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1. Introduction and summary. Transitive group representations have their analogue
for inverse semigroups as discovered by Schein [7]. The right cosets in the group case find
their counterpart in the right a> -cosets and the symmetric inverse semigroup plays the role
of the symmetric group. The general theory developed by Schein admits a special case
discovered independently by Ponizovskil [4] and Reilly [5]. For a discussion of this topic,
see [1, §7.3] and [2, Chapter IV].

One of the basic results of Schein [7] asserts that every effective representation of an
inverse semigroup is a sum of transitive representations. Since the Wagner representation
of an inverse semigroup is effective, we may reason as follows. Let p be a congruence on
an inverse semigroup. Then the Wagner representation of Sip is effective and thus a sum
of transitive representations. The equality congruence on Sip is therefore the intersection
of the congruences induced by the transitive representations so obtained. When these
congruences are lifted to S, we obtain p as the intersection of congruences on S induced
by transitive representations of S (see [3] for another demonstration of this fact).

This provides the motivation for a closer look at the congruences on an inverse
semigroup which are induced by transitive representations by one-to-one partial transfor-
mations. In addition, a deeper study of the congruences induced by transitive repre-
sentations would provide a better understanding of the transitive representations
themselves. For example, one might ask when two transitive representations induce the
same congruence. One may want to single out those congruences, say in kernel-trace
form, which are induced by transitive representations. Some related questions are treated
in this paper.

A few preliminary and general results are proven in Section 2. The notation and
terminology used throughout the paper is described in this section as well. The kernel and
the trace of the congruence induced by a transitive representation are characterized in
Section 3. A reasonably specific description of inverse semigroups with a faithful
transitive representation and at least one primitive idempotent is established in Section 4.
This result is generalized to provide some conditions on a congruence which ensure that it
is induced by a transitive representation. In Section 5, completely semisimple inverse
semigroups with a finite number of 3) -classes all of whose congruences are induced by
transitive representations are described by means of special ideal extensions of Brandt
semigroups. These extensions are studied in some detail in Section 6 both for general
inverse semigroups and for Brandt semigroups.
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2. Notation and preliminary results. For all undefined concepts and notation, the
reader is referred to [2]. Throughout this paper, S shall denote an inverse semigroup and E
its semilattice of idempotents. For any subsemigroup T of 5, we define ET = E D T.

The closure operator, denoted by a>, plays an essential role in the theory of transitive
representations of an inverse semigroup. For convenience, we recall its definition here
(see for example [2] for more detail). If H is a subset of 5, then the closure Ha of H in 5
is given by

Hco = {x e S | xE n H ± 0} = {x e S \ Ex n H # 0}.
A set H is said to be a closed subset of S if H = Hco. If H is an inverse subsemigroup of 5,
then H is closed if and only if H is unitary. As a result, if H is a closed inverse
subsemigroup of 5, then for any e e E and u e S, eu e H if and only if both e e H and
u e H. In particular, for any u, v e S, if uv e H then MM"1 e H and v~lv e H.

The following facts concerning the closure operator will be useful.

LEMMA 2.1. Let Xr and X2 be subsets of S. Then {XxX2)co = ((Xlo))(X2co))a).

Proof. Since I c l w for any I c 5 , we obtain XXX2c. (XiCo)(X2co) and so
{X]X2)u> c. ((X^wXX-zCo))^. Conversely, let u e ((Xlco)(X2(o))a). Then for some e e E, we
have eue(Xi(o)(X20)), whence eu = rs for some reXxu), seX2co. Consequently, there
are idempotents / and g such that fr e X, and sg eX2. Now M ^feug =frsg e XXX2 and so
M e

Another useful result which is quite interesting in its own right describes the
relationship between an idempotent congruence class and its closure.

PROPOSITION 2.2. Let p be a congruence on S. For each a eS, the following are
equivalent:

(i) x e (ap)(o,
(ii) aa~xx eap,
(iii) xa~la eap.

If e e E, then ep is an ideal of {ep)oi.

Proof. In Sip, (i), (ii), and (iii) are equivalent ways of saying that xp >ap.
Now, for e EE, let x e (ep)(o and y e ep. Then xypxepe and yxpexpe and so ep is an

ideal of (ep)co.

LEMMA 2.3. Let p be a congruence on S. Then for any e eE and x e S, x~lx e (ep)co
implies that (x(ep)cox~1)a) = ((xex~l)p)a>.

Proof. By Lemma 2.1, we obtain (x(ep)cox~1)co = (x(ep)x~l)co. But x(ep)x~l c
(xex~l)p and so (x(ep)(ox~1)(o c ((xex~l)p)co. Conversely, let u e ((xex~l)p)co. Then for
some feE, ufpxex~l and so x~lufxpx~lxe. Now x~lx e (ep)co yields x~lxepe by
Proposition 2.2. Thus x~lufxpe, whence u ">xx~lufxx~l ex{ep)x~l and so ue
(x(ep)x~l)(o, as required.

We conclude this sequence of observations with a local version of the result which
states that if p is a group congruence with kernel K, then for any a eS, ap = (Ka)a>.

https://doi.org/10.1017/S0017089500006649 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006649


CONGRUENCES ON INVERSE SEMIGROUPS 23

LEMMA 2.4. Let p be a congruence on S and let a eS. Then (ap)co = {{aa~x)pa)(o.

Proof. Observe that {{aa~x)pa)(o c {ap)w since (aa~x)pa c ap. Let x e (ap)a>. Then
by Proposition 2.2, xa~xapa so that xa~xpaa~x. As a result, we have xa~la e(aa~x)pa.
Finally, since x >xa~xa we obtain x e ((aa~x)pa)a>.

Other fundamental concepts that we shall require are the principal right congruences
and principal congruences due to Dubreil and Croisot, respectively (see [1, Sections 10.2
and 10.4] for a detailed discussion). For convenience, we recall their definitions here. Let
X be any subset of S. Define aPr

xb if for all u eS, au eX if and only if bu eX. Define
aPxb if for all u,v eS, uav e X if and only if ubv e X. Note that if A' is a closed subset of
S, then Pr

x is the greatest right congruence saturating X and Px is the greatest congruence
saturating X. Furthermore, the one and two-sided residue sets Wr

x and Wx are defined by

w =wx = {x e s \ SxS n x = 0}.
Observe that Wr is either empty or is a right ideal and a class of Pr

x while W is either
empty or is an ideal and a class of Px.

An important result in the theory of representations of an inverse semigroup by
one-to-one partial transformations, due to Schein, is that every transitive representation
of 5 is equivalent to a representation obtained as follows. Let if be a closed inverse
subsemigroup of 5. A right co-coset of H in S is a set of the form (Ha)co for a e S such that
aa~l eH. Let 3? denote the set of all right co-cosets of H in 5 and let 3>x denote the
symmetric inverse semigroup on 3£ (with functions written on the right). To each seS
assign the mapping (ps

H e 3*% denned by

<t>s
H:(Ha)a)->(Has)<0 {aa~x, as{as)-x e H).

Then (j)H:S—* (ps
H is a transitive representation of S on 3f. The domain of 4>S

H is given by

d<j)s
H = {(Ha)(o | aa'\ as(as)~l e H).

