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Abstract

Complex machine learning architectures and high-dimensional gridded input data are increasingly used to develop high-
performance geoscience models, but model complexity obfuscates their decision-making strategies. Understanding the
learned patterns is useful for model improvement or scientific investigation, motivating research in eXplainable artificial
intelligence (XAI) methods. XAI methods often struggle to produce meaningful explanations of correlated features.
Gridded geospatial data tends to have extensive autocorrelation so it is difficult to obtain meaningful explanations of
geosciencemodels.A recommendation is to group correlated features and explain those groups. This is becoming common
whenusingXAI to explain tabular data.Here,wedemonstrate thatXAI algorithms are highly sensitive to the choice of how
we group raster elements. We demonstrate that reliance on a single partition scheme yields misleading explanations. We
propose comparing explanations from multiple grouping schemes to extract more accurate insights from XAI. We argue
that each grouping scheme probes the model in a different way so that each asks a different question of the model. By
analyzing where the explanations agree and disagree, we can learn information about the scale of the learned features.
FogNet, a complex three-dimensional convolutional neural network for coastal fog prediction, is used as a case study for
investigating the influence of feature grouping schemes onXAI. Our results demonstrate that careful consideration of how
each grouping scheme probes the model is key to extracting insights and avoiding misleading interpretations.

Impact Statement

With the increasing use of complexmodels for geoscience applications, there is a need formodel explainability. It
is challenging to apply eXplainable artificial intelligence (XAI) methods to high-dimensional geoscience data
because of extensive correlation. We demonstrate how choices in grouping raster elements can substantially
influence the relative importance of input features. We also show how differences in XAI output have a
relationship with the grouping scheme used. Our work highlights how discrepancies between XAI outputs from
different grouping schemes can lead to additional insights about characteristics of the learned features that would
not be revealed with a single grouping scheme.
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1. Introduction

Geoscience modeling applications are increasingly reliant on artificial intelligence (AI) techniques to
develop models that capture complex, nonlinear relationships from geospatial data. Complex deep
learning (DL) architectures and high-dimensional raster data inputs are often used to achieve high-
performance models. Examples of using DL for geoscience modeling include predicting soil temperature
(Yu et al., 2021), typhoon paths (Xu et al., 2022), tropical cyclones (Lagerquist, 2020), sea-surface
temperature (SST) (Fei et al., 2022), and classification using multi-spectral (Helber et al., 2019) and
synthetic aperture radar (Zakhvatkina et al., 2019). Many studies demonstrate that the complexity enables
the model to achieve the desired predictive skill, but the complexity also makes it very difficult to
understand the model’s decision-making process. There are many examples where models appeared to
achieve high performance based on evaluation against an independent testing dataset, but actually learned
to exploit spurious relationships that are not useful for real-world use (Lapuschkin et al., 2019). Or, a
modelmay have learned to use patterns existing in nature that are unknown to human experts (Quinn et al.,
2021). These are potential opportunities to learn novel scientific insights by exposing a model’s learned
strategies. Model debugging and scientific inquiry are two major motivations behind the rapidly
developing field of eXplainable AI (XAI). XAI approaches are usually categorized as either interpretable
models or post-hoc explanation methods (Murdoch et al., 2019). Interpretable models are machine-
learning (ML) methods for constructing models with inherent explainability. While these models are
easier to understand, they are usually much simpler than the complex architectures required for complex
geoscience applications. Instead, we focus here on post-hoc explanation methods that are applied to
arbitrary models to investigate what they have learned.

XAI techniques tend to struggle with correlated data, and can produce very misleading explanations
(Au et al., 2022). This limits the potential for XAI to explain geoscience models since many rely on
gridded geospatial input data that contain extensive correlation (Legendre, 1993). In addition to long-
range dependencies (e.g., teleconnections (Niranjan Kumar and Ouarda, 2014)), high autocorrelation
among grid cells is very often present because of spatial and temporal relationships among them. As the
dimensionality of the geospatial input data increases, it becomes more challenging to achieve reliable and
meaningful explanations from XAI methods. The approach taken by many post-hocmethods is not well-
suited to datawith high autocorrelation. Thesemethods explain themodel bymodifying the input data and
evaluating the model to measure the change in either performance or output (Lundberg and Lee, 2017).
The problem is that these methods evaluate the influence of single grid cells, but the model learns spatial
patterns within the gridded input. A single cell often has minimal information for the model. For example,
a model that detects clouds in an image should not be concerned with a single grey pixel. Instead, groups
of grey pixels with certain textural patterns are recognized as cloud features. By analyzing models at the
cellular level, grid cells that are part of learned patterns may not be detected as being influential. Because
of this problem, it is very easy to produce misleading explanations with XAI.

A proposed solution is to group correlated features before applying XAI (Au et al., 2022). Then, post-
hocXAImethods perturb groupmembers together to explain that feature.While individual grid cells may
have minimal impact on the model, removing the set of correlated features could trigger considerable
change. This has become common for tabular data where the correlationmatrix is used to group correlated
features. This makes sense for relationships that hold across a dataset, such as between variables height
and weight. This does not apply to the image patterns that are present in raster data. There is very little
research on strategies for grouping grid cells to improve the quality of explanations produced by XAI
methods, especially for rasters other than RGB or grayscale images. Groups may be formed by clustering
in a data-driven fashion or by partitioning the raster according to a geometric grouping scheme. Either
way, there is little guidance on how the choice of groups influences the explanations.

In this research, we analyze how the geometric partitioning scheme influences XAI. We show that
explanations from different grouping schemes can greatly disagree. Based on the grouping scheme, users
could have opposite interpretations of which features are influential. Many studies have demonstrated that
XAI methods may disagree (McGovern et al., 2019), but there is little research concerning the

e45-2 Evan Krell et al.

https://doi.org/10.1017/eds.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.39


disagreement that arises based on feature grouping, especially for high-dimensional geospatial data. One
conclusion is to avoid XAI since it is unclear which explanation is correct. Here, we aim to show that the
disagreement may reveal insights about the nature of the learned features. Each explanation should be
considered the answer to a specific question rather than a complete model summary.We apply a hierarchy
of partitioning schemes and demonstrate interpreting the model based on the set of explanations to extract
information about the scale of the learned features. FogNet, a DL model for predicting coastal fog in the
South Texas Coastal Bend (Kamangir et al., 2021), is used to analyze the impact of partitioning the raster
elements into features for XAI. It was chosen because of its complex architecture and high-dimensional
raster input.

To summarize, there is a desire to use XAI to investigate complex geoscience models, but the strong
correlations in the geospatial raster datamake it easy to bemisled byXAI outputs.While some researchers
are using XAI for geoscience models (Cilli et al., 2022; Sachit et al., 2022), there is little investigation of
explanation quality. We have two major goals: (1) to expose that the correlations in geospatial data can
cause misleading explanations and (2) to offer guidance toward better model understanding by carefully
applying multiple XAI methods at a hierarchy of feature grouping schemes. It is difficult to verify XAI
methods because the true explanation is, in general, not known. However, we analyze the consistency
among methods and rely on domain expertise to relate the discrepancies between XAI outputs to the
underlying physics of the features. Based on our analysis, we feel confident that, while no XAI method is
perfect, our XAI strategy is revealing overall patterns related to how features at different scales influence
model decisions.

