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RAPIDLY DECREASING BEHAVIOUR OF SOLUTIONS IN
NONLINEAR 3-D-THERMOELASTICITY

SONG JIANG

In this paper we study the asymptotic behaviour, as | i | —» oo, of solutions to
the initial value problem in nonlinear three-dimensional thermoelasticity in some
weighted Sobolev spaces. We show that under some conditions, solutions decrease
fast for each t as x tends to infinity. We also consider the possible extension of the
method presented in this paper to the initial boundary value problem in exterior
domains.

1. INTRODUCTION

We consider the initial value problem (1.1)-(1.4) in Rs

(1.1) #«,- - CiajP{Vu,0)^- _ cia(Vu,0)^L = 0, i = 1,2,3,

(1.2) a(Vti, 0)8t0 - aa0(Vu, 0, V0)-^i- - Cia{Vu,
OX0X0

Oxa0xi oxi

with initial data

(1.3) «(0)=t»°, ft»(0) = «1, 0(0) = 0°,

where repeated indices indicate summation from 1 to 3, u = (•UI,W2>WJ) is a vector
function, 0 is a scalar function, both depending on t € R+ and x 6 Rs, T denotes
transposition, C<a7-^, C,a, a, aap, bija and df are given smooth functions.

The system (1.1)-(1.3) typically arises in nonlinear thennoelastidty (see Slemrod
[9], Racke [8], also see Carlson [2] for extended considerations), where u and 0 stand
for the displacement vector and the temperature difference, respectively; and
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ijf — ̂ »(Vu, 9) is the free Helmholtz energy, q = g(Vu,0, V0) is the heat flux vector and
f(0) is a C°° function such that f(0) = 9 + To for -To/2 < 9 < T0/2 + sup, \9°\ and
0 < / i < /(0) ^ /2 < oo for -oo < 9 < oo, .ft, /2 constants, To > 0 the reference
temperature.

Note that in the original equations f(6) = 9 + To . Here, in order to get rid of the
possibly singular term 6 + To , we introduce the transformation f(9) (see Slemrod [9]).
which is identical to 0 + To for any non-negative 9° and small time interval by the local
existence, or for small initial data by the global existence stated in Section 3.

Our purpose in this paper is to investigate the rapidly decreasing behaviour of
solutions of (1.1)—(1.4) in some weighted Sobolev spaces. The motivation for studying
the rapidly decreasing behaviour of solutions of (1.1)-(1.4) is not only the interest in
the asymptotic behaviour as \x\ —> oo itself, but also its importance for numerical
solution of (1.1)-(1.4) (see Jiang [5] on utilising the far field behaviour of solutions
to solve numerically (1.1)-(1.4) in the one-dimensional case). Recently, the author [4]
studied the far field behaviour of solutions to (1.1)-(1.4) in the one-dimensional case
by applying the Fourier transform to the related linearised problem. Here, we use a
different method to show that solutions of (1.1)-(1.4) decrease fast for each t as x tends
to infinity. The main results in this paper are the following.

THEOREM 4 . 1 . Let the conditions of Theorem 3.1 be satisfied. Also assume that
u° € Hi, u1^0 e Hi forr^O. Then the local solution u, 9 on [0,T*] of (1.1)-(1.4)
established in Theorem 3.1 satisfies

(1.5) D2D[u, dt0, Dl0eL°°([0,T*],S'r-
2)

and

(i.6) MifDUwl I + mw)iik,-2 + IWwl
r,.-2 r,.-2

for any t G [0,T*], where C - C(r,T*,e0), e0 = | |«°| | ,+ l i2 + IMI,^ + H^H..

THEOREM 4 . 2 . Let the conditions of Theorem 3.2 be satisfied. Also assume
that u° e Hi, u1,9° € Hi for T ^ 0. Tien for any T > 0 tie global solution u, 0 of
(1.1)-(1.4) established in Theorem 3.2 satisfies

(1-7) D2Dlu, dt9, 1>6I»([O,T],S;-2)

and

(1.8) IPPUWHI + IIIW)IL.-2 + ||K«(*)||| < C{r,,,S,T)Er
iii iii _ Ah • • ^ ^ iii iii _ A

for any i 6 [0, T], where Er is the same as in Tieorem 4.1.
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REMARK 1.1.. The notations appearing above are defined in Section 2.