An important special case occurs when H = Gco for some subgroup G of 5. We may
obtain a transitive representation equivalent to <$>H in the following way (see [2, IV.5.2] for
details). Let e denote the identity of G and let *% = {Ga \ aa ~ * > e}. Then ipG: S -»• 3^ defined
by

ips
G-Ga->Gas (ass^a'^e)

is a transitive representation of 5 equivalent to (j)H. If G = {e}, then we simply write
V>e:S-».V

In this paper we study the congruences on 5 which are induced by the transitive
representations of S. Since equivalent representations induce the same congruence, it is
sufficient to study just those representations obtained from the closed inverse sub-
semigroups of 5 in the manner described above. Moreover, it is known that two closed
inverse subsemigroups H and K produce equivalent representations if and only if H and K
are conjugate, that is to say, for some x e S, xHx~l c K and x~lKx c H. The next lemma
describes all conjugates of a closed inverse subsemigroup of 5.
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LEMMA 2.5. Let H be a closed inverse subsemigroup of S. Then for any x eS such that
x~1xeH, K = (xHx~x)o) is a conjugate of H; in fact x~1Kx<=:H and xHx~1^K.
Conversely, every conjugate of H is of this form.

Proof. Since xHx~l is an inverse subsemigroup of 5, {xHx~x)<o is a closed inverse
subsemigroup of 5 and xHx~lc.{xHx~x)a>. We show that x~1{{xHx~1)(o)x c.H. Let
u e (xHx~l)o). Then for some e eE, we have ue exHx~l so that x~luex ex~lxHx~lx c
H. Since x~1ux^x~1uex, we obtain x~1uxeHa> = H. Thus x~1((xHx~1)co)xcH, as
required.

Conversely, suppose that K is a conjugate of H. Then there exists x eS such that
xHx~x c K and x~xKx c H. We show that K = {xHx~l)o). Observe that x~\xHx~l)x c
H. Since jT ' iutsx^uex, we obtain x~1uxeH(o = H. Thus jT1(C*:#*~1)ft>)* £#> a s

required,
obtain

)(o c {xHx~l)o) Q

For a closed inverse subsemigroup / / of 5 we shall denote by <£H the congruence
#// ° ^z/1 induced on 5 by the transitive representation </>H obtained from H as described
above. We shall use # and <̂  to denote (j>H and 4>H whenever there is no ambiguity in
doing so.

It is shown in [1, Lemma 7.23] that (j>H = PH. This fact can be presented conceptually
as follows. Note that for all aeS, aPr

H = (Ha)(o if aa~leH while if aa~l$H then
aPr

H = WH. Thus if one passes from the O-transitive representation of 5 that is obtained by
right multiplication on S/Pr

H to the O-transitive representation of S by one-to-one partial
transformations as described by Wagner (see for example [2, IV. 5.9]) and then drop the
zero, the result is <$>H. Since the congruence induced on 5 by the representation on S/Pr

H

is PH and since at each stage the resulting representations induce the same congruence, we
see t h a t <f>H = PH.

In this context, we remark that in a group, any right coset Hg of a given subgroup H
completely determines the congruence induced by the transitive representation on right
cosets of H, namely PH = PHg. The situation is similar for inverse semigroups.

PROPOSITION 2.6. / / H is a closed inverse subsemigroup of S and aa~leH, then

Proof. If xPHy, then for any u,v eS,

uxv e (Ha)a)<?>uxva'1 eH<$uyva~l eH<£>uyv e(Ha)co

and so xP(Ha)a,y. Conversely, if xP^Ha)a)y, then for u,v e S we obtain

uxv eH€> uxva e (Ha)(o O uyva e (Ha)a> O uyv e H,

whence xPHy.

COROLLARY 2.7. Let p be a congruence on S and aeS. Then P(ap)W = P((aa-^P)w
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Proof. By Lemma 2.4, (ap)co = {{aa~l)pa)(o, which in turn is equal to
{{(aa~l)p)(oa)a> by Lemma 2.1. Thus P^pjo, = •P(((ao-i)P)tt,a)£U = **((««,-•)„),» by Proposition
2.6.

LEMMA 2.8. Lef p be a congruence on S and let XcS be saturated by p. Then the
following hold.

(i) Xo) is saturated by p and {Xa>)lp = (X/p)a>.
(ii) Pxlp = Pxlp.

Proof, (i). Let x eX and suppose that xpy. Then for some e eE, we have xe eX
and xepye. Since X is saturated by p we have ye e X whence y e Xa>. Thus Xa> is
saturated by p.

Now, let xp e (X(o)lp, whence x eX<o. For some e eE we have xe eX, whence
(xp)(ep)eX/p. Thus xpe(X/p)a> and so (Xa>)/pc:(X/p)(o. Conversely, let xpe
(X/p)a>. By Lallement's Lemma, there exists e eE with (xe)p e A7p and so xe e X. Thus
JC e Xco and so xp e (Xco)/p, whence (X/p)(o c (Xa))/p.

(ii). This follows immediately from the observation that for all x,a,y e S, xay e -Y if and
only if (xp)(ap)(yp) e XIp.

COROLLARY 2.9. Let p and x be congruences on S with p e r . Then x is induced by a
transitive representation of S if and only if x/p is induced by a transitive representation of
Sip.

Proof. By Lemma 2.8, x = PH for some closed inverse subsemigroup H of 5 if and
only if xlp = PWp and Hip is a closed inverse subsemigroup of SI p.

We conclude this section with the definition of the kernel and the trace of a
congruence on an inverse semigroup (see [2, Chapter III] for a detailed discussion of
these notions). For any congruence p on 5, the kernel of p, denoted by kerp, is defined
to be the union of the p-classes which contain idempotents, and the trace of p, denoted
by tr p, is the restriction of p to E.

3. The kernel and trace of the congruence induced by a transitive
representation. In this section, H shall denote a closed inverse subsemigroup of S.

PROPOSITION 3.1. For any a,b e S, a<j>b if and only if for every x eS with x~lx e H, the
following conditions hold:

1) x^aa'heH^x^bb-heH;
2) x-^aa'h eH^>x-xab~lx eH.

Proof. Suppose that a<i>b. Then for every x eS with x~^x eH, {Hx~l)o ed$° if and
only if (Hx~l)a> e d(j)b, which is equivalent to x~1a(x~1a)'1 e H if and only if
x^bix^by1 e H. Moreover, x^aa^xeH implies (Hx'^co e &<p" = &$" and
{Hx-l)a)<pa = (Hx-l)a)4>b. Thus x~xaa~xx e H implies that (Hx'tya) = (Hx^b)^, which
occurs exactly when x~xa{x~lb)~l e H.

Conversely, suppose that for each x e S with x~xx e H, x~laa~lx e H if and only if
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x~xbb~xx e H and x~laa~lx e H implies that x~1ab~lx e H. The first condition asserts that
d(f>" = d(pb, while the second condition ensures that (Hx~1a)co = (Hx~xb)(o for all x e S
for which Hx~l e d<f>" = d(f>b. T h u s <t>" = <t>b and so a(j>b.

As a consequence of this proposition, the trace of $ can readily be described.

COROLLARY 3.2. For e,f e E, ecj>f if and only if for all x eS with x~lx e H,

e e {xHx'l)(o 1

Proof. In view of Proposition 3.1, it is sufficient to observe that if x~lex and x~lfx
both belong to H, then x~lefx = x~1exx~1fx e H as well.