Our work provides the following contributions:

1. Demonstration that XAI methods are highly sensitive to the feature grouping scheme.
2. Presentation of strategies for using multiple grouping schemes for deeper model insights.
3. Presentation of strategies for aggregating local explanations into global explanations.
4. Development of modified PartitionShap (Lundberg and Lee, 2017) for multichannel rasters

explanations.
5. Demonstration of how our XAI strategies can help a domain expert better interpret a complex

model.

The paper is organized as follows. Section 1 introduces the problem and our contributions, followed by
a review of related research. Section 2 describes FogNet and its geospatial input raster. The section then
describes the XAI methods applied to that model and the various grouping schemes used. Section 3
presents the results of our experiments and Section 4 provides our interpretation of the explanations. We
demonstrate that an understanding of the methods in Section 2, along with domain knowledge, helps us
better interpret XAI outputs even when there are substantial discrepancies among them. Finally, Section 5
summarizes our findings and offers guidance to practitioners using XAI for geoscience models.

1.1. Related works

In the following three examples, models use DL architectures with gridded spatiotemporal predictors, and
comparisons with simpler alternative models highlight performance gains using the more complex
architecture. Yu et al. (2021) used spatiotemporal rasters to predict soil temperature. A DL architecture
was developed with three-dimensional (3D) convolution to learn spatial-temporal features and significant
performance gains were achieved over simpler 2D convolution. Xu et al. (2022) developed a DL model
for typhoon path prediction. Comparing several ML techniques and DL configurations, the best
architecture was a fusion of DL with 3D convolution and a Generalized Linear Model. Fei et al.
(2022) developed a hybrid model for bias-correcting SST from raster numerical weather model output.
A convolutional long short-term memory (LSTM) model was used to learn spatial-temporal patterns.
These performance gains achieved using complex models motivate our study of post-hoc XAI for
geoscience modeling rather than interpretable models.
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Researchers have begun to adopt XAI methods to explain these complex atmospheric models.
McGovern et al. (2019) reviewed XAI for meteorological ML which regularly uses high-dimensional
spatial-temporal rasters. Several techniques were used to explain a tornado prediction CNN that uses a
multi-channel raster of atmospheric variables. The study highlights that discrepancies between XAI
methods explanations are common, and they caution against bias confirmation: to not assume that the
explanation that matches expectations is the most accurate. Instead, the recommended strategy is to apply
multiple XAI methods; consistencies provide evidence of the true explanation. Lagerquist (2020)
developed a CNN to predict the probability of next-hour tornado occurrence based on storm-centered
radar imagery and proximity soundings. To explain the model, the authors applied several XAI tech-
niques. The authors performed additional XAI verification using sanity checks proposed by Adebayo
et al. (2018) who observed that explanations are sometimes overly influenced by input discontinuities.
Some XAI methods may highlight raster edges rather than explain influential features. Lagerquist (2020)
applied these sanity checks, which suggest that the explanations are in fact based on model behavior.
Hilburn et al. (2021) used Geostationary Operational Environmental Satellite (GOES) imagery to train a
U-Net architecture to estimate the spatial distribution of composite reflectivity. Layer-wise Relevance
Propagation (LRP) identifies influential raster elements using a backward pass through the neural
network. In the GLM channel of the input raster, LRP results suggest that the network focuses on
lightning regions. The authors then created modified inputs, removing the lighting in the GLM channel to
observe model output. The results indicated that the lightning did in fact contribute significantly. Here, an
existing XAI technique was used, but with additional steps taken to increase confidence. A fundamental
XAI challenge is the lack of a ground truth to determine if the explanation is correct. The above authors
show how additional steps can be taken to increase confidence in explanations: explanation consistency
(McGovern et al., 2019), sanity checks (Lagerquist, 2020), and synthetic inputs (Hilburn et al., 2021).

Correlations among input features can cause XAI techniques to provide misleading explanations. The
rasters used in geoscience modeling often have a substantial spatial correlation among grid cells. A
potential solution is to group correlated features. Au et al. (2022) describe the XAI challenges caused by
correlated input features, and describe three variants of XAI algorithms for explaining groups of features:
permutation feature importance (PFI), refitting (retraining the model with the group removed), and
LossSHAP. Initial efforts have been made in grouping pixels of RGB/grayscale image pixels into feature
groups for XAI. Ribeiro et al. (2016) includes superpixel clustering before explaining image-based
models in the LIME software package. Observing that the size and shape of superpixels influenced XAI
results, Hajiyan (2022) proposed recursively dividing larger superpixels into increasingly smaller ones.
LIMEwas applied to each set of clusters, from largest to smallest. Based on the size of the learned pattern,
the influence of a pixel may be detected only at a certain level of granularity. The LIME outputs from each
level of the hierarchy were summed so that a single explanation highlights pixels whose influence was
detected at any level. Here, we do not combine the XAI results from different grouping schemes because
our goal is to show that each grouping scheme’s result should be interpreted differently. Information about
the scale of the learned patterns is lost when combining them, especially for high-dimensional, multi-
channel geospatial data.

2. Methods

2.1. FogNet

FogNet (Kamangir et al., 2021) is a DL architecture for predicting coastal fog that outperforms the
operational high-resolution ensemble forecast (HREF) across several performance metrics (Kamangir
et al., 2021). Here, the model was trained for 24-h lead time predictions for visibility <6400 m. Features
were derived from the North American Mesoscale Forecast System (NAM). An additional feature is
observed SST from the NASA Multiscale Ultra-high Resolution (MUR) satellite dataset. The target
visibility data is observations at Mustang Beach Airport in Port Aransas, Texas (KRAS). The gridded
inputs are concatenated to create an input raster of shape (32, 32, 384). The target is a binary class
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representing whether or not there is visibility at the specific threshold. Variables were selected to capture
3D spatial and temporal relationships related to fog. The FogNet architecture was designed to capture
relationships across both the spatial grids and the spatial-temporal channels using dilated 3D convolution
(Kamangir et al., 2021).

The FogNet input (Figure 1) is divided into 5 groups of related physical characteristics. These features
are described in the FogNet paper (Kamangir et al., 2021). G1 contains a 3D profile of wind data. G2
features include turbulence kinetic energy (TKE) and specific humidity (Q). G3 approximates the
thermodynamic profile by including relative humidity (RH) and temperatures (TMP).G4 features account
for surfacemoisture (q) and air saturation (dew point depression) as well asmicrophysical features such as
NAMsurface visibility and temperature at the lifted condensation level (TLCL). G5 includes both the SST
analysis product from the MUR as well as derived values: the difference between SST and temperature
(TMP-SST) and the difference between dew point temperature and SST (DPT-SST).

Although these groups contain features that relate to a particular fog-generating or dissipating
mechanism or possess a statistical correlation to fog occurrence, there exist correlations across the groups.
For example, Groups 1, 2, and 3 are correlated; a temperature inversion (temperature increase with height)
in the lower levels (G3), which typically occurs during fog events, will result in an atmospheric condition
known as positive static stability (Wallace and Hobbs, 1977) which will suppress vertical mixing of air
which in turn affects surface wind velocity (G1). Furthermore, a thermal inversion can suppress
turbulence (G2) (Stull, 1988). Groups 3 and 5 are related since G3 contains surface RH, which is
inversely proportional to the G5 feature dew point depression. Since wind has a turbulence component,
there exists a relationship between G1wind and G2 TKE. In addition, G1 and G4 are related since surface
wind divergence (convergence) results in downward (upward) VVEL immediately aloft.

