/2(log Y )3

)

=
j∑

s=1

∑
�1+···+�s=j

�1,...,�s�1

j!
	1! · · · 	s!

∞∑
m1,... ,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i) +O
(
Y −1/2(log Y )3

)
,

(5.24)

where the series appearing on the RHS of (5.24) converges absolutely. Finally, insert-
ing (5.24) into the RHS of (5.18) and making the choice Y = X22−j

, we arrive
at

1
X

2X∫
X

Êj
1(x)dx =

j∑
s=1

∑
�1+···+�s=j

�1,... ,�s�1

j!
	1! · · · 	s!

∞∑
m1,...,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i) +Oε

(
X−ηj+ε

)
,

(5.25)
where ηj = 21−j . This settles the proof in the case where j � 3. The proof of
proposition 5.1 is therefore complete. �

6. Proof of the main results: theorems 1.1 and 1.3

Collecting the results from the previous sections, we are now in a position to present
the proof of the main results. We begin with the proof of theorem 1.1.

Proof of theorem 1.1. We shall first prove (1.1) in the particular case where F ∈
C∞

0 (R), that is, F is an infinitely differentiable function having compact support.
To that end, let F be test function as above, and note that the assumptions on F

imply that |F(w) −F(y)| � cF |w − y| for all w, y, where cF > 0 is some constant
which depends on F . It follows that for any integer M � 1 and any X > 0, we have

1
X

2X∫
X

F(Ê1(x)
)
dx =

1
X

2X∫
X

F
( ∑

m�M

φ1,m

(√
mx
))

dx+ EF
(
X,M

)
, (6.1)
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where φ1,m(t) is defined as in proposition 3.1, and the remainder term EF (X, M)
satisfies the bound

∣∣EF
(
X,M

)∣∣ � cF
1
X

2X∫
X

∣∣∣Ê1(x) −
∑

m�M

φ1,m

(√
mx
)∣∣∣dx. (6.2)

By proposition 3.1 it follows that

lim
M→∞

lim sup
X→∞

∣∣EF
(
X,M

)∣∣ = 0. (6.3)

Denoting by F̂ the Fourier transform of F , the assumptions on the test function F
allows us to write

1
X

2X∫
X

F
( ∑

m � M

φ1,m

(√
mx
))

dx =

∞∫
−∞

F̂(α)MX(α;M)dα, (6.4)

where MX(α;M) is defined at the beginning of § 4. LettingX → ∞ in (6.4), we have
by (4.2) in proposition 4.2 together with an application of Lebesgue’s dominated
convergence theorem

lim
X→∞

1
X

2X∫
X

F
( ∑

m � M

φ1,m

(√
mx
))

dx =

∞∫
−∞

F̂(α)M(α;M)dα, (6.5)

where M(α;M) =
∏

m � M Φ1,m(α), and Φ1,m(α) is defined at the beginning of
§ 4. Letting M → ∞ in (6.5), and recalling that P1(α) = Φ̂1(α) where Φ1(α) =∏∞

m=1 Φ1,m(α), we have by Lebesgue’s dominated convergence theorem

lim
M→∞

lim
X→∞

1
X

2X∫
X

F
( ∑

m � M

φ1,m

(√
mx
))

dx =

∞∫
−∞

F̂(α)Φ1(α)dα

=

∞∫
−∞

F(α)P1(α)dα,

(6.6)

where in the second equality we made use of Parseval’s theorem which is justified
by the decay estimate (4.4) for P(j)

1 (α) with α real stated in proposition 4.2. It
follows from (6.4), (6.5) and (6.6) that

1
X

2X∫
X

F
( ∑

m � M

φ1,m

(√
mx
))

dx =

∞∫
−∞

F(α)P1(α)dα+ E 
F
(
X,M

)
, (6.7)

where the remainder term E 
F (X, M) satisfies

lim
M→∞

lim
X→∞

∣∣E 
F
(
X,M

)∣∣ = 0. (6.8)
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Inserting (6.7) into the RHS of (6.1), we deduce from (6.3) and (6.8) that

lim sup
X→∞

∣∣∣∣ 1
X

2X∫
X

F(Ê1(x)
)
dx−

∞∫
−∞

F(α)P1(α)dα
∣∣∣∣

� lim
M→∞

lim
X→∞

∣∣E 
F
(
X,M

)∣∣+ lim
M→∞

lim sup
X→∞

∣∣EF
(
X,M

)∣∣ = 0.

(6.9)

We conclude that

lim
X→∞

1
X

2X∫
X

F(Ê1(x)
)
dx =

∞∫
−∞

F(α)P1(α)dα, (6.10)

whenever F ∈ C∞
0 (R).