We shall use the following symbolism.

NOTATION 3.3. Denote by <€ = ^H the set of all conjugates of //, that is

The preceding corollary can then be stated as: eipf if and only if for all C e ^,
eeC€>feC.

LEMMA 3.4. Let eeE. Then either SeSDH = 0or else eeCfor some Ce<€.

Proof. Suppose that SeS OH^0. Then for some u,v e S, uev e H so that v~lv e H
and (ev)~1(ev) = v~1ev e H. But then vv~le = v(v~1ev)v~1 evHv~l, whence ee

^co. Since v~lv eH, we have {vHv~l)w e %, as required.

Note that for any C e c€, PC = PH and so W n C = 0 . As a consequence, Lemma 3.4
allows us to conclude that

= U{Ec\Cec€}.

COROLLARY 3.5. The kernel of <p is given by

ker (j> = {x eS | for all Ce« , {xx~\ rt} n C^0^>x e «}.

Proof. Suppose that X e ker 0. Then JC^*"1*, which by Proposition 3.1 implies that
u~lxx~xu€.H if and only if u^x^xueH and that u~lxx~lueH forces u~lxx~1xu =
u~lxueH for any weS for which u~lueH. For each C e ^ there exists u e 5 with
u~lueH and C = (uHu~1)a>. It follows from Lemma 2.5 that JC~XJC e C if and only if
u~lxx~lu e H, and that x~lx e C if and only if M'^^'JCU e H. Thus we have XK"1 e C if
and only if x~lx e C and either one implies that «" ' i«e H, whence x e (uHu~l)co = C.

Conversely, suppose that {JOT1, x~lx) D C # 0 implies that JC e C, for all C e i . We
show that JK^x"1*:. By Proposition 3.1, this can be accomplished by demonstrating that
u~lxx~xu e H if and only if u~lx~lxu e H and that if u~1xx~1u e H, then u " ^ e / / for all
ueS for which u'^u eH. By Lemma 2.5, this is equivalent to xx'1 e C if and only if
x~xx e C, and if xx~l e C then x e C, for all C e ^ . But by hypothesis, either of xx~l 6 C
or x~lx 6 C forces x e C , whence both xx~l e C and rteC are true if either is true.
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We continue the analogy with groups with a description of the idempotent classes of
4> and finally with a description of # itself which is similar to the description of a
congruence on a group.

NOTATION 3.6. For each e eE, let

C = H{C e « I e e C).
We remark that by Corollary 3.2, idempotents e and/are related by # if and only if

Q = Cf.

PROPOSITION 3.7. For each e eE, we have Ce = (e^)cw.

Proof. For eeW, Ce = P)0 = S and e<£ = W. Since W is an ideal of 5, Wo) = S and
so Ce = (e(f>)(o. On the other hand, if e $ W, then for any x e e(f>, we have x~1x<t>e. Thus
for all Ce%, x~lx e C if and only if e e C. In view of this, e e C implies x e C by
Corollary 3.5. But then x e Q. We have thus obtained e0 c Ce. Since Ce is closed,
(e0)ct) c Ce. Conversely, let x eCe. In view of Proposition 2.2, it is sufficient to show that
ex<j>e. By Proposition 3.1 and Lemma 2.5, this can be accomplished by showing that
exx~l e C if and only if e e C and that exx~x e C implies exe e C for all C e ^ . Since
x e Ce, we know that e e C implies that xeC. Thus, if e e C then j teC, whence x~l e C
and so exx~x e C. Conversely, exx~l e C implies e e C since C is closed. Thus exx~x e C if
and only if e e C. As well, if exx~l e C then e,x e C and so exe e C.

PROPOSITION 3.8. For any a,b e S, aipb if and only if Caa-i = Cbb-i and (Caa-ia)a> =

Proof. If a<̂ >6, then aa~^<$>bb~x, whence Caa-> = Cbb-u As well, by Lemmas 2.4 and
2.1 we have (a^)cu = ( ( a a " 1 ) ^ ) ^ = ( ( a a - ^ c o a ) ^ and by Proposition 3.7, (aa~1)<j>a> =
Caa-u Thus (a<j>)a) = (Caa-ifl)(«. Similarly, (bfyco = (Cbb-ib)co and so (Caa-ia)co =
(Cfcfc-i6)co.

Conversely, suppose that Caa-\ = C^-i and that (Caa-ia)co = (C6ft-i&)<o. By Propo-
sition 3.1, Lemma 2.5 and Corollary 3.2, a<j>b if Caa-\ = Cbb-\ and ab~l e Caa-u We have
a € Caa-\a s (Caa-ia)a) = (Cbb-ib)a> and so by Proposition 3.7 and Lemma 2.1 we have

ab~l e {{bb~l)(i>(0b)(job-1 c {bb~l)4>(o = Cbb-> = Caa-..

In view of Proposition 3.7, we may attempt to generalize the notion of the greatest
normal subgroup contained within a given subgroup of a group in the following manner.

NOTATION 3.9. Let K = KH = U Q.
eeEH

PROPOSITION 3.10. K = (H D ker (j>)co and so K is a closed inverse subsemigroup of S
contained in H. Moreover, <j>H = $K.

Proof. Since H is saturated by $ and H is closed, Proposition 3.7 yields K =

U Q= U (e0)a»
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Now, by Proposition 2.2, it follows that for each e e E, (e(j>H)co is saturated by <j>H

and so K is saturated by <j>H. Thus <f)H^PK = (j>K. Conversely, suppose that a<j>Kb. Let
x e S be such that x~xx e H. If x~1aa~1x e H, then x~1x,x~1aa~1x e EH = EK and so by
Proposition 3.1, x~1bb~1x,x~lab~1x eK^H. Similarly, x~lbb~lx eH implies that
x~laa~lx eH. Thus by Proposition 3.1 we have a<$>Hb.

We remark that in general, one can expect to have different closed inverse
subsemigroups of 5 contained in K which still induce the same congruence. Consider the
bicyclic semigroup for example. If the co-chain of idempotents is denoted as usual by
eo>e1>. . ., then H={e0, e j and L = {e0} are each closed inverse subsemigroups.
Now (\>H must saturate H and as a result, <pH = e. Similarly, (j>L = e. But then K = H and
soLg/ f .

The next proposition establishes that K is maximal in a sense which is analogous to
the notion of the greatest normal subgroup contained in a given subgroup of a group.

PROPOSITION 3.11. If L is a closed inverse subsemigroup of S such that
(i) EL = EH.
(ii) Lc(//nkerPL)a>,

then LcK.

Proof. We show that PL^PH- Then since PH = PK, we obtain Lc(Hf~lkerPL)(o
c (H fl ker PH)(x) = K. Suppose now that aPLb. Let x,y e S be such that xay e H. Then
xay{xay)~l eEH = EL whence xay(xay)~x e L. By hypothesis, we have xby{xay)~l 6 L. As
a result xby{xay)~1xay eH since H is a subsemigroup, and finally xby eH since H is
closed. By symmetry, we have aPHb.

Note that if 5 is a group, then condition (i) is automatically satisfied while condition
(ii) simply asserts that L is a normal subgroup of 5 contained in H.

In this context, we offer an alternative description of ker <j> (cf. Corollary 3.5).

