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LIMIT THEOREMS FOR MOVING AVERAGES WITH
RANDOM COEFFICIENTS AND HEAVY-TAILED NOISE
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Abstract

We consider a stationary moving average process with random coefficients, Xt =∑∞
k=0 Ct,kZt−k , generated by an array, {Ct,k, t ∈ Z, k ≥ 0}, of random variables and a

heavy-tailed sequence, {Zt , t ∈ Z}. We analyze the limit behavior using a point process
analysis. As applications of our results we compare the limiting behavior of the moving
average process with random coefficients with that of a standard MA(∞) process.
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1. Introduction

Many data sets from telecommunications, finance, and economics exhibit heavy tails. A key
question is how to fit models to such data. In the setting of a stationary time series with finite
variance, autoregressive moving average (MA) processes are sufficient for data analysis, and
we may use standard techniques to fit an appropriate one. If the variance is infinite and a data
sequence, {Xt, t ∈ Z}, is generated by the linear process

Xt =
∞∑

k=0

ckZt−k, (1.1)

where {Zt , t ∈ Z} is a sequence of independent and identically distributed (i.i.d.) regularly
varying random variables, then we may use the sample autocorrelation function to fit an appro-
priate model; see, e.g. [6]. However, when there are nonlinearities, the sample autocorrelation
function need not be consistent. In particular, it may converge in distribution to a nondegenerate
random variable. This can result in an inappropriate model being selected. This phenomenon
was observed in [8] for bilinear processes

Xt = cXt−1Zt−1 + Zt , (1.2)

where |c|α/2 E[Zα/2
1 ] < 1, α > 0, and {Zt , t ∈ Z} are i.i.d. and regularly varying. Also, if the

model is linear then X, a generic random variable of the sequence {Xt, t ∈ Z}, has a regularly
varying tail with index α if and only if Z also does. On the other hand, if

Xt = YtXt−1 + Zt , t ∈ Z, (1.3)

where {Yt , t ∈ Z} are i.i.d. but not necessarily independent of {Zt , t ∈ Z}, then regular variation
may appear even though the noise variables Zt all have finite moments; see, e.g. [10]. We refer
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the reader to [9, Chapter 7] as well as [12] and [14] for further discussion of nonlinear time
series.

Therefore, in the infinite-variance case, new limit theorems and statistical tests for detecting
possible nonlinearities are required. To obtain limit theorems for the models mentioned above,
we observe that each of them can be written as a moving average with random coefficients. To
be more specific, assume that {Zt , t ∈ Z} is a sequence and that C = {Ct,k, t ∈ Z, k ≥ 0} is
an infinite array of random variables. Then

Xt =
∞∑

k=0

Ct,kZt−k, t ∈ Z, (1.4)

is the moving average process with random coefficients.
Now, if the sequence {(Yt , Zt ), t ∈ Z} is i.i.d. then model (1.3) may be represented

as (1.4) by taking Ct,k = ∏k−1
i=0 Yt−i . Thus, Ct+k,k = Yt+k · · · Yt+1 and, hence, for fixed

t , Zt is independent of {Ct+k,k, k ≥ 0}. Also, for the bilinear model (1.2) with i.i.d. noise
sequence {Zt , t ∈ Z}, we have Ct,k = ck

∏k−1
i=1 Zt−i and Zt−k is replaced with Z2

t−k in (1.4).
Consequently, Ct+k,k = ckZt+k−1 · · · Zt+1 is independent of Zt for all k ≥ 0.

For random variables, Xt , defined by (1.4), our main goal is to obtain point process limits
for

n∑
t=1

δ
a−1
n Xt

,

n∑
t=1

δ
a−1
n (Xt ,...,Xt−h)

,

where δ is the Dirac measure and (an) an appropriate normalizing sequence. In order to do
this we shall first prove that the tail of Xt behaves as if we have considered the standard
MA(∞) model (1.1) with coefficients ck = ‖Ct,k‖α := E[|Ct,k|α]1/α . Hence, in the one-
dimensional case we generalize the result of [16] and, as a corollary, obtain the tail asymptotics
for bilinear processes [8] or stochastic recurrences [11]. We also obtain the tail asymptotics
for Sn = ∑n

t=1 Xt , for fixed n, generalizing a result of [11]. Note that in this case the tail
asymptotics for Sn does not agree with the MA(∞) process, unless α = 1.

