frameworks and Pt precursors. Afterward, "we could not help but to test their ORR catalytic activities in fuel cells since we are an electrocatalysis-fuel cell group, and the experimental setup was already there," Liu says; "we were glad we did it."

The developed ORR catalysts were fabricated into fuel cell membrane electrodes for performance evaluation. The electrodes contained ultralow Pt loadings, approximately one tenth of those used in commercial electrodes, while still exhibiting excellent ORR catalytic activity. At an output voltage of 0.9 V, the highest mass activity (current generated per milligram of Pt) was 1.77 A/mg_{Pt}, which exceeds a 2025 target (0.44 A/mg_{Pt}) set by the US

NANO FOCUS

Shrinkage leads to nanoscale resolution in 3D geometries and with a variety of materials

Optical metamaterials are structures that interact with light to challenge the laws of physics. They can exhibit a negative refractive index to be used in electromagnetic cloaks, for super-high resolution imaging, and for unusual color effects. To interact with electromagnetic waves, however, these materials have to possess dimensions comparable to the wavelengths, namely 100 nm and smaller. Such precision is enabled in state-of-the art two-dimensional (2D) nanofabrication but remains challenging in three-dimensional (3D) geometries.

The research team of Edward S. Boyden at the Massachusetts Institute of Technology has developed a unique approach to fabricate 3D patterns with nanoresolution. The process, called ImpFab for "implosion fabrication," was reported in a recent issue of Science (doi:10.1126/science.aau5119) and relies on the following principle. A porous hydrogel, typically a polyacrylate or a polyacrylamide, is swollen in an aqueous solution containing ions or organic molecules that readily diffuse through the pores and deposit at the surface of polymeric chains. Chemical reactions can occur, such as the growth of metallic nanoparticles from

Department of Energy. The improved ORR catalytic activity was attributed to the synergistic catalysis between the Pt-Co nanoparticles and the Co, N-containing carbon support. Specifically, in addition to directly reducing O_2 to water over the Pt-Co nanoparticles, the N-coordinated cobalt (Co-N_x-C_y) sites on the substrate can also reduce O_2 to water and H_2O_2 . The generated H_2O_2 then diffuses to the surface of nearby Pt-Co nanoparticles where it is eventually reduced to water.

Bao Yu Xia of Huazhong University of Science & Technology, China, says that the key deliverables of this work, "developing cost-effective and scalable approaches for some of the most promising ORR catalysts with ultralow Pt contents," as well as understanding their catalytic activities in fuel cells are vital to large-scale implementation of fuel cells. Xia was not involved in this study.

"This work brings out a new research direction and is far from complete," Liu says. The research group is investigating various issues to further enhance the performance of their catalysts, including the optimal distance between the Pt-Co nanoparticles and the Co-N_x-C_y coordination sites, the influence of humidity on the synergistic catalysis, and the minimal Pt loading possible without sacrificing catalytic activity.

Tianyu Liu

ionic suspension, directly within the hydrogel. After this internal coating, the composite is shrunk down, and then further solidified by sintering to create metallic structures.

Since hydrogels can be 3D-printed at the microscale, this principle can be easily coupled with 3D printing. Using hydrogels with controllable cross-linking density, the homogeneous shrinkage occurring after dehydration results in retention of the shape, but a decrease in dimensions. As a result, 3D patterns with complex shapes and resolutions of 50 nm could be fabricated in silver. These were found to exhibit an electrical conductivity only about 10 times less than that of bulk silver despite the high porosity (see Figure).

Shweta Agarwala, a researcher at the Singapore Centre for 3D Printing and leading innovator in additive manufacturing for electronics and biotechnology, says that "currently, direct-writing of nanostructures is possible using noncontact methods like inkjet and aerosol jet, but the resolution is limited to 10 µm. Moreover, these techniques are able to print in 2D plane only. This research of using sacrificial scaffolds to pattern desired structures and shrinking them to achieve 3D nanoscale objects is fascinating." Furthermore, Boyden emphasizes that "the contribution of the work is not just that we can achieve similar or better resolution, but rather that we have found

Fluorescence imaging of a silver nanostructure created with ImpFab. Credit: *Science*.

a way to do the patterning of many different materials in a modular fashion to achieve any geometry." Indeed, the research team provides examples of patterning with fluorescent molecules, proteins and DNA, and several metals.

Daniel Oran and Samuel G. Rodriques, the lead authors of the article, are excited by the possibilities that the method offers to create and study optical metamaterials. "There is a huge need for a robust and efficient way of generating 3D nanoscale features out of a variety of materials. We are eager to find collaborators in any domain where the benefit of arbitrary 3D geometry is paramount to asking new scientific questions or creating devices that would otherwise be impossible or impractical to fabricate," Oran says.