2.2. Explainable artificial intelligence

FogNet is used to compare XAI results when grouping raster elements with 3 different feature grouping
schemes. To explain the feature importance of these groups, we use the three group-based XAI techniques
discussed byAu et al. (2022). In addition, we use a feature effect method called PartitionSHAP (Hamilton
et al., 2021) using our version called Channel-wise PartitionSHAP that we extended to explain multi-
channel raster inputs. Figure 2 shows several geometric partition schemes, but this is not exhaustive since
groups can be arbitrarily complex in shape.

Here, FogNet features are grouped using three schemes. The least granular is the five physics-based
channel groups (Figure 1b). Our ablation study (Kamangir et al., 2022) confirmed that each contributes to
FogNet’s high performance. So we expect that each group should be assigned significant importance.
Next, each of the 384 channels is also used as a feature (Figure 2d). Ideally, this reveals more insight into
themodel: which variables, at what altitudes, and time steps are used. An issue is that there is already a risk
of highly correlated channels diluting the detection of each channel’s true influence. To assess sensitivity,
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Figure 1. The FogNet input (a) has 384 channels, forming ifve groups of physically-related variables (b).
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we sum channel-wise XAI values to see if the summations achieve the same group ranking as the channel
groups XAI. To achieve spatial-temporal explanations, the lowest level of granularity is channel-wise
superpixels (Figure 2f). We will assess sensitivity by aggregating superpixels in each channel for
comparison with channel-wise XAI and further aggregate into groups to compare to group-based XAI.

We must consider the explanation’s meaning: what, exactly, the method does to calculate these values
to better understand what they reveal about the model. Consider applying PFI to a single grid cell. After
permutingmultiple times and taking the average of the change inmodel performance, wemay find a near-
zero importance score. As discussed, single-element changes are likely to have little influence on the
model in isolation. That does not mean that there cannot be single elements that do have high importance
scores. When the importance score of a grid cell is low, it tells us that the single pixel in isolation is not
important. When the score is high, that grid cell greatly impacts the model by itself. If PFI at the grid cell
level outputs very low importance scores, a reasonable interpretation is that the model does not rely on
such fine-grained information to make decisions. This is desirable when the target is correlated with
patterns rather than the value at a single location. In the case of fog, forecasters rely on the air temperature
profile rather than temperature at a particular level. 2D and 3D CNNs are chosen when we expect that
patterns are crucial for forecasting skill.

Next, suppose that PFI revealed several important superpixels, but did not reveal important pixels. This
suggests that the CNN is in fact learning to recognize patterns within 2D gridded data. This is an example
where the discrepancy between XAI applied at two grouping schemes reveals insight into the model that
could not be determined using either grouping scheme alone. In this research, we propose that XAI
applied to multiple grouping schemes can offer insight into model behavior. This is in contrast to a
conventional take that differences betweenXAImethods mean that there is a problemwith one or more of
the methods. The key to interpreting a set of explanations is to understand that each asks a different
question of the model.

2.3. Feature effect methods

Feature effect methods quantify each feature’s influence on a specific output. Unlike importancemethods,
feature effect reveals features being used by the model regardless of their impact on performance. The
positive and negative impact on performance may cancel out such that a very influential feature is not
detected by a feature importance method. These are called local methods because the explanation is for a
specific output; it may reveal non-physical strategies that rarely occur, useful for imbalanced datasets.

It can be challenging to obtain insights from a large set of high-dimensional local explanations. Each is
a raster of values with the same dimensions as the input. Instead of a single global explanation for the
model, local explanations can be aggregated by category. Lagerquist (2020) combined XAI results by
extreme cases: best hits, worst misses, etc. In our case, the FogNet input rasters have consistent grid cell
geography. That is, each has identical geographic extent and resolution such that (row, col) coordinates
always align spatially across samples. We take advantage of this to aggregate explanations by summing

Figure 2. Various geometric schemes to group 3D rasters. The most granular is the (a) raster itself where
no grouping is applied. Each spatial element can be grouped into a (b) pixel that contains all channels at
that (row, column) location. Adjacent pixels may be combined into coarser (c) superpixels. Similarly,
adjacent (d) channels may be aggregated into (e) channel groups. Within each channel, the elements may
be aggregated into (f) channel-wise superpixels (CwSPs).
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values at each coordinate across a set of samples as shown in Section 2.3. This converts the set of local
explanations into amuch smaller set of figures that can be analyzedmore easily, at the loss of case-by-case
granularity.

Local explanations of rasters are often visualized with an attribution heat map: a 2D image where the
colors correspond to the relative influence of that grid cell’s attribution toward the model output.
Commonly, red values indicate a positive contribution while blue indicates a negative. A single heatmap
is typically used to explain grayscale and RGB samples but is not informative for arbitrary multi-channel
rasters. Figure 7 shows an example where each heatmap corresponds to a single raster channel.

2.3.1. SHapley Additive ExPlanations
Game-theoretic Shapley values are the fairly distributed credit to players in a cooperative game (Lundberg
and Lee, 2017). Each player should be paid by how much they contributed to the outcome. In the XAI
setting, the features can be considered players in a game to generate the model output. Thus, a feature that
influenced the model to a greater extent is a player that should receive more payout for their contribution.
Shapley values are a feature’s average marginal contribution to the output. Calculating Shapley values
directly has combinatorial complexity with the number of features. Since it is infeasible for high-
dimensional data, Lundberg and Lee (2017) developed a sampling-based approximation called SHapley
Additive exPlanations (SHAP). Molnar et al. (2020) gives a detailed explanation of SHAP and its
advantages and disadvantages.

A single contribution is the difference between the model output with and without a feature x. The
challenge is that models usually expect a fixed input and do not support leaving out a feature. Feature
removal has to be simulated somehow, and a variety of methods have been proposed. In canonical SHAP,
the value of the removed feature x is replacedwith the value from x in other dataset examples. By replacing
x with many such values and averaging the result, SHAP evaluates the average difference in output
between the true value of x and output without that value.

The key to Shapley values is that many additional output comparisons are performed to account for
feature dependencies and interactions. In the context of a cooperative game, consider a team that has
2 high-performing players x and y. The remaining players on the team have no skill. With x and y playing,
the team wins despite no help from the others. The goal is to fairly assign payout to the players based on
their contribution to the game’s outcome. Suppose x is removed from play and y is still able to win the
game. Comparing the two games, one could conclude that x did not contribute to thewin. Instead, if ywere
removed and xwins the game then it appears that y does not contribute, but removing both x and y causes
the team to lose the game. Thus, the change in outcome from player x depends on player y.

The combinatorial complexity is because it takes the above dependency issue into account. To evaluate
the contribution of x, it does more than just compare model outputs with and without x present. It repeats
the comparison but considers all possible combinations of other players being present or absent from the
game. A feature’s Shapley value is a weighted average of the contribution over all the possible
combinations of players. SHAP approximates the Shapley values over a set of samples for performance,
but still potentially requires a very large number of evaluations to converge to a close approximation.

2.3.2. PartitionSHAP
It is impractical to use SHAP for FogNet’s channels or channel-wise superpixels because of the large
number of features. PartitionSHAP (Lundberg and Lee, 2017) uses hierarchical grouping to approximate
Shapley values for superpixels with a significantly reduced number of calculations. The complexity of
PartitionSHAP is quadratic with the number of raster elements instead of SHAP’s exponential complexity.
Given a partition tree that defines a hierarchy of feature groups, PartitionSHAP recursively traverses the
tree to calculate Owen values. These are equivalent to Shapley values for a linear model but otherwise
have their own properties useful for dealing with correlated features. Unlike Shapley values, the recursive
Owen values are able to correctly assign credit to groups even if the correlated features are broken while
perturbing those features, but this is only true if the partition tree groups correlated features.
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For tabular data, PartitionSHAP uses a clustering algorithm to define the partition tree. For rasters,
PartitionSHAP partitions by recursively dividing the data into 2 equal-size superpixels. Figure 3a shows
the first 4 levels of a partition tree constructed for a single-channel raster. The root is the largest group, the
entire image. Each node’s children represent splitting it into 2 superpixels. PartitionSHAP’s image
partitioning algorithm is illustrated in Figure 4.