LEMMA 3.12. The kernel of PH is given by:

kerPH = {keS\xky eH+>xy eH).

Proof. Let k e ker PH. Then kPHkk~l and thus for x,y e S, xkyPHxkk~ly. Since H is
saturated by PH, xky e H implies xkk~ly e H and thus xy e H.

Conversely, let keS be such that xky eH implies that xy eH. We show that
kPKkk~\ For any * ,yeS, xkk~ly eH^y-'kk-'x'1 eH^y-'k-'x'1 eH^>xky eH^>
xkk~xky eH^xkk~xy e H, as required.

COROLLARY 3.13. If Lc.H is a closed inverse subsemigroup of S for which L c
and EL = EH, then xLx'1 C\H c L for all x e S.

Proof. Let leL and xeS be such that xlx~leH. Then xl(xl)~l e EH = EL. By
Lemma 3.12, x(xl)~1 e L and thus xlx~x e L.

We shall require the following results.
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LEMMA 3.14. Let G be a subgroup of S and let e be the identity of G. Further, let
H = G(O. Then K = (e(j>)co.

Proof. By [2, IV.5.1], EH has e as a zero element. We show that for any feEH,
/0g(e0)(w. Let xef(j>. Then xe^>fe = e and so by Proposition 2.2 we obtain that
x e (e<i>)a), as required. But then (f(j>)a> c (e(j>)a) and so K = U Cf= U (/#)« = (e(j>)a).

feEH feEH

COROLLARY 3.15. Let G be a subgroup of S with identity e and let p = <f>Glo. Then
P = <t>{eP)a>-

Proof. This follows immediately from Proposition 3.10 and Lemma 3.14.

We remark that two different conjugates of a closed inverse subsemigroup need not
intersect. Any non-trivial Brandt semigroup will illustrate this. At the other extreme, in a
group, the set of all conjugates of a subgroup has non-empty intersection, this intersection
being of course the greatest normal subgroup contained in the given subgroup. The next
lemma shows that in a Clifford semigroup (i.e. a semilattice of groups), all conjugates of a
given closed inverse subsemigroup have exactly the same idempotents.

LEMMA 3.16. Let S be a Clifford semigroup and let H be a dosed inverse
subsemigroup of S. Then EH = Ec for all C e <#.

Proof. By symmetry, it is sufficient to show that EHc.{xHx~l)o) if x~lxeH. Let
e e EH. Then e & exx~l =xex~l exHx~l and so e e {xHx~l)(a as required.

COROLLARY 3.17. Let H be a closed inverse subsemigroup of a Clifford semigroup.
ThenK= f) (xHx~l)o).

x-'xeH

Proof. By definition, K= U \ Pi (xHx~l)o)\. From Lemma 3.16 we have for
eeEH Vx-*exeH ) , ..

e e E H t h a t x ^ e x e H i f a n d o n l y i f x ~ l x e H . T h u s K = \ J I f ) ( x H x ~ l ) ( o \ =
D (xHx-l)a>, as required. eeE" U ~ ' « " J

x~lxeH

4. Inverse semigroups with a faithful transitive representation. We characterize
here inverse semigroups with primitive idempotents and a faithful transitive repre-
sentation. We also describe congruences p for which p = 0(ep)o, for an idempotent e such
that ep is primitive in Sip. We start with the case of Clifford semigroups (semilattices of
groups).

PROPOSITION 4.1. Let S be a Clifford semigroup. Then S has a faithful transitive
representation if and only if S is either a group or a group with zero.

Proof. Let H be a closed inverse subsemigroup of 5 such that <j>H = E. Then WH = 0
or else WH is an ideal of S and a class of 4>H. If the latter case occurs then \WH\ = 1 and so

https://doi.org/10.1017/S0017089500006649 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006649


30 MARIO PETRICH AND STUART RANKIN

S has a zero. For any e e E\WH, by Lemma 3.16 we have

and so Ce = Cf for e,f e E. Thus \E\ WH\ = 1 and so 5 is either a group (if WH = 0 ) or else
a group with zero.

The converse is clear.

Consequently one may observe that a congruence p on a Clifford semigroup is
induced by a transitive representation if and only if S/p is a group or a group with zero.
Furthermore, for any congruence p on an inverse semigroup, p = (~) P(ep)m (see [3]) and

eeE

so every Clifford semigroup is a subdirect product of groups with a zero possibly adjoined
(see [2, II.2.6]). Observe that EH = Ec for all C e VaH if and only if S<j>H is a group or a
group with zero. That this can occur for semigroups other than Clifford semigroups is
seen from the following example. Let 5 be any inverse semigroup with a completely prime
ideal /. Let H = S\I. Then x~lx e H implies \xHx~l)m c H.

THEOREM 4.2. An inverse semigroup S has a zero, a primitive idempotent e, and a
faithful transitive representation if and only S is a dense ideal extension of a Brandt
semigroup B. Moreover, under these conditions, B = J(e).

Proof. Necessity. Let e be a primitive idempotent of 5 and H be a closed inverse
subsemigroup of 5 for which <t>H:S-+#(X) is faithful. Assume first that OeH. Then X
has only one element and thus 5 has at most two elements. Hence 5 = {0, e} is a two
element semilattice, a special case of a Brandt semigroup.

Now suppose that 0$H. Then 0eWH and since <f>H is faithful, we must have
WH = {0}. Since e =£0, we get that e is contained in some conjugate C of H. Since C and
H induce equivalent representations, we may assume that e e H. Now e must be the zero
of EH by primitivity and 0$H, which gives

K = U foj = eco
f*EH

a n d (f>K = <$>H — e.
Let B =J(e). Then B is a Brandt semigroup since e is primitive, and 5 is an ideal

extension of B. Recall from Section 2 that xpe:S^^{Re) and that \pe is faithful. This
means that 5 acts faithfully by right multiplication on the $-class Re and thus a fortiori on
B. In view of [2,1.9.18], we conclude that 5 is a dense extension of B.

Sufficiency. Let 5 be a dense extension of a Brandt semigroup B. Then 5 has a zero
and a primitive idempotent e. In order to prove that tpe is faithful, by the density of
extension, it suffices to prove that tye \B = e. Let B = B(G, I), e = (1, 1, 1) and assume
that yl'-'-n = \\i?M\ Then

0 * (1,1, i)(i, g, i) = (1,1, i)^gJ) = (1,1, 0V? ' M ) = (1. h 0(k, h, I)

so that (i, g, j) = (k, h, I), as required.
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We consider next the case without zero.

PROPOSITION 4.3. If S has a primitive idempotent, a faithful transitive representation
and no zero, then it is a group.

Proof. Let e be a primitive idempotent of S. Since S has no zero, e must be the
unique minimal idempotent of 5 and hence the zero of E. By [2, IV.5.5], He is a group
ideal of 5. By hypothesis, 5 has a faithful transitive representation, say <f>H for some
closed inverse subsemigroup H of 5. Since 5 has no zero and <j)H is faithful, WH = 0 .
According to Lemma 3.4, e is contained in some conjugate C of H. We may thus assume
that e e H. Since e is the zero of E, [2, IV.5.5] implies that H = Gco for some subgroup G
of He. In view of Corollary 3.2, any two idempotents of 5 are (^-related since e is its only
conjugate (recall that He is an ideal of 5) and so e e {xHx~l)m for any x e 5, which implies
that E c {xHx~l)a>. But <pH is faithful, so 5 has only one idempotent and thus must be a
group.