Hortense Le Ferrand

CALL FOR PAPERS

Abstract Submission Opens May 13, 2019 Abstract Submission Closes June 13, 2019

Fall Meeting registrations include MRS Membership January – December, 2020

BROADER IMPACT

BI01 Materials Data Science—Transformations in Interdisciplinary Education

ELECTRONIC, PHOTONIC AND MAGNETIC MATERIALS

- EL01 Emerging Material Platforms and Approaches for Plasmonics,
- Metamaterials and Metasurfaces
- Molecular and Organic Ferro- and Piezoelectrics-Science and Applications EL02
- Multiferroics and Magnetoelectrics EL03
- Emerging Chalcogenide Electronic Materials—From Theory to Applications EL04
- Diamond and Diamond Heterojunctions-EL05 From Growth and Technology to Applications

ENERGY AND ENVIRONMENT

- Challenges in Battery Technologies for Next-EN01
- Generation Electric Vehicles and Grid Storage Applications
- FN02 Materials for High-Energy and Safe Electrochemical Energy Storage
- Green Electrochemical Energy Storage Solutions-Materials, Processes and Devices EN03
- EN04 Advanced Membranes for Energy-Efficient Molecular Separation and Ion Conduction
- EN05 Chemomechanical and Interfacial Challenges in Energy Storage and Conversion-Batteries and Fuel Cells
- EN06 Development in Catalytic Materials for Sustainable Energy-Bridging the Homogeneous/Heterogeneous Divide
- EN07 Materials Science for Efficient Water Splitting
- EN08 Halide Perovskites for Photovoltaic Applications-Devices, Stability and Upscaling
- EN09 Advances in the Fundamental Science of Halide Perovskite Optoelectronics
- Emerging Light-Emitting Materials and Devices-FN10
- Perovskite Emitters, Quantum Dots and Other Low-Dimensional Nanoscale Emitters FN11 Silicon for Photovoltaics
- EN12 Structure-Function Relationships and Interfacial Processes in
- Organic Semiconductors for Optoelectronics
- Flexible and Miniaturized Thermoelectric Devices Based on EN13 Organic Semiconductors and Hybrid Materials
- EN14 Thermoelectric Energy Conversion (TEC)-Complex Materials and Novel Theoretical Methods
- EN15 Nanomaterials for Sensing and Control of Energy Systems-Processing, Characterization and Theory
- Advanced Materials, Fabrication Routes and Devices for Environmental Monitoring EN16
- Structure-Property Processing Performance Relationships in EN17 Materials for Nuclear Technologies

mrs.org/fall2019

Meeting Chairs

Bryan D. Huey University of Connecticut Stéphanie P. Lacour École Polytechnique Fédérale de Lausanne Conal E. Murray IBM T.J. Watson Research Center Jeffrey B. Neaton University of California, Berkeley, and Lawrence Berkeley National Laboratory Iris Visoly-Fisher Ben-Gurion University of the Negev

Don't Miss These Future MRS Meetings!

2020 MRS Spring Meeting & Exhibit

2020 MRS Fall Meeting & Exhibit

FABRICATION OF FUNCTIONAL MATERIALS AND NANOMATERIALS

Beyond Graphene 2D Materials—Synthesis, Properties and Device Applications FF01

- FF02 2D Nanomaterials-Based Nanofluidics
- Building Advanced Materials via Particle-Based Crystallization and Self-Assembly of FF03 Molecules with Aggregation-Induced Emission
- **FF04** Crystal Engineering of Functional Materials—Solution-Based Strategies
- FF05 Advanced Atomic Layer Deposition and Chemical Vapor Deposition Techniques and Applications
- FF06 Advances in the Fundamental Understanding and Functionalization of Reactive Materials

MATERIALS FOR QUANTUM TECHNOLOGY

- MQ01 Coherent and Correlated Magnetic Materials for Hybrid Quantum Interfaces
- MQ02 Materials for Quantum Computing Applications
- MQ03 Predictive Synthesis and Advanced Characterization of Emerging Quantum Materials

MATERIALS THEORY, COMPUTATION AND CHARACTERIZATION

- MT01 Advanced Atomistic Algorithms in Materials Science
- MT02 Closing the Loop—Using Machine Learning in High-Throughput Discovery of New Materials
- MT03 Automated and Data-Driven Approaches to Materials Development-Bridging the Gap Between Theory and Industry
- MT04 Advanced Materials Exploration with Neutrons
- Emerging Prospects and Capabilities in Focused Ion-Beam Technologies MT05 and Applications
- MT06 In Situ Characterization of Dynamic Phenomena During Materials Synthesis
- In Situ/Operando Studies of Dynamic Processes in Ferroelectric. MT07 Magnetic and Multiferroic Materials

MECHANICAL BEHAVIOR AND STRUCTURAL MATERIALS

- MS01 Extreme Mechanics
- Mechanically Coupled and Defect-Enabled Functionality in Atomically Thin Materials MS02
- MS03 Mechanics of Nanocomposites and Hybrid Materials
- MS04 High-Entropy Alloys and Other Novel High-Temperature Structural Alloys

SOFT MATERIALS AND BIOMATERIALS

SB01 Multifunctional Materials-

- From Conceptual Design to Application-Motivated Systems
- SB02 Multiscale Materials Engineering Within Biological Systems
- Smart Materials, Devices and Systems for Interface with Plants and Microorganisms SB03
- SB04 Hydrogel Materials—From Theory to Applications via 3D and 4D Printing
- SB05 Light-Matter Interactions at the Interface with Living Cells, Tissues and Organisms
 - Bringing Mechanobiology to Materials-
- SB08 Advanced Neural Materials and Devices
- SB09 Interfacing Bio/Nano Materials with Cancer and the Immune System
- SB10 Electronic Textiles
- Multiphase Fluids for Materials Science-Droplets, Bubbles and Emulsions SB11

FOLLOW THE MEETING! #F19MRS 🙆 У

MRS MATERIALS RESEARCH SOCIETY® Advancing materials. Improving the quality of life.

https://doi.org/10.1557/mrs.2019.63 Published online by Cambridge University Press

SB06 From Molecular Understanding to Biological Design

SB07 **Bioelectrical Interfaces**