The result (6.10) extends easily to include the class C0(R) of continuous functions
with compact support. To see this, fix a smooth bump function ϕ(y) � 0 supported
in [−1, 1] having total mass 1, and for an integer n � 1 let ϕn(y) = nϕ(ny). Given
F ∈ C0(R), let Fn = F � ϕn ∈ C∞

0 (R), where � denotes the Euclidean convolution
operator. We then have

∣∣∣∣ 1
X

2X∫
X

F(Ê1(x)
)
dx−

∞∫
−∞

F(α)P1(α)dα
∣∣∣∣

�
∣∣∣∣ 1
X

2X∫
X

Fn

(Ê1(x)
)
dx−

∞∫
−∞

F(α)P1(α)dα
∣∣∣∣+ max

y∈R

∣∣F(y) −Fn(y)
∣∣.

(6.11)

Since max
y∈R

∣∣F(y) −Fn(y)
∣∣→ 0 as n→ ∞, and

∞∫
−∞

F(α)P1(α)dα = lim
n→∞

∞∫
−∞

Fn(α)P1(α)dα

= lim
n→∞ lim

X→∞
1
X

2X∫
X

Fn

(Ê1(x)
)
dx,

(6.12)

it follows that (6.10) holds whenever F ∈ C0(R).
Let us now consider the general case in which F is a continuous function of

polynomial growth, say |F(α)| � |α|j for all sufficiently large |α|, where j � 1 is
some integer. Let ψ ∈ C∞

0 (R) satisfy 0 � ψ(y) � 1, ψ(y) = 1 for |y| � 1, and set
ψn(y) = ψ(y/n). Define Fn(y) = F(y)ψn(y) ∈ C0(R). For n sufficiently large we
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have by proposition 5.1

1
X

2X∫
X

F(Ê1(x)
)
dx =

1
X

2X∫
X

Fn

(Ê1(x)
)
dx+O

(
1
nj

1
X

2X∫
X

Ê2j
1 (x)dx

)

=
1
X

2X∫
X

Fn

(Ê1(x)
)
dx+O

(
1
nj

)
,

(6.13)

where the implied constant depends only on j and the implicit constant appearing
in the relation |F(α)| � |α|j . Since Fn → F pointwise as n→ ∞, it follows from
the rapid decay of P1(α) that

∞∫
−∞

F(α)P1(α)dα = lim
n→∞

∞∫
−∞

Fn(α)P(α)dα

= lim
n→∞ lim

X→∞
1
X

2X∫
X

Fn

(Ê1(x)
)
dx .

(6.14)

We conclude from (6.13) and (6.14) that 1
X

∫ 2X

X
F(Ê1(x))dx→ ∫∞

−∞ F(α)P1(α)dα
as X → ∞. It follows that (6.10) holds for all continuous functions of polynomial
growth. The extension to include the class of (piecewise)-continuous functions of
polynomial growth is now straightforward, and so (1.1) is proved.

The decay estimates (1.2) stated in theorem 1.1 have already been proved in
proposition 4.2, and it remains to show that P1(α) defines a probability density.
To that end, we note that the LHS of (6.10) is real and non-negative whenever F
is. Since P1(α) is continuous, by choosing a suitable test function F in (6.10), we
conclude that Pq(α) � 0 for real α. Taking F ≡ 1 in (6.10) we find

∫∞
−∞ P1(α)dα =

1. The proof of theorem 1.1 is therefore complete. �

The proof of theorem 1.3 is now immediate.

Proof of theorem 1.3. In the particular case where F(α) = αj with j � 1 an integer,
we have by theorem 1.1

lim
X→∞

1
X

2X∫
X

Êj
1(x)dx =

∞∫
−∞

αjP1(α)dα. (6.15)

It immediately follows from (5.1) in proposition 5.1 that

∞∫
−∞

αjP1(α)dα =
j∑

s=1

∑
�1+···+�s=j

�1, ... ,�s�1

j!
	1! · · · 	s!

∞∑
m1, ... ,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i), (6.16)

where the series on the RHS of (6.16) converges absolutely, and for integersm, 	 � 1,
the term Ξ(m, 	) is given as in (1.4).
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By definition Ξ(m, 1) = 0, and so it follows from (6.16) that
∫∞
−∞ αP1(α)dα = 0.

Suppose now that j � 3 is an integer which satisfies j ≡ 1 (2), and consider a
summand

∞∑
m1,...,ms=1
ms>···>m1

s∏
i=1

Ξ(mi, 	i), (6.17)

with 	1 + · · · + 	s = j. We may clearly assume that 	1, . . . , 	s � 2, for otherwise
(6.17) vanishes. As j is odd, it follows that |{1 � i � s : 	i ≡ 1 (2)}| is also odd.
Since Ξ(m, 	) < 0 for 	 > 1 odd, and Ξ(m, 	) > 0 for 	 even, it follows that (6.17)
is strictly negative. We conclude that

∫∞
−∞ αjP1(α)dα < 0. The proof of theorem

1.3 is therefore complete. �
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