The next theorem gives necessary and sufficient conditions on a congruence p on 5 to
be induced by (j>(ep)<o for an idempotent e for which ep is primitive in Sip. This theorem
will be useful in the next section.

We will need the following simple result.

LEMMA 4.4. Let S be a dense extension of a Brandt semigroup B. Then every non-zero
ideal of S contains B.

Proof. Let / be an ideal of 5 and suppose that B <£l. Then since B is 0-simple, we
have / n B = {0}. But then the Rees congruence p, when restricted to B is equality,
whence p7 = e. Thus / = {0}.

For any congruence p on 5, let pn be the natural homomorphism of 5 onto Sip.

THEOREM 4.5. Let p be a congruence on S and e e E. Then the following are
equivalent.

(i) epu is a primitive idempotent of Sip and p =

(ii) The ideals J = (J{xp \ x e SeS} and I = f f ^ ^ zao> c / satisfy the
following conditions: ifp ^fP^ the zero of SIp

(a) if 1^0, then I is a prime ideal,
(b) eeJ\I,
(c) for all g,h e(J\I)H E, gpgh implies that gph,
(d) for any congruence £ on S, %\j = p \j implies that % c p.

Proof. If Sip has no zero, we may adjoin a zero to S and extend p in the obvious
way. The result would then follow from the case with zero upon removal of the zero.
Thus we may assume that Sip has a zero fp#.

(i) implies (ii). By Corollary 2.9, the equality relation on Sip is induced by a
transitive representation of Sip, whence Sip has a faithful transitive representation.
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Since Sip has a zero and a primitive idempotent epu, we may apply Theorem 4.2 to
obtain that S/p is a dense extension of the Brandt semigroup B = /(ep#).

We now consider condition (a). Let a,beS and suppose that aSbcI. Then
J{ap*)J{bp*) = {Q} in S/p. Since B2*0, we must have either B£j(ap*) or
B £ J(bpu). Thus by Lemma 4.4, either apu = 0 or ftp* = 0, whence a el or b el and so
/ is prime.

Condition (b) follows immediately from ep**=£0. In order to establish condition (c),
let g,h e Ej\, and suppose that gpgh. Then gp# = (gp#){hpu) with gpn, hpu e EB. Thus
gpu = hpn whence gph.

Finally, let % be a congruence on 5 such that § \} = p |y. We prove that (§ v p)|7 =
p \j. Indeed, let dE, v pb for a,6 eJ. There exist j ^ , Jt2, • • •, xn e S such that

• • • xnpb.

Multiplying on the right by a'1 a, we obtain

a^xia~xapx2a~xa. . . xna~xapba~xa,

where jc1a~1a, x2a~1a, . . ., xna~la eJ. The hypothesis then implies that apba~la.
Similarly, we get bb~xapb and thus bb~xapba~xa. Consequently apba~xapb, as required.
Now (£ v p)lp is a congruence on S/p whose restriction to B is the equality relation. But
S/p is a dense extension of B and thus (§ v p)/p = E. This implies that § v p = p, that is
to say, § s p. Thus condition (d) holds.

(ii) implies (i). By definition, B=Jp# is the ideal of S/p generated by epn.
Moreover, by (b) we have Jpn ^ {0}. Then using Lallement's Lemma and (c), we obtain
that all non-zero idempotents of B are primitive. Since / is a prime ideal of 5 saturated by
p, it follows that lpu = {0} is a prime ideal of S/p, hence of B. It is well-known that this
is equivalent to the assertion that B is a Brandt semigroup. Moreover, we have by (b) that
e p # # 0 , whence ep# is primitive. Observe as well that (d) implies that S/p is a dense
ideal extension of B. We shall use this fact to demonstrate that the residue of (ep)a) is /.

Let a el. Then J(a) Hep <=LlV\ep = <Z> since e eJ\I and / is a p-class. Suppose now
that aeS\I. Then /(ap#) is a non-zero ideal of S/p and so by Lemma 4.4 we have
B c / (ap # ) . Thus epn e J(ap*) and so J(a) Hep^0. We have shown that / = Wep. It is
easy to see that W(ep)to = Wep whence / = W(ep)(O.

Now let a,b e J be such that a(j>(ep)(Ob. Since / = W^p)l0, we have that a el if and only
if b el, in which case apb. Hence assume that a $ I. Then u~lav e (ep)u> for some u,v e 5
by the above. It follows that u~1aa~1u = (M~1a)(M~1a)~1 e (ep)(o. Since a(j>(ep)lob, we have
also

u-xbb-lu, u-xab~xu e {ep)co. (1)

The inclusion u~xaa~xu e (ep)co also implies that u~xue(ep)co. Consequently aa~x e
(u(ep)cou~x)(o and thus aa~x e {{ueu~x)p)a>. In view of Proposition 2.2 we now obtain
aa~xueu~xpueu~x. If ueu~x e I, then u~x(ueu~x)u e I so that (M"1M)e(M~1w) e / D (ep)o), a
contradiction. We thus have aa~x, ueu~x eJ\I, which together with aa~xueu~xpueu~x by
condition (c) yields aa~xpueu~x. Using (1), we similarly get bb~xpueu~x, which then gives
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aa~1pbb~l. Moreover, (1) yields ab~lueu~1pueu~1, which then implies ab~1pbb~l. Now
substituting a'1 for a and b~x for b, we obtain a~lapb~lb. Hence

a = aa~^apa{b~xb) = {ab'^bpbb^b = b.

This proves that 4>(ep)m \j^.p \j. It follows easily from the expression for <^(ep)(0 that
P £ 4>(ep)a>- In particular, we have (j>(ep)co \j = p \j. Now condition (d) yields 4>(ep)w c p,
which finally gives 0(ep)a, = p.

5. Inverse semigroups all of whose congruences are induced by transitive
representations. The main result here is a description of inverse semigroups in the title
which are also completely semisimple and have only a finite number of ^-classes.

We shall require the following well-known results.

LEMMA 5.1. Let S be completely semisimple with 5 / / finite. Then any subchain of E is
finite.

Proof. In a completely semisimple inverse semigroup we have $ = 3> and no two
distinct 3)-related idempotents are comparable.

LEMMA 5.2. Let I be an ideal of S and p a congruence on I. Then pU es is a
congruence on S.

Proof. Straightforward.

The notion of special ideal extension plays an important role in the work that
follows.

DEFINITION 5.3. Let / be an ideal of 5. We shall say that 5 is a special ideal extension
of / if every idempotent separating congruence on / extends uniquely to a congruence
on 5.

Observe that in view of Lemma 5.2 when S is a special ideal extension of /, then for
each idempotent separating congruence p on /, p U es is the unique extension of p to 5.
Furthermore, a special ideal extension is of course dense.

LEMMA 5.4. Letl%J be ideals of S for which S/I is a dense extension ofJ/I. Then for
each a eS\J there exists b eJ\I with Ja>Jb.