Figure 3b illustrates how the Owen values are calculated based on the recursively defined feature
hierarchy. First, consider calculating the Owen value of the root node’s left child. This is the superpixel
representing the bottom half raster elements. The Owen value is the weighted sum of multiple model
evaluations that represent the change in output with and without the superpixel present. The left-hand
operation is the difference in model output with no information (all values removed) and with the
superpixel’s values added. The right-hand operation is the difference between the model output with all
values present and with the superpixel’s values removed. Together, these describe the contribution of the
superpixel. Below is the calculation for the bottom-right quadrant superpixel. This example shows more
clearly how the hierarchy reduces the number of required computations compared to SHAP. There are four
comparisons. First, the difference in output when only the superpixel is present. Then, the output when the
group is present but the superpixel is removed. Next, the group is absent, except for the superpixel (and the
parent’s sibling is present). Finally, the group is present (sibling absent), and the superpixel is removed.

(a) Partition Tree

owen(               ) - +
2

=
owen(               )

-
2

- +
4

-
4

=
- +
4

-
4

+

(b) Owen Value calculation

Figure 3. The hierarchy is defined by the partition tree that is generated by recursively splitting the raster.
An example partition tree for a single channel, shown to a depth of 4, is given in (a). The white elements
indicate the superpixel at that node. The tree continues until the leaf nodes are single (row, col) elements.
Owen values (b) are calculated recursively, where each superpixel is evaluated based on comparisons
with the elements in its larger group either present or absent.

Figure 4. PartitionSHAP’s default scheme for building a partition tree. Given a raster (a), the rows and
columns are alternatively halved (nearest integer). (b) demonstrates a row split that divides vertically into
two groups. This is followed by a column split (c) dividing each horizontally. This process recursively
builds a tree where each group is a node whose children are the two groups formed by splitting it.
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All four evaluations are with respect to the superpixel being evaluated and its parent group. With SHAP,
evaluating this bottom-right superpixel would have required evaluating themodel with all other quadrants
being present or absent. Here, there is no evaluation of the top-left and top-right quadrants since they are
not part of the bottom-right feature hierarchy. Since image-based partitioning is performed by arbitrarily
splitting the raster elements by the image size, there is no guarantee that the partition hierarchy captures
correlated feature groups. Thus, Owen value’s game-theoretic guarantees are violated. Regardless,
Hamilton et al. (2021) applied PartitionSHAP and described the explanations as high quality and
outperforming several other XAI methods including Integrated Gradients and LIME. Even without
partitioning into optimally correlated clusters, the superpixels contain spatially correlated elements and
might cause an appreciable change in the model output compared to a single raster element.

Our main motivation for using PartitionSHAP is efficiency. Shapley-based channel-wise superpixel
explanations are feasible because of 2 properties. First, the recursive scheme that lowers the number of
required evaluations already described. Second, PartitionSHAP selectively explores the tree to calculate
more granular superpixel values based on the magnitude of the Owen values: a superpixel with higher
Owen values is prioritized such that its children superpixels will be evaluated before those with lower
magnitude values. Given a maximum number of evaluations, PartitionSHAP generates explanations with
more influential raster elements at increased granularity. PartitionSHAP divides by rows and columns,
and only by channels when at a single (row, col) pixel. Here, we are interested in superpixels inside each of
the channels. These represent windows of spatial regions within a single feature map. We added an
additional partition scheme option to Lundberg and Lee (2017)’s SHAP software. This partition scheme,
illustrated in Figure 5, splits along the channels first, then into superpixels within each channel.

2.4. Feature importance methods

Feature importance methods quantify the feature’s global influence on model performance. Here we
report the change in the Peirce Skill Score (PSS), Heidke Skill Score (HSS), and Clayton Skill Score
(CSS). Unlike simpler error metrics (e.g., mean squared error), these measure skill: it is non-trivial to
achieve high skill even with highly imbalanced data. Feature importance methods differ mainly in how
feature removal is simulated. A trivial example is replacement with random values. Random values could
create unrealistic input samples well outside the domain of the training data. The model’s output may
reflect the use of unrealistic data rather than properly simulating the removal of that feature (Molnar et al.,
2020). Alternatively, the replacement value could be randomly selected from that feature’s value in other
dataset samples to ensure realistic values. The combination with other features could still be unrealistic,
again risking model evaluation with out-of-sample inputs. Molnar et al. (2020) describes feature
replacement challenges.

Figure 5. The form channel-wise SuperPixels (CwPS), the input raster (a) is initially divided along the
channels. (b) shows the result of a single channel split, dividing the raster into two halves (or, the nearest
integer). When the partitioning reaches a single-channel group, it begins recursively diving along the
rows and channels as before. (c) shows the result of row splits performed on all three channels.
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2.4.1. Refitting methods
An alternative is to retrain the model without each feature andmeasure the performance change (Au et al.,
2022). Retraining for each feature requires substantial computing resources which is infeasible for models
with high-dimensional inputs. Requiring > 2 h to train, it would take > 786432 h to explain each element
of FogNet’s (32, 32, 384)-size raster. Because of training randomness, each should be donemultiple times.
It is practical to apply refitting to coarser groups such as the 5 physics-based channel groups. Here, we
refer to the refitting method as Group-Hold-Out (GHO). While refitting avoids out-of-sample replace-
ment, it does not entirely mitigate feature correlation concerns. If features x and y provide strong
discriminative information, but are highly correlated with one another, then retraining with only x or y
removed might have a negligible impact on model performance. One could imagine retraining the model
with each group of features removed, like SHAP, but with combinatorial model retraining. Also, the
explanation is technically not for the model originally to be explained since each refitting generates a new
model. If each model is learning unique strategies (i.e., many equally valid data associations can predict
the target), then it may be misleading to rely on this as an explanation of the specific model.

2.4.2. Permutation feature importance
PFI simulates feature removal with permutation to replace the feature’s values (Breiman, 2001). The
following is a summary of PFI to calculate the importance of a single feature xi ∈X whereX is the set of all
features. For every sample in a set of samples, permute the value of feature xi and compute the output with
the modified input. This yields a set of model outputs. Then, compute the model performance using a
chosen metric (e.g., the loss function). Next, calculate the difference between the model’s original
performance and that of the modified input. The mean difference is the importance score. If the model
performance drops significantly, then xi is considered an important feature. If there is minimal perform-
ance change, then xi is either unimportant or has information that is redundant with other features
(McGovern et al., 2019).

2.4.3. LossSHAP
LossSHAP is a SHAP variant for feature importance (Covert et al., 2020). Au et al. (2022) describe
Shapley-based XAI algorithms for grouped feature importance. Instead of calculating the average
marginal contribution (change in local model output) like SHAP, LossSHAP calculates the average
marginal importance (change in global model performance). Like SHAP, the importance is the weighted
average of this performance difference, considering all possible combinations of other features being
present or absent.

