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On Some Convexity Questions of Handel-
man
Brian Simanek

Abstract. We resolve some questions posed by Handelman in 1996 concerning log convex 𝐿1 func-
tions. In particular, we give a negative answer to a question he posed concerning the integrability of
ℎ2 (𝑥 )/ℎ (2𝑥 ) when ℎ is 𝐿1 and log convex and ℎ (𝑛)1/𝑛 → 1.

1 Introduction

In [1], Handelman investigated eventual positivity of power series and deduced its exis-
tence for a wide variety of functions by appealing to a particular maximal function. If
ℎ : (0,∞) → (0,∞) is continuous, then he defined the maximal function

𝐻ℎ (𝑎) = max
𝑏≥𝑎

ℎ(𝑏)
ℎ(𝑎 + 𝑏) .

Note that 𝐻 takes values in [0,∞]. This maximal function was introduced in [1], where
some of its properties are discussed. In particular, it is meaningful to have an under-
standing of when ℎ𝐻ℎ is integrable on (0,∞). It is easy to see that if ℎ is log convex,
then 𝐻ℎ (𝑥) = ℎ(𝑥)/ℎ(2𝑥). This led Handelman to ask the following question (see [1,
page 338]):

Question 1 If ℎ : (0,∞) → (0,∞) is a log convex function that is integrable on (0,∞)
and satisfies lim sup𝑛→∞ ℎ(𝑛)1/𝑛 = 1, then is it true that ℎ(𝑥)2/ℎ(2𝑥) is also integrable
on (0,∞)?

One of our main results is a demonstration that the answer to Question 1 is “no." In
fact, we will prove the following result:

Theorem 1.1 There is a function ℎ : (0,∞) → (0,∞) that is log convex, integrable on
(0,∞), satisfies lim𝑛→∞ ℎ(𝑛)1/𝑛 = 1, and is such that ℎ𝑟 (𝑥)/ℎ(𝑟𝑥) is not integrable on
(0,∞) for any 𝑟 > 0.

Our proof of Theorem 1.1 is constructive in that we will show how to actually create a
counterexample.

Also in [1], Handelman made the following conjecture (see the discussion following
[1, Theorem 9]):
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Suppose ℎ : (0,∞) → (0,∞) is a log convex function that satisfies

lim
𝑛→∞

ℎ(𝑛)
ℎ(𝑛 + 1) = 1 (1.1)

and ℎ2 (𝑥)/ℎ(2𝑥) is integrable on (0,∞). Then ℎ is also integrable on (0,∞).
Our second main result is the following:

Theorem 1.2 Conjecture 1 is true.

Remark. We should point out that the hypothesis (1.1) is essential to proving Theorem
1.2, for otherwise one could take ℎ(𝑥) = 𝑥𝑥 as a counterexample. We also remind the
reader of an observationmade byHandelman in [1, page 338],which is that the condition
(1.1) for a log convex function ℎ is equivalent to the condition that the series

∑
ℎ( 𝑗)𝑡 𝑗

has radius of convergence exactly 1.

In addition to above Question and Conjecture, Handelman also asked: if a function
ℎ is log convex and integrable on (0,∞), then is ℎ2 (𝑥)/ℎ(2𝑥) also integrable on (0,∞)
(see [1, page 331])? We believe this question is still open.

The remainder of the paper is devoted to the proofs of Theorem 1.1 and Theorem
1.2. Our methods are elementary and require only basic facts about convex functions
(see [2] for a discussion of many tools in convexity theory).

2 Proofs

The purpose of this section is to prove all of the results discussed in the introduction.

2.1 The Construction

In this section, we will resolve Question 1. Let us write ℎ(𝑥) = exp( 𝑓 (𝑥)) where 𝑓 (𝑥)
is convex. Since ℎ ∈ 𝐿1 (R+), it must be that lim𝑥→∞ 𝑓 (𝑥) = −∞. The remaining
condition on ℎ implies lim𝑛→∞ 𝑓 (𝑛)/𝑛 = 0, or equivalently (by the convexity of 𝑓 )
lim𝑥→∞ 𝑓 ′ (𝑥) = 0 provided 𝑓 ′ (𝑥) exists. In fact, the function 𝑓 we construct will be
piecewise linear and hence 𝑓 ′ (𝑥) will be undefined on a discrete set. We will choose
sequences {𝑎𝑛}∞𝑛=0, {𝑚𝑛}∞𝑛=0, and {𝑏𝑛}∞𝑛=0 so that

𝑓 (𝑥) = 𝑚𝑛𝑥 + 𝑏𝑛 , 𝑥 ∈ [𝑎𝑛, 𝑎𝑛+1], (2.1)

and 𝑓 is continuous.
To begin our construction, let {𝑚𝑛}∞𝑛=0 be a fixed sequence of negative real numbers

thatmonotonically increases to 0.With this fixed sequence in hand,wewill construct the
sequence {𝑎𝑛}∞𝑛=0 inductively, and the sequence {𝑏𝑛}∞𝑛=0 will then be defined implicitly
in order to make 𝑓 continuous.

We begin our construction of the sequence {𝑎𝑛}𝑛≥0 by defining 𝑎0 = 0 and we also
define 𝑏0 = 0. Now, choose 𝑎1 large enough so that

•

− 𝑒𝑚0𝑎1

𝑚1
<

1
2
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•

𝑎1 > 1 = 𝑎0 + 𝑒−𝑏0 .