Proof. Suppose for some aeS\J there is no beJ\I with Ja>Jb. Then SaS D
(/ \ / ) = 0 . Let K = SaSL)I. Since aeK\J<=K\I we have I^K. Then the Rees
congruence pt refines the Rees congruence pK and so pKlpi = pKn is a congruence on 5 / /
whose restriction to J/I is equality. Since S/I is a dense extension of JII, and pK/,
restricted to / / / is equality, we must have pKn = e. But this is not possible since K¥=I.

Our main theorem characterizes a class of inverse semigroups on which every
congruence is induced by a transitive representation. As we shall see, this class includes
the symmetric inverse semigroup on a finite set.
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THEOREM 5.5. Let S be an inverse semigroup with zero. Then the following are
equivalent.

(i) (a) S is completely semisimple and Sl$ is finite;
(b) every congruence on S is induced by a transitive representation.

(ii) S satisfies (a) and
(c) for every congruence p on S, there exists e e E such that p = 0(ep)a).

(iii) (d) 5 has a principal series

0 = S o cS!c . . . cSn = S

such that for each i = 1, 2, . . . , « , the quotient 5,/5,_x is a Brandt semigroup;
(e) for each i = 1, 2, . . . , n — 1, S,+1/S.-i is a special extension of S/AS,-̂ .

(iv) 5 satisfies (d) and
(f) for any i = 1, 2, . . . , n and any idempotent separating congruence /3 on

Si/Si-1, the relation 0)$.^ U /? |s,\Si_, U es is a congruence on S and conversely, every
non-universal congruence on S is of this form.

Proof (i) implies (ii). Let p be a congruence on 5. Then by (b) there is a closed
inverse subsemigroup H of 5 such that p = $H. By Lemma 5.1 we obtain that EH has a
zero e, whence by [2, IV.5.5], there exists a subgroup G with identity e for which
H - Gco. An application of Corollary 3.15 then yields p = 4>(ep)o>, as required.

(ii) implies (iii). We observe that (b) implies that each congruence on 5 is induced by
a transitive representation. By Corollary 2.9, each congruence on any homomorphic
image of S is also induced by a transitive representation. Moreover, every homomorphic
image of an inverse semigroup with property (a) also has property (a). Thus every
homomorphic image of S has properties (a) and (b).

Now, apply Lemma 5.1 to conclude that 5 has a primitive idempotent. Moreover,
since e is induced by a transitive representation, we see that S has a faithful transitive
representation. By Theorem 4.2, 5 is a dense extension of a Brandt semigroup Br. If
S^Bx, then we may replace 5 by S/Bx and repeat the argument to obtain that S/Bx is a
dense extension of a Brandt semigroup B2. Because of the finiteness of S/^, this process
must terminate after n steps, where n = \S/£\. We obtain the principal series required for
(d) by setting So = {0} and S.-Wi = B* for i = 1, 2, . . . , n.

To verify that (e) holds, let i e {1, 2, . . . , n - 1} and let /3 be any congruence on
5,+i/5,_i whose restriction to SJSi^ is idempotent separating. Let p denote the
congruence on S obtained by applying Lemma 5.2 to the congruence on 5, that results
when the restriction of j8 to 51-/5,-_1 is pulled back to S,. Then p = «$._, U j3 l̂ .̂ .,, U es since
5,-/5|-i is a Brandt semigroup and an idempotent separating congruence on a Brandt
semigroup has the zero as a singleton congruence class. Let A denote the congruence on S
obtained by applying Lemma 5.2 to the congruence on 5,+1 that results when j3 is pulled
back to 5,+1. Now by (c), there exists an idempotent e e S with p = (j>(ep)w We wish to
show that ep is primitive in Sip. Since 5,_! = Op, we see that e $ 5,_!. Suppose that e $ 5,.
Then ep n 5, = 0 since 5, is saturated by p and so (ep)cj D 5, = 0 . But then 5, c W^ep)ui =
5,_!, a contradiction. Thus eeS,. Since 5/5,-_! is an ideal extension of the Brandt
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semigroup Si/S/-! and e eS,\S,_i, we see that e is primitive in 5/5,-_i. The fact that the
Rees congruence modulo 5,_! refines p allows us to conclude that ep is primitive in Sip.
We may therefore apply Theorem 4.5. Let / be the union of all p-classes which meet SeS.
Since e e 5, and 5, is saturated by p, we obtain that J c 5, whence A|7 = p|y. By Theorem
4.5(d) we have A c p and since it is evident that p c A, we conclude that A = p. Now since
P is the quotient of A \Sj+l = p |s.+l by the Rees congruence modulo 5,_i, it follows that
P = P UA-I U £S,+A-I whence 51+1/5,_j is a special ideal extension of S,/S,-i.

(Hi) implies (iv). Let j e {1, 2, . . . , n} and let P be any idempotent separating
congruence on S,/S,_i. Then the zero of the Brandt semigroup 5,/5,_1 is a congruence
class of j8, and so o)s._, U P |s(\s,_, is the pullback of P to 5, via the canonical
homomorphism of 5, onto 5,/S,_!. We then apply Lemma 5.2 to obtain the desired result.

Conversely, let p be an idempotent separating congruence on 5 and let i be maximal
subject to the requirement that p \s._, = o)s._,- Let P = p Is^,,,. We prove by induction on
A: that

P U = ^s,-, U /3 U eJt

for i<k^n. Consider first the case when k = i. Let x e5,\5,_, and y eS,_! be such that
xpy. Then xpO since Sj-^cyp. As a result we have S, = SjtSU5,_, cOp whence
P U = < U S ( , contradicting the maximality of /. Thus p \s. saturates 5,_,, whence p\Si =

Next, suppose for some k, i<k<n, that p \Sk has the required form. Let a = p \Sk+l.
We show that 5fc_i is saturated by a. For, suppose that it is not. Then for some
idempotent eeSk+1\Sk there is an idempotent fsSk_i with epf. By (e) and Lemma 5.4
applied to 5/t_1 c Sk c Sk+l, there exists b e Sk\Sk-\ with /e >Jb. But then there exists an
idempotent g eJb with e 2 g . Since Jb = Sk\Sk^u we have g 6 S^XS .̂., and g = egpfg e
£*_!, contradicting the fact that p |St saturates £*_,. Thus 5^_! is saturated by a and so
the Rees congruence modulo Sk-X refines a. But then a induces a congruence on
Sfc+i/S/t-i whose restriction to Sk/Sk-X is induced by p |St and thus is an idempotent
separating congruence on Sk/Sk_i. From (e) we infer that a saturates 5̂  and a \sk+,\sk is
equality, whence

a = a\SkU a \Sk+l^ = p\SkU eSk+l^k = co5,_, U p U ESkU e 5 t + | V S ,

as required.
By induction, we obtain that p = p |Sn = (%._, U j3 U e5.
(iv) implies (ii). It is immediate that (d) implies (a). To verify (c), let p be a

congruence on 5. If p = a, then p = 4>(oP)w. Otherwise, p is a non-universal congruence
on S. By (f), there exists / with

p = 0)5.., U p |SA5._, U es.