3. Results

Feature importance methods were applied to the entire test dataset (2229 cases). PFI was applied to three
feature grouping schemes: channel groups, channels, and channel-wise superpixels (CwSPs). Because of
their computational requirements, LossSHAP and GHO were applied only to the 5 channel groups.
Feature effect methods were applied to 293 cases taken from both test and validation datasets. This
includes all 67 hits, 64 misses, and 78 false alarms, as well as 84 randomly selected correct rejections. The
hits andmisses are further broken down by fog type. Here, we are most interested in advection fog and the
combined category radiation and advection-radiation fog. Unless the phrase radiation and advection-
radiation fog is used, radiation fog refers to both radiation and advection-radiation fog because the same
mechanism is responsible for the formation of both: radiational cooling. Advection fog is the majority fog
case (50 hits, 34 misses). For radiation and advection-radiation fog, there is only 1 hit and 10 misses.
SHAP could not be applied to the 384 channels directly due to its complexity, so we applied it only to the
5 channel groups. Figure 6a shows the distribution of the group SHAP values. The most common case
(96%) is no fog and although we use a threshold value of .8, the mean value is .048. Thus, the SHAP
values overall tend to be quite small for most cases in the test dataset, and Figure 6a shows that the groups
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all have a similar impact since their SHAP value distributions are similar. Figure 6b shows the
distributions of the SHAP values broken out by outcome (hit: 37, miss: 30, correct-reject: 2126, false-
alarm: 35). Here we see a different story. G4 plays a bigger role in moving the decision of FogNet towards
one of fog. The other four groups also contribute to a decision of fog, but their distributions are very close
to each other showing a similar contribution for when the model predicts fog.

CwPS was used to determine superpixel SHAP values. CwPS creates a local explanation and needs to
be performed on each sample. Since it is quite slow, we use only 293 FogNet cases (a sample of the correct
rejects, plus all the hits, false alarms, and misses) from the validation and test datasets. While Molnar
(2022) generally recommends performingXAI on the test data, we combined it with validation because of
the highly imbalanced dataset. Hits and misses are further broken down by fog type, again focusing on
advection fog and combined radiation & advection-radiation fog. We hypothesize that FogNet is mainly
learning to predict the dominant fog type, advection fog. But we do not know if FogNet is simply applying
advection fog strategies to all fog types, or if it is learning different strategies ineffectively.

CwPS yields a high-volume output: 293 explanations of (32, 32, 384)-size SHAP values. We are
interested in broadly characterizing the model’s strategies for the outcome categories, so we aggregate
local explanations for each outcome. We used three aggregation schemes: spatial-channel, spatial, and
channel SHAP values. The spatial-channel aggregations are the sum of the CwPS outputs within each
outcome category. While there is some risk of positive and negative SHAP values canceling out, this
highlights the dominant sign of the SHAP values. This enables seeing which CwSPs are consistently
influential toward or away from the category’s prediction. A cursory manual inspection showed that the
relatively high-magnitude SHAP values are confined to a small number of channels. So, we ranked the
channels by their maximum absolute superpixel SHAP value as shown in Figure 7. This figure only shows
the top-ranked channels that correspond to timestep t3 which are the 24-h lead time NAM outputs. The
decision to highlight t3 channels is because they support a meteorological analysis of the XAI results.
Specifically, to examine if the t3 features that are detected as being important based on XAI techniques
correspond to a forecaster’s knowledge of fog conditions which here are predicted for a 24-h lead time.
Themeteorological interpretation of these figures is included in Section 4.1. All XAI outputs are available
online (see Section 5). To highlight influential spatial regions, the SHAP values of each channel were
summed at each (row, col) location as shown in Figure 8.

Finally, CwPS outputs were aggregated into 384 channel explanations for each category to highlight
influential spatial-temporal variables. By performing XAI at the superpixel level, we expect that some
influential features will not be detected because of correlations. To draw out low-magnitude values for
comparing the relative channel influence to channel-wise feature importance (Figure 10b,c), we use

Figure 6. SHAP feature effect results for the 5 groups. SHAP values for each group are calculated for each
of the 2228 cases and the violin plots represent the distribution of the SHAP value for those cases. (a) lists
all 2228 cases, while (b) aggregates based on the outcome.

Environmental Data Science e45-11

https://doi.org/10.1017/eds.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.39


counting-based aggregation. After ordering channels by themaximum absolute value of their superpixels,
we counted the number of occurrences in the topN channels (Figure 9) Intuitively, if a channel frequently
occurs in the top N then it suggests that the channel is overall influential. We also counted the number of
occurrences of each channel in the bottom N channels. Figure 9a shows that G4 and G5 features are
amongst the most influential with respect to radiation and advection-radiation fog for cases where FogNet
successfully predicts fog or mist with 1600 meter or less visibility. G4 includes NAM visibility and
vertical velocities of 700 mb and below. Negative vertical velocities tend to occur below the 220-meter
height level during radiation and advection-radiation fog (Liu et al., 2011; Dupont et al., 2016). G5
includes TMP-DPT, which must be less than 2 degrees Celsius to facilitate saturation necessary for
radiation fog, and TMP-SST which modulates fog development; if TMP-SST is negative, an upward-
directed sensible heat flux will counteract radiational cooling and either delay fog onset, or prevent fog.

Three feature importance methods were applied to three grouping schemes. Some groupsmay bemore
sensitive to the grouping scheme. The sensitivity comparison may suggest that we can use the coarser
explanations for a subset of groups that show greater consistency, but it is not straightforward to directly
compare the importance values of different groups. At each level of granularity, we sum PFI values into
the coarser groups to compare rankings. Another sanity check is PFI’s consistency with GHO and LS. The
latter are expected to be more robust to correlation and out-of-sample inputs. If PFI performed on channel
groups reaches similar relative importance rankings to the others, then we have additional confidence in
using the (consistent) more granular PFI explanations. Figure 10 gives all feature importance results,
aligned in a table to assist comparison. Each column corresponds to the grouping scheme used to generate

Figure 7. Top T3 CwPS spatial aggregates, ranked by absolute SHAP. Red (blue) means pushing towards
a fog (non-fog) decision. R/A-R is radiation and advection-radiation fog, and A is advection fog. For
reference, an outline of the coastline is shown in (w).
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importance values. Column 1 is CwSPs, column 2 is channels, and column 3 is channel groups. Rows
correspond to the aggregation level. The top of each column iswithout any aggregation. The second row is
for channels, and the third is for channel groups.