REMARK 1.2.. Theorems 4.1 and 4.2 together with the Sobolev imbedding theorem

imply that |l?*u(0|> \dtii(t)\, \0(i)\ = o(\x\~r) for each t as |z| -> oo. Also see

Remark 2.1 in Section 2.

It follows from Theorem 4.1, Remark 3.1 and Lemma 2.3 that

COROLLARY 4 . 3 . Let the conditions of Theorem 3.1 be satisfied. Assume that
«°, u 1 , 0° € S(Ri) . Then for the local solution u, 6 on [0, T*], we have

(1.9) «, fleC°°([0,n,5(Rs)).

The paper is organised as follows: Section 2 gives the notation, the assumptions
and proves some lemmas. In Section 3 we state the local, and global existence theorems.
In Section 4 we prove Theorems 4.1 and 4.2, and at the end of the section we consider
the extension of the method given in Section 4 to the initial boundary value problem
in exterior domains.

2. ASSUMPTIONS, NOTATIONS AND PRELIMINARIES

We denote by Wm'p ( l < p < o o , 0 ^ m < o o ) t h e usual Sobolev spaces on R3

with the norm \\-\\m>p (see Adams [1]). W00* = nmeNu{o}WmiI>. ||-|| and (•,•) stand
for the norm and the inner product in L2 (Rs) , respectively. We also use

dj = d/dxit % = &Z*9?ep (|a| = Ol + a2

For any integer L > 0,

D£u = (0> ; |a| - L), DLu = (d{d*u ; j + \a\ = £),

~DL
xu = (d?u ; \a\ < L), D \ = (fl/fl-u ; j + \a\ <

rp
For a vector valued function / = (/i , • • • , / m ) and a non-negative integer L we set

DZf=(Difl,:.,Difmf1 DLf=(DLf1,-..,D
Lfmf,

OL
xf=(DL

xfu---,DL
xfm)T, DLf=(DLf1,...,D

Lfm)T

and / £ X (a normed space with norm ||-||^) means that each component of / is
in X and \\f\\x = \\fi\\x + h ||/m||x- S(R S) >» the Schwartz space of all rapidly

( 2 \ 1/2

1 + |x| J ,
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x G R3 • For r , « 6 R1 we denote by H* the completion of S(RS) in the norm | « | r , =
||<rr.F~1(<7-*.F(tt))||, where T and T~x are the Fourier and inverse Fourier transforms,
respectively. For r 6 R1 and a G N U {0}, we denote by W' the completion of S(RS)

in the norm \u\*t, = (£|a|<« l k r ^« l | 2 ) • Both H' and W' are Hilbert spaces

with the inner products (u,v)rt = {vrJ:-i((r'T{u)),<TTJ:-l{<T'T{y))) and (u,v)*rt =
X) (<rTd°'U,<Trd^v), respectively. Hfi and W£ coincide with the usual Sobolev spaces

JET" and W. C£°(R3) is the space of all infinitely differentiable functions with compact
supports. Let m £ N U {0}, X be a Banach space with norm H-H ,̂ G G R1 a
domain, thus Cm(G,X) denotes the space of all X-valued functions which are m-
times continuously differentiable in G.

We also introduce the Hilbert space 5; = S;(RS) denned by

(2.1) S ;=F?nff 0 '

with the inner product and norm

(2-2) ((«,™))r,. = K«)r,O + K«)o,..

(2-3) \\u,v\

Throughout this paper, C (sometimes used as C(a, b, • • •) to emphasise that C depend
on a, b, • • • ) will denote various constants in various places.

Now, we state the assumptions for (1.1)—(1.4).

ASSUMPTION 2.1.

(1) i{> and q are sufficiently smooth functions.
(2) aaP(P,ii,v) = afia(P,ii,u), P e R3xS, /x G R1, ^ G Rs.
(3) There is a constiuit KQ > 0 such that

for P G R3XS, fi G R1, and u, £ = ( 6 , 6 , 6 ) T , V = (m,V2,ri3)
T

In order to obtain global smooth solutions of (1.1)—(1.4), we also require

ASSUMPTION 2.2.

|Cfa#(Vt»,0) - Ciajf3(0,0)\, \dia(Vu,9) - Cia(0,0)|,

|a(Vu,0) - a(0,0)| = of|Vw|2 + \B\2) and

dqa(Vu,6,V9) dqa{0,0,0) dqj dq±
~ d{do/dxf,) ' d(&uj/dxa) ' do

= o(\vu\2 + \e\2 + \ve\2)
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near the origin.