Let /I = {a0, a,, . . . , an} where a0 = 0 and a, e S/XS,--, = Da. for i = 1, 2, . . . , n. Then by
[3, Proposition 3.4], we have p = (~) P(aP)a>- Since ajp = Op = Si-l for 0 < / < i — 1 and

ae/4

P(oP)a> = (*>, we obtain p = f | P ( V K Moreover, since Wtt.p = W(a.p)a, = Si-i, we have by
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(f) that P(aiP)u, = Ws,., U a U es where a is the restriction of Pia,p)a> to S,\S,-i- Thus P(ai.p)a,
saturates {a;} = o,p for all; > i and so P(ajP)w c Pa.p <=. P(O/P)a) for all;" > i. As a result, we
have p = P(aiP)w Finally, by [3, Lemma 3.3], for any idempotent eeS^S;^, we have
P = (̂ep)o>- Thus p = tf>(<,p)t0, as required,

(ii) implies (i). This is immediate.

There is a large class of inverse semigroups all of whose congruences are induced by
transitive representations.

PROPOSITION 5.6. Every congruence on a (O-)bisimple inverse semigroup is induced by
a transitive representation.

Proof. Let p be a congruence on a (O-)bisimple inverse semigroup S. By [3,
Proposition 3.4] we have p =/^o^o, H P(<,p)tu = P(ep)a) for any idempotent e^O if 5 has
zero, while p = P(ep)£0 if S is without zero. In either case, we have p = P(ep)eo = <t>(ep)a, and
so p is induced by a transitive representation.

6. Special ideal extensions. In view of Theorem 5.5, it is of interest to have a closer
look into the nature of special extensions for general inverse semigroups and, in
particular, for Brandt semigroups.

LEMMA 6.1. Let S be a dense ideal extension of I. Then I is saturated by any
congruence whose restriction to I is idempotent separating.

Proof. Let p be a congruence on 5 for which p |/ is idempotent separating. Suppose
that / is not saturated by p. Then there exist x eS\I and y el with xpy. Since 5 is a dense
extension of / (and / is inverse), no two elements of 5 can act the same on / via left
multiplication. Since e = xx~l eS\I and f = yy~l el we have ep/and e^f. Thus there
exists tel with et^ft, whence ett~li=ftrl. But ett~lpftt~x and etr1, ftt~lel,
contradicting the hypothesis that p |/ is idempotent separating. Thus / is saturated by p.

PROPOSITION 6.2. Let S be an ideal extension of I. Then S is a special extension of I if
and only if

(i) 5 is a dense extension of I,
(ii) S/(fii U e) is a dense extension of I/(i,,

that is, if and only if the least and the greatest idempotent separating congruences on I
extend uniquely to S.

Proof. Obviously, if 5 is a special extension of /, then (i) and (ii) hold. Conversely,
suppose that (i) and (ii) hold. Let p be a congruence on 5 for which p |/ is idempotent
separating. Then by (i) and Lemma 6.1 we see that / is saturated by p. Let
T = p v (HI U e). Since / is saturated by p, it follows that x \t = fi, and T |sv - P \s\i- Now
T' = T/(JU, U e) is a congruence on S' = S/(ni U e) whose restriction to / ' = I/fi, is equality,
whence by (ii) we have r' | s v . = e. But S\I = S'\I' and p |sv = T 1^ = T' \S^ = e. Thus /
is saturated by p and p j ^ = e, whence p = p |/ U e.
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We now turn to extensions of Brandt semigroups by considering first dense
extensions.

LEMMA 6.3. Let I be a Brandt semigroup and S be an ideal extension of I for which
S/I is a Brandt semigroup. Then S is a dense extension of I if and only if for all e e Eg^,

(i) |[e]n/*|>2,
(ii) for each x e He, [x] D I = [e] C\ I implies that x = e.

Proof. Suppose that 5 is a dense extension of /. Then 5 is not a retract ideal
extension of /, whence (i) holds for all e e E^,. Now let e e E&J and x e He be such that
[x] n / = [e] n / . Then for any y el, we have xyy~l e [x] n / and eyy~l e [e] n / . Then
xyy ~1 <e and eyy ~' ^ x, whence xyy ~l ^ eyy ~' < xyy ~l. It follows that xy = ey. Since S is
a dense extension of /, this implies that x = e, and so (ii) holds for each e e E^.

Conversely, suppose that (i) and (ii) hold. Let p be a congruence on S for which p |/
is idempotent separating. Suppose that / is not saturated by p. Then for some e e Eyj and
/ e E, we have epf, whence efpf and so ef =f. Thus f <e. By (i), there exists g e [e] D /*
with £=£/. We obtain then that g = egpfg^g, contradicting the fact that p\, is
idempotent separating. Thus / is saturated by p.

Now suppose that for some x,y e S/I, we have xpy, whence e = xx~xpyy~^ =f and
ejeEw Suppose that ei=f so that efel since S\I is a Brandt semigroup. If
[e] D / = |/] n /, then [e] D / = [ef], whence |[e] D /*| < 1, a contradiction. Thus [e] n / +
[f] n /. By symmetry, we may suppose that there exists g e [e] n / with g $ [/"]. Then
e8=8^fS whence P{g} separates e and /. Since p saturates {g}, we have pc/>{ g ) ,
whence ep ̂ / p . Thus p is idempotent separating on 5.

Finally, observe that since / is saturated by p, p induces a congruence on the Brandt
semigroup 5//. This congruence is therefore completely determined by the congruence
class of any idempotent in 5 \ / . Let e e ES\, and x e He. Suppose that x =£ e. By (ii), we
have [x] C\ I ¥=• [e] PI /, and so there exists y e I for which either y < x and y ̂  e or else
y ^ x and _y < e. In the first instance, we obtain y = yy~lx ¥=yy ~le while in the latter case
we have yy~lx ¥=y =yy~le. In either case we see that F(>,} separates x and e. Since p
saturates {y} we have p c P{y} and so * £ ep. Consequently, ep = {e} and so p |sx/ = e.
Since / is saturated by p and p | s v

 = e» we have p = e, as required.

We are now ready for the principal result of this section.

THEOREM 6.4. Let I be a Brandt semigroup and S be an ideal extension of I for which
S/I is a Brandt semigroup. Then S is a special extension of I if and only if for every
eeEsM,

(i) |[e]n/*|>2,
(ii) for each x e He, Hfx c Hffor all f e [e] fl / implies that x = e.

Proof. Sufficiency. Let e e ES\j and x e He with x + e. By (ii) there exists / e [e] DI
for which Hfx£Hf. Since HfxcHfx, we obtain fx+f. lffx^e, then fx =fx(fx)'x =
fxx'1 =fe = / , a contradiction. Thus fx $ [e] DI but fx e [x] n /, whence [JC] n / + [e] fl /.
We have shown that condition (ii) of Lemma 6.3 is satisfied, while condition (i) holds by
hypothesis. By Lemma 6.3 therefore, we have that 5 is a dense extension of /.
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Now let X = %!1\JE, S' = S/r and I' = I/r. We show that (ii) is equivalent to
condition (ii) of Lemma 6.3 formulated for the extension of the Brandt semigroup / ' by
the Brandt semigroup S'/I' = S/I. In fact, for eeEs^ and xeHe, we show that
[x] ("1 / ' = [e] n / ' if and only if HfX c Hf for all fe[e]C\ I. Suppose that [x] n / ' = [e] f~l / ' .
Let / e [e] D /. Then fx e [e] n / ' , whence fx < x. But then fxefr = Hf. This implies that
(/T)* = HfX c ///. Conversely, suppose that ///* c / ^ for each f e[e]f)I'. Let yr e [e] n /'.
Then (yT)e=yr, whence for f = y~ly we have Hy = Hf and feeHf so /<?=/. Thus
/ e [ e ] n / and so HfXcHf. But then (yr);c = (/r)x -fx = yx and y r e f / , whence
yr e [x] n / ' . Thus [e] n / ' c [jt] n /'. For yr e [x] D / ' , we have (y"'y)™ = yr, whence for
f = yy~l we have Jfye <=,Hy. Since/e = yy~1;u:~17t0, we have/6 [e] C\I, whence Hfx c.Hf.
Thus Hf = Hy and so yx =fx e [e] n / ' , whence [x] D / ' c [e] D / ' .