4. Discussion

We use Figure 10 to analyze sensitivity to groups. Figure 10a shows PFI applied to CwSP features (using
PSS). To assess the consistency of CwSP explanations to channel-wise, Figure 10b shows the sum of
absolute PFI values in each channel. This can be directly compared to Figure 10c, the PFI values
computed when PFI is applied directly to channel-wise features. When considering summed superpixels
(Figure 10b), important channels tend to be within G4 and G5. The top channel occurs in G4: Vertical
velocity at 950mb, t1. Sparse G1 and G2 channels have some importance, with practically no importance
for G3. When considering individual channels using PFI, Figure 10c, we observe considerable influence
from G4 and G5 as we did with the CwSP-based results in Figure 10b. Again, Vertical velocity at 950mb,
t1 in G4 has the highest importance. Otherwise, the exact rank order does differ between CwSP and
channel-wise explanations. Two differences stand out between Figures 10b and 10c. In the channel-wise
results (Figure 10c), two G4 and G5 channels have such high importance that others are suppressed. This
does not occur in the CwSP results (Figure 10b), where some channels in G1 and G2 are shown to be
comparable to G4 and G5 channels. Another difference is that in the CwSP results (Figure 10b), G3
channels are considered to have practically no importance while in channel-wise results (Figure 10c),
G1–G3 are approximately uniform in average importance. At the superpixel level, importance means that
the specific superpixel influenced the model. At the channel level, importance scores mean that at least
some spatial region within the variable had an influence. When a channel is important according to
Figure 10c but not in Figure 10b, it may suggest that the model is learning a large-scale feature in that
channel. By comparing Figures 10b and 10c, we get some insight into the scale of the features learned. It is

Figure 8. Spatial-channel aggregates of CwPS results are summed along channels to yield 2D
explanations. Left of the dotted curve is land and right is water. The star indicates the fog target location
(KRAS). Red (blue) means pushing towards a fog (non-fog) decision. R/A-R is radiation and advection-
radiation fog, and A is advection fog.
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also possible that the difference is due simply to random permutations, but there is evidence that suggests
that, at least to some extent, the difference between Figures 10b and 10c reflects the scale of the learned
features. In general, the importance scores are smaller when summing superpixels which suggests that the
importance becomes diluted at the smaller scale. Also, the dilution is prominent in G1–G3 which are
vertical profiles where we expect granular features to have little fog information.

The difference between CwSP and channel-wise is further emphasized when summing both to the
group level as shown in Figures 10d and 10e. Comparing G4 and G5, we observe that their relative
importance is consistent. Comparing G1–G3, importance drops considerably from the transition to the
more granular CwSPs. Figure 10f shows PFI, along with LS and GHO, applied directly to the channel
groups. Using this grouping scheme, the importance of the groups is more uniform. G4 is now the least
important group, instead of the most as it is in Figures 10d and 10e. The manner in which G1–G3 drops in
importance as the granularity of the partitions increases suggests that the model is learning large-scale
patterns. G4 and G5 are less influenced by the change in granularity, suggesting smaller-scale learned
features so that granular perturbations of the model still influence model performance.

There is evidence that differences are in part due in part to the scale of the learned features. It is
encouraging that XAI provides evidence that the model can learn large-scale features that take advantage
of spatial-temporal relationships across the channels. We argue that our PFI interpretation relies heavily
on having performed XAI on three different feature groups. If we were to compare CwSPs to channel
groups (skipping channels), we would have less confidence in the interpretation that the discrepancy
between them reflects characteristics of the learned patterns. Since we would have only the 2 examples,
we would be less confident that the difference is not merely due to randomness or method inaccuracy.

Figure 9. CwPS channel rankings. When summing the superpixel SHAP values, the disproportionate
influence of G4 and G5 channels causes channels in other groups to virtually disappear. We instead
ranked channels based on the number of times that a channel appears within the top 50 channels.
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But by including the channel-wise output, we observe G1–G3 reduce in importance in relation to the
increase in granularity, which increases our confidence that the explanations reflect reality. The explan-
ation is not entirely satisfying: we can see that G1 is important but we do not knowwhich parts of the raster
compose its learned features. Even if we get the sense that, broadly, across-channel relationships are
involved, we don’t know if these are spatial, temporal, or spatial-temporal. With the present computa-
tional efficiencies, it would be too computationally complex to perform PFI on all combinations of
channels, much less all possible voxels within the raster. Another concern is the overall accuracy of PFI
itself. In addition to PFI, Figure 10f includes group results using 2 other XAI methods: GHO and
LS. While we are minimally concerned about the differences in exact magnitudes between the three
methods, we are concerned with their disagreement in the group rankings amongst themselves and the
aggregation of the CWSP and channel-wise PFI results.

Some disagreement with GHO is expected since importance is based on refitting models so that each
has the chance to learn other relationships within the data in the absence of the removed group. This is
quite different from the other two XAI methods that are based on models that had access to the removed
group during training. Even if a particular model placed high emphasis on particular features, that does not
mean that other features could not be used instead to achieve similar performance. Compared with the PFI
and LS, the GHO results show relative uniformity in the importance of the groups. This suggests that the
model is still able to learn fog prediction strategies by using different feature relationships.

The comparisons lead to concerns about the disagreement between PFI and LS. First, the game
theoretic guarantees suggest that SHAP-based methods might have greater reliability. Second, by
averaging over the marginal distribution, LS importance scores are based on several comparisons of
perturbed features. Repeating PFI multiple times, high variance is observed for CwSP results but not
channel-wise. The output of each CwSP PFI repetition does not significantly alter the ranking of the
channels when summing the importance scores. However, the distribution of those scores among the

Figure 10. Feature importance at three granularities. To compare consistency across grouping schemes,
the more granular explanations are aggregated into coarser ones. (a) Each column corresponds to the
grouping scheme, and each row corresponds to an aggregation granularity. (a) shows the top 15 channels
based on PFI performed on CwSP (left-to-right, top-to-bottom). (b and c) Showing individual features.
(d and e) Showing the prior row aggregated by group, and e shows methods used on the five groups.
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superpixels is inconsistent. Each complete repetition of CwSP PFI requires 80 h of computation, so we are
unable to run extensive repetitions with present computational capabilities. Among the three runs, we
observe little similarity among the maps. Since their summed channel-wise rankings are relatively
consistent, we choose to analyze the top channels as determined byCwSP PFI to that of channel-wise PFI.

Is it of interest to compare the PFI values from Figure 10 to the top channels based on CwPS shown in
Figure 9. The overall shape of the channel rankings is not unlike that in Figure 10c. Except that every G5
channel is consistently of very high influence according to CwPS. Recall that feature effect includes when
themodel uses a feature for incorrect decisions. ComparingAdvection fog hits tomisses, G5 features have
a very high influence in both. This suggests that G5 channels are being used both for decisions that
improve and decrease performance. The net effect could be a lowered importance compared to G4. G4
values have more influence on the hits than misses which would increase G4 importance.

4.1. Meteorological interpretation

The following is an analysis of the foregoing XAI output from ameteorological perspective. In particular,
we assess the extent to which FogNet features with high feature effect and importance account for the
primary mechanisms responsible for, or the environmental conditions associated with, fog development.
In addition, we use feature effect output to assess the utility of various features. Finally, we analyze feature
importance output to assess the relative importance of individual features versus feature groups with
respect to fog prediction.We believe that XAI output which (1) identifies features with high feature effect,
or features and feature groups with high feature importance, that account for fog generation mechanisms
and/or environmental conditions associated with fog, and which (2) identifies features with high utility,
demonstrate trustworthiness.