Now set 𝑏1 = 𝑚0𝑎1 − 𝑚1𝑎1 and observe that 𝑚1𝑎1 + 𝑏1 = 𝑚0𝑎1.
Now let us assume that {𝑎 𝑗 }𝑛𝑗=0 and {𝑏 𝑗 }𝑛𝑗=0 have already been defined.Wewill now

show how one can choose 𝑎𝑛+1 and then 𝑏𝑛+1 to complete the construction. Indeed, as
above, we will choose 𝑎𝑛+1 large enough so that

− 𝑒𝑚𝑛𝑎𝑛+1+𝑏𝑛

𝑚𝑛+1
<

1
2𝑛+1

,

𝑎𝑛+1 > max
{
𝑎𝑛 + 𝑒 (1−𝑡 )𝑏𝑛 : 𝑡 ∈ [0, 𝑛]

}
.

Then define

𝑏𝑛+1 = 𝑚𝑛𝑎𝑛+1 + 𝑏𝑛 − 𝑚𝑛+1𝑎𝑛+1

and observe that

𝑚𝑛+1𝑎𝑛+1 + 𝑏𝑛+1 = 𝑚𝑛𝑎𝑛+1 + 𝑏𝑛. (2.2)

Proceeding inductively, we arrive at two sequences {𝑎𝑛}∞𝑛=0 and {𝑏𝑛}∞𝑛=0. It is clear from
our construction that 𝑎𝑛+1 > 𝑎𝑛 + 1 (since 1 ∈ [0, 𝑛]) and so each 𝑎𝑛 is positive (except
𝑎0) and lim𝑛→∞ 𝑎𝑛 = ∞. Therefore this procedure defines 𝑓 on all of (0,∞) if we define
𝑓 by (2.1). Notice also that 𝑎𝑛 > 0 and𝑚𝑛 > 𝑚𝑛−1 inductively implies that each 𝑏𝑛 < 0
when 𝑛 > 0.

Now let us check that this function has the desired properties. First of all, since𝑚𝑛 →
0monotonically, it is clear that 𝑓 (𝑛)/𝑛 → 0 and also that 𝑓 is convex. Nowwe calculate∫ ∞

0
ℎ(𝑥)𝑑𝑥 =

∫ ∞

0
𝑒 𝑓 (𝑥 )𝑑𝑥 =

∞∑︁
𝑛=0

∫ 𝑎𝑛+1

𝑎𝑛

𝑒𝑚𝑛𝑥+𝑏𝑛𝑑𝑥

≤
∞∑︁
𝑛=0

∫ ∞

𝑎𝑛

𝑒𝑚𝑛𝑥+𝑏𝑛𝑑𝑥

=

∞∑︁
𝑛=0

− 𝑒𝑚𝑛𝑎𝑛+𝑏𝑛

𝑚𝑛

= − 1
𝑚0

+
∞∑︁
𝑛=1

− 𝑒𝑚𝑛−1𝑎𝑛+𝑏𝑛−1

𝑚𝑛

(we use (2.2) here)

< − 1
𝑚0

+
∞∑︁
𝑛=1

2−𝑛,

which is clearly finite. Therefore, ℎ ∈ 𝐿1 (R+) as desired.
Finally, fix 𝑟 ∈ (0,∞) and choose 𝑁 ∈ N so that 𝑟 < 𝑁 . Notice that

ℎ𝑟 (𝑥)
ℎ(𝑟𝑥) = 𝑒 (𝑟−1)𝑏𝑛 , 𝑥 ∈ [𝑎𝑛, 𝑎𝑛+1] .
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Therefore,∫ ∞

0

ℎ𝑟 (𝑥)
ℎ(𝑟𝑥) 𝑑𝑥 =

∞∑︁
𝑛=0

𝑒 (𝑟−1)𝑏𝑛 (𝑎𝑛+1 − 𝑎𝑛) >
∞∑︁

𝑛=𝑁

𝑒 (𝑟−1)𝑏𝑛 (𝑎𝑛+1 − 𝑎𝑛) >
∞∑︁

𝑛=𝑁

1,

by construction, so ℎ𝑟 (𝑥 )
ℎ (𝑟 𝑥 ) ∉ 𝐿1 (R+). This completely answers Question 1.

2.2 The Conjecture

In this section, wewill prove Theorem 1.2. The log convexity of ℎ implies that ℎ is either
monotone increasing on (𝐴,∞) for some 𝐴 ≥ 0 or monotone decreasing on (0,∞). In
the latter case, we have ℎ(𝑥) ≥ ℎ(2𝑥) and so∫ ∞

0
ℎ(𝑥)𝑑𝑥 ≤

∫ ∞

0

ℎ2 (𝑥)
ℎ(2𝑥) 𝑑𝑥 < ∞,

so ℎ is integrable.
If ℎ is monotone increasing on (𝐴,∞), then log(ℎ(𝑥)) is also increasing on (𝐴,∞).

Note that the convexity implies that we can choose 𝐴 so that log(ℎ(𝑥)) is strictly mono-
tone increasing on (𝐴,∞), for otherwise ℎ would be constant on some interval [𝐵,∞).
This would contradict the assumption that ℎ2 (𝑥)/ℎ(2𝑥) is integrable on (0,∞). Since
log(ℎ(𝑥)) is convex, it must be that there is some constant 𝑐 > 0 so that

log(ℎ(𝑛 + 1)) − log(ℎ(𝑛)) ≥ 𝑐, 𝑛 > 𝐴.

This implies ℎ(𝑛 + 1)/ℎ(𝑛) ≥ 𝑒𝑐 , which means ℎ cannot satisfy (1.1). Therefore, this
case cannot occur, and we have proven Theorem 1.2.
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