Before proving Theorems 4.1 and 4.2, we need some lemmas. The following two
lemmas can be found in Triebel [10, 11].

LEMMA 2 . 1 . For a e N U {0}, H' = W*. I • | r , , and | • \*_, are equivalent norms.

LEMMA 2 . 2 . For any s,r € R1,

where X' denotes the dual of a Banach space X.

The following lemmas 2.3-2.5 are given in Tsutsumi [12].

LEMMA 2 . 3 . 5 ; C S$ it r ^ r' and a ^ a'. The intersection nTlt>0S'
(— (~lrl,gN'S'*(Rs)/), equipped with the initial topology, is the Schwartz space S(RS) .
Moreover the intersection 0 , 5 / is 5(RS) .

LEMMA 2 . 4 . We have

LEMMA 2 . 5 . Let r,a ^ 0. Assume u G 5;*(R3). Then u E H'_x and

Mr_lt.<C(r,,)||M||r,rj.

REMARK 2.1. By Lemma 2.1, 2.5 and the Sobolev imbedding theorem we see that if

u e Srl'+2) with a G N U {0} and r € N, then

sup l ^ - 1 ^ ) ^ * ) ! < C(r,s)\u\r^,.+2 ^ ^(r.^lllulll,.^,^),
z6R3

that is \D'xu(x)\ = O d x l " ^ - 1 ) ) as |x| -» oo.

The following lemma follows from a straightforward calculation and we shall omit

its proof here.

LEMMA 2 . 6 . Let p e C£°(R3) such that p = 1 if \x\ < 1 and p = 0 if \x\>2.
Let pc(x) - p(ex) for 0 < e < 1. Then as e -* 0,

pe(x) —* 1 uniformly on any bounded set in R3,

D%pe(x)->0 uniformly in R3, \a\ ^ 0.

Moreover, for any \a\ £ N U {0} , we have

\D?Pc{x)\ ^ Cac\cr{x))-^-<\ 0 ^ 7 < M,

wiere t ie constant Ca > 0 is independent of e.
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3. LOCAL, AND GLOBAL EXISTENCE THEOREMS

In this section we give the local and global existence theorems, which are useful in
the proofs of Theorems 4.1 and 4.2 in the subsequent section.

THEOREM 3 . 1 . (Local existence) Let Assumption 2.1 be satisfied. Let a ̂  5 be
an integer. Assume that u° G W+1'2, u1, 0° G W'2. Then there is a T* > 0 such
that (1.1)—(1.4) has a unique solution u, 0 with

r«Gn?=oci([o,r*],w+1-^),
\ V0 £L2([0,T*],W>2).

(3

Furthermore, we have

(3.2) J2 Hfl|«WII.+i-i.2 + £ II W ) l l - « . a + ( f II V*(r)||2,2dr)
i=o i=o \J° '

^ C(| |«°| | .+2 l2 + l lu 1 !^ + ||<?°||.i2) for any t G [0,T*],

where C > 0 is a constant depending only on T*, ||u°||,+i,2, Ĥ*1 ||«tz

PROOF: See Kawashima [7], Vol'pert and Hudjaev [13], also see Racke [8]. D

REMARK 3.1. Prom Theorem 3.1, it follows that if u°, w1, 9° G W°°'2, then u,
6e c^Qo.r*],^00'2).

The following global existence theorem was proven by Racke [8].

THEOREM 3 . 2 . (Global existence) Let Assumptions 2.1 and 2.2 be satisfied. Let

U° = ( V u 0 , ^ , ^ ) . Then there are integers s, «!,••• ,se with s ̂  5 and a. small S > 0
suci that if u° G L2 (R3) and

u° G W'2 n w*<9'7 n w"«'13/n n w«M" n w*'1*'11 with

\\U°\\.,2

there exists a unique smooth solution of (1.1)—(1.4) satisfying

(3.3) uen?=0Ci([0,oo))W
+1-«'a)> flGnJ=0^([0,oo),W-2i'2)

(3.4) \\(Vu(t),dtu(t),mf\\.,2<C(s,6)\\U°\\.,2, V<G[0,oo).