First, we consider feature effect output. To assess feature utility, we adopt the XAI analysis strategy of
Clare et al. (2022), which suggests that a feature, used to develop an ML model, is useful if it pushes the
model in a direction that was actually predicted. Applying this concept to FogNet means that if a given
FogNet feature pushes FogNet toward a positive fog prediction, and FogNet actually predicted fog, or if
the feature pulls FogNet away from a positive fog prediction (toward a no-fog prediction) and FogNet
predicted no-fog, then that feature was helpful to FogNet (possess utility). Applying this logic to the
24 feature maps in Figure 7 reveals that in 20 (≈ 83%) of these feature maps, the feature was helpful to
FogNet: When FogNet predicted fog (Hit, False Alarm), the feature pushed FogNet toward a
prediction of fog (red color coincident with target location represented by the green dot), and when
FogNet predicted no-fog (Miss, Correct Rejection), the feature pushed FogNet toward a predic-
tion of no-fog (blue color coincident with target location). One of the 20 useful feature maps is Figure 7b:
the feature TMP-SST pushes FogNet toward a prediction of fog at the target (red color coincident with
target location) for cases when FogNet predicts fog (Hit). Another useful feature map is Figure 7l: the
feature DPT-SST pushes FogNet toward a no-fog prediction at the target (blue color coincident with the
target location) for cases when FogNet predicts no-fog (Correct Rejection). In the remaining
4 features maps (Figures 7m,r,s,v), the feature was not helpful to FogNet. The preponderance of useful
feature maps adds to the trustworthiness of FogNet. Trustworthiness is also apparent when performing a
2D spatial analysis of a given feature as a function of prediction outcome. Note in Figure 7 that the same
feature (the 2-meter temperature minus sea/land surface temperature, or TMP-SST) appears in the
highest-ranked row based on absolute maximum SHAP value (Figures 7a–f). Thus, we can perform an
analysis strategy similar to that of Lagerquist (2020), whereby 2D feature maps of the same feature are
analyzed as a function of FogNet fog prediction outcome (Hit, False Alarm, Miss, Correct Rejection) and
fog type (radiation versus advection fog). With respect to cases when advection fog occurred (Figures 7b
and 7e), note the region of TMP-SST≥ 0 (weakly positive) just offshore; this pattern is typical of
advection fog events along the Middle Texas coast. The condition TMP-SST> 0 implies a downward-
directed near-surface sensible heat flux to the sea, and thus a corresponding heat loss or cooling of the
near-surface air temperature to the dew point temperature resulting in saturation and subsequent fog
development (Huang et al., 2015; Lakra and Avishek, 2022), subject to a cloud drop-size distribution that
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favors the extinction of light and subsequent visibility reduction (Twomey, 1974; Koračin et al., 2014).
Thus, the spatial pattern of a feature with high feature effect successfully identified an environmental
condition (and associated mechanism) conducive to fog. Finally, spatial aggregates of CwPS results from
all features reveal that when FogNet correctly predicts both radiation and advection fog (Figures 8a,b), the
strongest influential region (darkest red color) is near the target (KRAS). This is consistent with the
domain knowledge which posits that the formation and dissipation of fog are controlled by local factors
(Lakra and Avishek, 2022). However, non-local factors are also important. In particular, the larger scale
wind pattern can influence the intensity of marine advection fog (Lee et al., 2010; Lakra and Avishek,
2022) (whichmay account for the lighter-colored red over the waters in Figure 8b). The use of XAI output
to confirm expert knowledge regarding the scale of fog development adds trustworthiness.

Trustworthiness is also apparent in feature importance output. Table 1 depicts the top 15 PFI features
ranked separately by the channel-wise (Cw) and CwSPmethods, as a function of the following 3 separate
performance metrics: PSS, HSS, and the CSS. All three performance metrics measure skill (accuracy
normalized by a standard, such as accuracy associated with random forecasts). PSS andCSS alsomeasure
value (incremental benefits to users of the forecasts). Using metrics that assess both forecast skill and
value, we broaden the list of features that possess high feature importance, thus allowing for the discovery
of a more comprehensive list of the features most responsible for FogNet’s performance. Many of the
features in Table 1 account for environmental conditions and/or mechanisms conducive to fog develop-
ment. The following are a few examples: Note that the feature list in Table 1 includes the features TMP-
SST, the dew point depression (TMP-DPT), vertical velocities (VVEL) in the 975 to 700-mb layer, and the
specific humidity at the 2-meter height (Q surface). The mechanism implied by TMP-SST was
described earlier. The saturation or near saturation of near-surface water vapor (low values of TMP-
DPT) is necessary for fog development (Gultepe et al., 2007; Lakra and Avishek, 2022). Advection and
radiation fogs are associatedwith larger-scale subsidence/negativeVVEL values (Huang et al., 2011;Yang
et al., 2017; Mohan et al., 2020). Sufficient near-surface moisture (high Q surface values) is essential
for fog development (Gultepe et al., 2007; Lakra and Avishek, 2022). The trustworthiness of FogNet
based on feature importance XAI output is also demonstrated by the relative importance of individual
features/channels or feature groups. Consider the following discussion of G3 importance, which contains
channels TMP andRH at 2meters, and from 975-mb to 700-mb (at 25-mb increments). Note that Figure 10
depicts the relative importance of features and feature groups. A comparison between the coarse channel
grouping methods (Figure 10f) to the more granular CwSP scheme (Figure 10b), reveals a major
difference in feature importance with respect to G3. Note the near-zero importance of individual G3
features yet the significant importance of G3 as a whole. This disparity is understandable from a
meteorological perspective. Each TMP channel has no significant relationship to fog development.
However, the increase in TMP with height (temperature inversion) is critical to fog development
(Koračin et al., 2014; Huang et al., 2015; Price, 2019). Except for the 2-meter relative humidity (RH),
individual RH channels from 975-mb to 700-mb are less important to fog. Yet, an environment
characterized by a thin moist layer near the surface followed by dry air aloft (rapid decrease in RH with
height) would be conducive to radiation fog (Koračin et al., 2014; Huang et al., 2015;Mohan et al., 2020).
This explains the negligible feature importance of individual G3 channels in Figure 10b and the much
stronger importance of the G3 group in Figure 10f. These results are consistent with those found in
Kamangir et al. (2022), where XAI output revealed the collective importance of G3. Thus, XAI results
reveal that FogNet recognizes the physical relationship between the vertical profile of TMP and RH and
fog development.

XAI results also demonstrate a reduction in trustworthiness. FogNet performed superior to the HREF
ensemble prediction system, yet performed poorly during radiation fog cases (Kamangir et al., 2021). XAI
output provides insight into why FogNet performed poorly with respect to radiation fog. Note from
Figures 7b (test/validation dataset advection fog Hit cases) and 7c (test/validation dataset False
Alarm instances) that the TMP-SST pattern associated with False Alarms is similar to that from
the corresponding Hit feature map in that the weakly positive values just offshore are retained. Since the
vast majority of fog cases were of the advection fog type, we speculate that in each instance in the testing
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Table 1. Top 15 t3 channels ranked with channel-wise (Cw) and CwSP schemes

Cw (PSS) CwSP (PSS) Cw (HSS) CwSP (HSS) Cw (CSS) CwSP (CSS)