We may now observe that 5' is a dense extension of /'. Condition (i) is inherited by
the extension 5' of / ' and thus condition (i) of Lemma 6.3 holds for this extension of / ' .
By the above argument, (ii) implies that Lemma 6.3(ii) holds for this extension as well.
By Lemma 6.3 we obtain that S' is a dense extension of /'.

Finally, we apply Proposition 6.2 to conclude that 5 is a special extension of /.
Necessity. Suppose that 5 is a special extension of /. Then 5 is a dense extension of /,

whence Lemma 6.3(i) asserts that (i) holds. Next, by Proposition 6.2(ii), we know that,
with the notation above, 5' is a dense extension of / ' . By the above argument, in the
presence of (i) this is equivalent to (ii). Thus both (i) and (ii) hold.

REMARK 1. We observe that condition (ii) of Theorem 6.4 is equivalent to the
following: for e e E^j,

(ii)' He acts faithfully by conjugation on [e] n / .

REMARK 2. In view of condition (i) of Lemma 6.3, we may observe that the proof of
Lemma 6.3 demonstrates that condition (ii) of Lemma 6.3 is equivalent to the
requirement that no two elements of S\I cover exactly the same elements of /, that is, for
all x,yeS\I with xi=y, we have [x] n / # [y] PI /. In order to appreciate the difference
between conditions (ii) of Lemma 6.3 and Theorem 6.4, respectively, we observe that
condition (ii) of Theorem 6.4 is equivalent to the following: for any x,y e S\I with x ¥=y,
there exists an $?-class X in / such that [x] D X + 0 and \y ] D X = 0 or vice-versa.

It is shown in [2, V.4.8] that every ideal extension of a Brandt semigroup
1 = B(G, X) by a Brandt semigroup Q = B(H, Y) can be constructed from data of the
following form. Let v be a cardinal number with v < \X\, and % the family of all subsets
of X of cardinality v. Select Po e <3>v. Let

(i) n: Y-* Pv be any function such that \xn (~)yn\ < 1 if x i=y;
(ii) 6:H—> G wr 5%P0) be any homomorphism and let hd = (oh, xh);
(iii) for each y e Y, let %y \P^-^yn be a bijection and r\y :P0~* G any function.
We shall let n 2 denote the projection G wr SP{P0)^> Sf(P0).

LEMMA 6.5. Let S be an ideal extension of 1 = B(G, X) by Q = B(H, Y) determined
by parameters v, Po, n, 6, f, t] as described above. Let e e E^j, so e = (y, \H, y) for some
y eY. Then the following hold.
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(i) fe[e]DI if and only iff = (x, lo, x) for some x e yn.
(ii) For q e He, Hfi c Hffor all fe[e]DI if and only if the projection of q into H is

contained in ker(0n2).

Proof, (i) This follows by routine computation.
(ii) Let q e He, say q = (y,h, y). We must show that xh = ePli if and only if for all

xeyn, x^~1rh^y=x, which in turn is equivalent to (x%~1)xh=x%~1 for all xeyn. But %y

is a bijection from Po to yn, whence the result follows.

COROLLARY 6.6. An ideal extension S of I = B(G, X) by B(H, Y), determined by
parameters v, Po, n, d, §, rj, is special if and only if v > 2 and 0II2 is injective.

Proof. In view of Lemma 6.5(i), v > 2 is equivalent to condition (i) of Theorem 6.4
while by Lemma 6.5(ii), the injectivity of 6Y\2 is equivalent to condition (ii) of Theorem
6.4. The result follows from Theorem 6.4.

To illustrate the situation, we offer an example of a dense extension 5 of a Brandt
semigroup by a Brandt semigroup which is not a special extension. Let / = ^ ( Q , {1, 2})
and Q = B(C2, {1}) where Q is a cyclic group of order 2 generated by q, so that
C2 = {e, q) with q2 = e. Let v = 2, PO={1,2}, Jt:{e}^>9>2 be the function en = Po,
d:C2^>C2v/TS/'({l, 2}) be the homomorphism determined by qd = (Kq, ePf), where Kq is
the constant function \Kq = 2Kq = q, t;e = ePo and \r)e = 2r\e = e. For convenience, we draw
the poset graph for 5* under the natural partial order.

1 y

/(l.e,l)/ L
1 (2, q, 1) ' / 1

j(2, e, !)• 1 I

9 /

• (1 .9 .2) /

(he, 2)

By Remark 2, it is evident that 5 is a dense extension of / which is not special.
On the other hand, by Remark 2 we may see that the semidirect product of the

semilattice {0, e,f, 1} with poset graph

1

0

and its automorphism group, upon forming the quotient by the minimum ideal, yields a
special extension of ^ ( Q , {1, 2}) by ̂ ( Q , {!}).
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As an interesting consequence of our results, we have

PROPOSITION 6.7 (cf. [6]). Let X be a finite set. Then the symmetric inverse semigroup
${X) has a principal series which satisfies Theorem 5.5(iii). Therefore $(X) satisfies the
equivalent conditions of Theorem 5.5, and in particular, the congruences on J*(X) are as
described in Theorem 5.5(iv).

Proof. It is well-known that $(X) has a unique principal series given by 5, =
{a e ${X) | rank(ar) < i) for i = 0, 1 , . . . , \X\ for which each quotient semigroup 5,/5,_,
is a Brandt semigroup. Conditions (i) and (ii) of Theorem 6.4 are readily verified for each
extension 5,+1/5,_! of Si/Sj-U i = 0, 1, . . . , \X\ -1. Thus Theorem 6.4 asserts that
51+1/5,_i is a special extension of 5,/S,_i for i = 0,l, . . . ,\X\ — 1, whence Theorem
5.5(iii) holds.

REFERENCES
1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II (Amer. Math.

Soc, 1967).
2. M. Petrich, Inverse semigroups (Wiley-Interscience, 1984).
3. M. Petrich and S. Rankin, Certain properties of congruences on inverse semigroups

(submitted).
4. I. S. Ponizovskii, On representations of inverse semigroups by partial one-to-one

transformations, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 989-1002.
5. N. R. Reilly, Contributions to the theory of inverse semigroups (Doctoral Dissertation,

University of Glasgow, 1965).
6. H. E. Scheiblich, Concerning congruences on symmetric inverse semigroups, Czechoslovak

Math J. 23 (1973), 1-10.
7. B. M. Schein, Representations of generalized groups, Izv. Vyssh. Uchebn. Zaved. Mat. 3

(1962), 164-176.

UNIVERSITY OF WESTERN ONTARIO

LONDON, CANADA

https://doi.org/10.1017/S0017089500006649 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006649