4. T H E PROOF OF THEOREM 4.1 AND 4.2

PROOF OF THEOREM 4.1: By the definition of 5 ; (R3) and Theorem 3.1, it suffices
to show that

(4.1) D*D.u, D'J, fi,«eli~([Ol2"],#r0), V0eL2([0,T-),H2),
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and

(4.2) \(D2^\u^J,dte)T(t)\rfi+(j\ve{r)\lt2dr\ ^ C(r,T*,eo)Er

for any 0 < t ^ T*, where eo and Er are the same as in Theorem 4.1.

We shall show (4.1)-(4.2) by induction on r . It can be easily seen by Theorem 3.1
that (4.1)-(4.2) are valid for r = 0. Suppose that (4.1)-(4.2) hold for all values less
than or equal to r — 1 ( r ^ 1), we show (4.1)-(4.2) for r .

Let p(x) £ Co°(R3) with p(x) = 1 for |x| s$ 1 and p(x) = 0 for |x| > 2 . Set
pc(x) — p(ex) for 0 < e < 1. Denote

(4.3) u<(t,.) = Pe(.

Now, multiplication of (1.1)-(1.2) with pe implies that u' and 6" satisfy

(4.4) dl^ - Ci^Ve)J £

(4.5)
fig _ »2 e

a(Vu,0)dt6° - aa0(Vu,0,Ve)-—— - Cia{Vu,B){

OXOXf) a

) Cia{Vu,B)
OXaOXf) OtOXa

) ^ - = g°(u,0),
OxaOXi OXi

where

(4.6)

- r dp° u r (dPe dui dPe duj\ - dPt

(4.7)

g'(u,6) = -aap-—-£— 9 - 2aQ/3—^-- Cia-^-dtUi
OXaOXp OXa OX0 OXa

d2pe (dpe duj dpe duj \ dpe .
~ "»ic«'5—5—uj ~ °ij* I a—~Z 1" "3—"5— ) — di——o.

OXaOXi \OXa OXi OXiOXaJ OXi

If we utilise (3) of Assumption 2.1, Lemma 2.1, the energy estimate (3.2) and the
Sobolev imbedding theorem, we infer that for 0 ̂  t ^ T*

(4.8)

co\\<rru<(t)\\l2 - c^u'm2 - C7(r,e.)|«(i)|;_1<0 - (co/2)\u'(t)\ltl1

https://doi.org/10.1017/S000497270002880X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002880X


96 S. Jiang [8]

where c0 and c\ are positive constants. By applying the induction hypotheses and the
equality: f(i) = /(0) + /„* / ' (T)<£T, we arrive at

-C(r,T*,e0) | ( £ r )
2 + (E°r)

2 + £ (\u%0

for any t G [0, T*}, where

(4.10) E'r = ||p.l»°||.+l.I + Up.*1!!..* + ||P^°||.,2 + |p«tt°|r,» + Ip.tt'lr.J + \PJX,2-

Multiplying (4.4) and (4.5) by a2rdtu\ and a2r6e in L2(R3), respectively, we have by
partial integration and (4.9) that

\dtu<(t)\l>0 + \u<(t)\ltl + \8<(t)\lt0 + f \W(T)\ltOdT
Jo

(4.11) ^ C(r,T*,e0) {(Er)
2 + {E'Tf + J* (\dtu%0 + \v,'\lA + |<?e|2,o)(r)dr

where / e = (f'lf^ifs) and we have used the estimate:

sup{|fl,a|,
(4.12) *€R3

< C7(eo)(||Vtt(*)||.,a + \\0{t)\\.a) ^ C(eQ) for any * 6 [0,2"],

which follows from (3.2) in Theorem 3.1 and the Sobolev imbedding theorem. Recalling
the definitions of / / and g', we apply Lemma 2.6 and the induction hypotheses to
deduce

(4.13)
V i e [0,2"].