G5 TMP-DPT G4 VVel 850mb G5 TMP-DPT G4 VVel 850mb G5 SST G4 VVel 825mb
G4 VVel 925mb G4 VVel 825mb G5 SST G4 VVel 925mb G4 VVel 825mb G4 VVel 850mb
G4 VVel 775mb G4 VVel 925mb G4 VVel 925mb G4 VVel 900mb G5 TMP-SST G4 VVel 800mb
G4 VVel 900mb G4 VVel 950mb G1 UGD 875mb G4 VVel 825mb G1 UGRD 950mb G4 VVel 925mb
G4 VVel 800mb G4 VVel 900mb G1 VGD 875mb G5 SST G1 VGRD 775mb G4 VVel 975mb
G4 VVel 875mb G4 VVel 800mb G4 VVel 900mb G4 VVel 950mb G4 VVel 850mb G4 VVel 900mb
G1 VGRD 875mb G4 VVel 700mb G2 Q 875mb G4 VVel 725mb G1 VGRD 10m G5 TMP-DPT
G4 VVel 850mb G4 VVel 975mb G1 UGD 750mb G4 VVel 775mb G4 VVel 775mb G4 VVel 950mb
G4 VVel 975mb G5 TMP-SST G1 VGRD 10 meter G4 VVel 800mb G5 TMP-DPT G4 VVel 700mb
G4 VVel 700mb G4 Q surface G4 VVel 700mb G4 Surface vis G1 UGRD 875mb G4 VVel 725mb
G1 UGRD 825mb G5 TMP-DPT G4 VVel 800mb G1 UGD 875mb G1 VGRD 800mb G5 TMP-SST
G4 VVel 725mb G4 VVel 725mb G4 VVel 725mb G1 UGD 850mb G4 VVel 950mb G2 Q 950mb
G2 TKE 900mb G4 VVel 750mb G5 TMP-SST G4 LCLT G3 TMP 800mb G1 VGRD 925mb
G1 VGRD 900mb G4 VVel 775mb G1 VGD 775mb G3 RH 850mb G3 RH 2m G4 VVel 750mb
G2 TKE 850mb G4 VVel 875mb G1 UGD 900mb G4 VVel 975mb G3 DPT 2 G4 Q surface
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set, FogNet is essentially generating a prediction based primarily on the patterns it learned from advection
fog cases in the training/validation dataset. Further, although FogNet recognized the link between the
surface and 975-mb temperature inversion and fog development as mentioned earlier, FogNet may have
been unable to develop a more effective radiation fog strategy due to the inability to account for processes
within surface to 975-mb sublayers critical to radiation fog development (Liu et al., 2011; Price, 2019).
The reliance on an advection fog pattern to predict all fog types, and the probable incompleteness of the
feature set with respect to radiation fog prediction, reflects lower trustworthiness in the use of FogNet by
operational meteorologists to predict fog of types other than advection fog. Possible solutions to this class
imbalance problem (number of radiation versus advection fog cases in addition to fog versus no-fog)
include data augmentation, implementation of a multi-class target where each class is a separate fog type,
and the incorporation of additional features strongly related to radiation fog.

In summary, XAI results suggest that the FogNet feature set demonstrates utility, identifies features
(and 2D feature map patterns) that contribute to environmental conditions and mechanisms critical to fog
development, and adds credence to the knowledge that fog is very often a locally-driven phenomenon,
yet also influenced by non-local factors. Further, an assessment of feature importance as a function of
granularity provides additional insights, including FogNet’s ability to identify the importance of the
vertical structure of certain features to fog development. Finally, XAI provides a plausible explanation for
why FogNet performed poorly with respect to radiation cases. These results reveal the power of XAI
analysis in assessing model strengths and weaknesses and thus allow for the identification of solutions to
improve model performance and trustworthiness. Although the foregoing analyses pertain to FogNet, the
XAI feature effect and importancemethods used in this study, and the techniques to analyze XAI output in
this section, can be applied to anyMLmodel developed to predict atmospheric phenomena and trained on
a feature set that represents the 3D environment. We recommend the type of analysis performed by Clare
et al. (2022), which can assess the utility of the input feature set based on XAI feature effect contribution
on a 2D feature map, and the analysis strategy of Lagerquist (2020), which allows for an assessment of the
2D spatial patterns of a particular highly influential feature as a function of model prediction outcome; the
patterns can be compared to the expected pattern based on domain knowledge/expertise to assess model
trustworthiness. Furthermore, the spatial aggregation of CwPS results depicts the implied spatial scale(s)
of the primary mechanism(s) responsible for the target, which can be compared to the expected scale(s)
based on domain knowledge. Finally, to the extent that model architecture includes features organized in
groups, an assessment of feature importance as a function of granularity can allow the researcher to assess
whether individual features or corresponding feature groups contribute the most to model performance,
which in turn forces the expert analyst to identify the physical reasoning for the contribution differential;
the model’s ability to recognize physical relationships between model features and the corresponding
target adds to model trustworthiness.

5. Conclusions and Future Work

We investigated a complex geoscience model using XAI methods applied to three partitioning schemes
and observed some inconsistency among the explanations (Figure 10). Based on channel groups, G3
features are important. CwPS results, however, suggest minimal influence. We argue that each partition
scheme asks a different question to the model, and comparing them reveals insights not possible with a
single explanation. G3 is the lower atmospheric moisture and temperature information: 3D profile
characteristics that are correlated with fog. The PFI results demonstrate that the importance of G3 data
rapidly decreases as we increase the granularity of the feature groups. This suggests that the model is
learning large-scale features in G3, which was the goal. Groups G4 and G5 are important even at the most
granular level. This allows us to study which regions are used to make predictions in those groups.
Without the multi-scale feature group experiments, we could be misled into thinking that G1–G3 are not
important because their CwSP-based explanations show very little importance or effect.

A major takeaway is that grouping schemes can be a pitfall for model interpretation, but that
disagreements should be understood based on how that grouping scheme probes the model. Here, CwSP
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results suggest that we could redesign FogNetwithout G3 (Figure 10b), but we also observe that removing
G3 would reduce performance considerably (Figure 10f). This discrepancy could lead users to distrust
XAI and avoid using it. Instead, XAI outputs should be carefully interpreted based on how that method
and feature group probe the model: each explanation is an answer to a question asked by the XAI method.
CwSP-based PFI results should not be considered as a single summary of each superpixel’s importance.
Instead, the results are narrowly defined as the importance of isolated superpixels. So, the presence of
high-rankingG4 andG5 features concentrated around the target location suggests that local information is
used, but the lack of importance for others does not mean that they are unimportant: they may be part of
larger-scale patterns. We observe G3’s importance diminishes as the features become more granular,
suggesting that FogNet learned 3D features. Our results emphasize that complex geoscience models
should be investigated using XAI on multiple grouping schemes because each reveals different model
characteristics and method disagreement also provides information about the learned strategies.

We also demonstrated aggregating local into global explanations. Global explanationsmay not provide
sufficient insights to describe models of nonlinear systems or with highly imbalanced classes since they
give a single explanation that averages out local characteristics. So we may learn very little about what
features drive the model’s decision-making for events like fog since the majority of cases are correct
rejections. This is illustrated when comparing Figures 6a to 6b. In the former, the dot represents a single
global summary of the feature’s importance. A global explanation suggests that groups �equally affect
the model. But, recall that the vast majority of cases are correct rejects. Figure 6b shows that the relative
effect of each group differs depending on the model outcome.When the model predicts fog (hits and false
alarms), G4 strongly pushes the model towards a fog decision. Local explanations are more informative,
but it is challenging to extract patterns from, for example, SHAP values for every sample. Here, we
demonstrate that practitioners can aggregate local explanations in various ways to explore the model. We
recommend visualizing the set of local explanations in various ways.

We showed that models relying on complex rasters may be sensitive to the choice of grouping scheme.
We assumed that coarser groups produce more accurate explanations and that PFI’s consistency with
GHO and LossSHAP’s ranking order indicates accurate relative feature importance from PFI. But this
cannot be confirmed without ground truth attribution. There has been some research in developing XAI
benchmarks: models with ground truth explanations for quantitatively ranking XAI methods. Mamalakis
et al. (2022) developed a technique for building models where the attribution of each feature toward the
output can be directly calculated. This research targets geoscience applications using gridded data.We are
currently working on extending this research for high-dimensional, multi-channel raster data. To
investigate the grouping schemes, we are experimenting with the influence of the strength of the
correlation among grid cells. The goal is to develop strategies for grouping XAI that can be verified
with known attributions.
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