Inserting (4.13) into (4.11), one gets

\dtu'(t)\lfi + \u'(t)\ltl + \6<(t)\l0 + f \V6'{r)\lfi

(4.14) t

< C(r,T', e0) | ( S r ) 2 + (E'rf + jf (|at«
e|Ji0 + |«e|2P|1 + \0%o)(r)dr J

https://doi.org/10.1017/S000497270002880X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002880X


[9] Solutions in 3-D-thermoelasticity 97

for all 0 ^ i < T*. So, we obtained a bound for dtu', ~D\u" and 6*. To estimate
the derivatives of higher order of ue and 9', we take V and Vo" 1 (respectively D\

and D\a~1) on both sides of (4.4) and (4.5), respectively, and multiply with <T2rdtVu\

and aa2rV0e (respectively with <r2rdtDlu\ and aa2TD\6' ) in L 2 (R S ) . By arguments
similar to those used for (4.14), we obtain

|fl.V«'(«)i;tl + |V««(i)|>,2 + \W(t)\lA + f \D2J'{r)\lt

(4.15) Jo

< C(r ,T*,e0) | ( E r ) 2 + (E<r)
2

ltldr

An application of the Gronwall ineqality to (4.14)-(4.15) gives

(4.16)

for any < e [0,T*], where C = C(r,T*,e0) is independent of e. It follows from the
equations (4.4)-(4.5), (4.16) and the induction hypotheses that for t G [0,T*]

(4.17) |#«'(*)i;.i + lft«'(*)i;.o < C(r,T\eo){(Er)
2 + (E<r)

2}.

Thus, f D 2 ^ u « } , {dt6*} and {̂ D2tfe} (respectively {Vtfe}) remain in a bounded set
of L ° ° ( [ 0 , r ' ] , ^ ) (respectively L2([0,T*], Hi) ) provided that e is sufficiently small.
Hence we can construct subsequences of {u'} and {0e}, still denoted by {ue} and
{0*}, such that (note here Lemma 2.2 and the fact: (u',$')T -* {u,0)T strongly in
L°°([0,T],L2(R3)) a s e - > 0 )

(4-18) (weak-*) in L°°([0,T*],H°) as e - 0,

Vfle —> V6 E L2([0,T*],H2) weakly in L2([0,T*},E2) as e -» 0,

which proves (4.1). The estimate (4.2) immediately follows from the lower semicontinu-
ity properties of the weak-* and weak topologies, and (4.16)-(4.17). Hence (4.1)-(4.2)
are valid for r . This completes the proof. U

PROOF OF THEOREM 4.2: For any T > 0, we know from Theorem 3.2 that (u,0)T

satisfies the equations (1.1)-(1.4) on [0,T]. Utilising the estimate (3.4), following the
same arguments as in the proof of Theorem 4.1 (see the proof of (4.1)-(4.2)), we can
show the theorem. Q
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We close this section by considering the initial boundary value problem (1.1)-(1.4)
in an exterior domain ft with the Dirichlet boundary conditions

(4.19) «|an=0, 0\ea=0,

where dft is the boundary of ft and sufficiently smooth. For the initial boundary value
problem (1.1)—(1.4), (4.19), we have a local existence theorem similar to Theorem 3.1
(see Jiang and Racke [6], Chrzgszczyk [3], and Zheng and Shen [14]). We may apply
the arguments similar to those used for Theorem 4.1 to show that the local solution on
[0,r*] of (1.1)-(1.4) and (4.19) satisfies

(4.20) D2u, dt0, Dl0eL°°([O,T*]tW!{Sl)),

where Wr°(ft) = {u G £2(ft); |«|r,o,n = (Jn\^(x)u(x)\2dx)1/2 < oo}. Wr°(ft) is a
Hilbert space with the inner product (i*|i>)ron = J n ^ ^ M ^ H 1 1 ) ^ - ^ *8 worth
noticing that a slightly different technique in the derivation of (4.20) is that instead
of the differentiations with respect to x as in the derivation of (4.15), we perform the
differentiation with respect to t to obtain an estimate for

f
Jo

similar to (4.15), which together with the equations (4.4), (4.5), (4.19) and the regularity

for elliptic systems yields a bound for |^we(<)|JiOln + l^x^Wlr.o.n-
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