Having established the tail asymptotics we may proceed with point process limits. For
this it is reasonable to expect that we need stronger assumptions on the dependence structure.
We assume that the array C is independent of {Zt , t ∈ Z}. We note that, for the stochastic
recurrence model, Konstantinides and Mikosch [11] obtained the point process limit without
such an independence assumption. Their approach uses the theory developed in [4] and [5].
However, in the general moving average model (1.4), the conditions of Theorem 2.2 of [5] are
rather difficult to verify. By viewing the stochastic recurrence model as a particular case of the
moving average process with random coefficients, we may apply well-known techniques for
linear processes to provide a unified tool for several types of time series. The point process limit
results allow us to point out some differences between the limiting behaviors of the MA(∞)
model and the general moving average process (1.4). Also, we obtain a simple rule to check
whether or not the stochastic recurrence model (1.3) is linear (i.e. has constant, deterministic Yt ).

The paper is organized as follows. In Section 2 we deal with the tail asymptotics of Xt and
Sn. In particular, we apply our results to bilinear processes and stochastic recurrences with
heavy-tailed noise. In Section 3 we obtain the point process limits. Those results are applied
in Section 4 to the asymptotic behavior of various statistics.
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2. Tail asymptotics

In the sequel we write f (x) ∼ g(x) if limx→∞ f (x)/g(x) = 1 and f (x) = o(g(x)) if
limx→∞ f (x)/g(x) = 0. Moreover, we shall denote by A a generic random variable of any
stationary sequence {At, t ∈ Z}.

We assume that the following conditions hold.

(A) The sequence {Zt , t ∈ Z} is i.i.d.

(B) Zt , t ∈ Z, are heavy tailed; i.e. P(|Z| > x) = x−αL(x), where α > 0, L is slowly varying
at infinity, and, for p + q = 1, p, q ≥ 0, we have

lim
x→∞

P(Z > x)

P(|Z| > x)
= p, lim

x→∞
P(Z < −x)

P(|Z| > x)
= q.

Recall that this is equivalent to the vague convergence

nP(a−1
n Z ∈ ·) → ν(·),

where ν has density ν(dx) = αx−α−1 1(0,∞](x) + qp−1α(−x)−α−1 1[−∞,0)(x) and (an) is an
increasing sequence such that P(|Z| > an) ∼ n−1. Here 1A(·) denotes the indicator function
of the set (or event) A.

(C) For all fixed t ∈ Z, Zt is independent of {Ct+k,k, k ≥ 0}. In particular, for fixed t ∈ Z and
k ≥ 0, the random variables Ct,k and Zt−k are independent.

(D) For each t , if α < 1 then there exists a δ, 0 < δ < α, such that α + δ < 1 and
∞∑

k=0

E[|Ct,k|α+δ] < ∞,

∞∑
k=0

E[|Ct,k|α−δ] < ∞.

If α > 1 then there exists a δ > 0 such that
∞∑

k=0

E[|Ct,k|α+δ]1/(α+δ) < ∞,

∞∑
k=0

E[|Ct,k|α−δ]1/(α+δ) < ∞.

Conditions (A)–(D) imply that the infinite series
∑∞

k=0 Ct,kZt−k converges almost surely
and, hence, that {Xt, t ∈ Z} is well defined; see, e.g. [16]. Clearly, from the above we also
find that, for all t and k and some δ > 0,

E[|Ct,k|α+δ] < ∞. (2.1)

Assume that t ∈ Z is fixed but arbitrary. The main result of this section is as follows.

Proposition 2.1. Assume that conditions (A)–(D) hold. Then

lim
x→∞

P(Xt > x)

P(|Z| > x)
=

∞∑
k=0

(pE[|Ct,k|α 1{Ct,k>0}] + qE[|Ct,k|α 1{Ct,k<0}]).

To prove Proposition 2.1 we begin with a series of lemmas. First, by a straightforward
extension of [2] we find that

P(ZY > x) ∼ (pE[Yα 1{Y>0}] + qE[Yα 1{Y<0}])P(|Z| > x)

for two independent random variables, Z and Y , such that (B) holds for Z and E[|Y |α+δ] < ∞
for some δ > 0.
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Lemma 2.1. Let Uk , k = 0, . . . , m, be random variables with P(|U0| > x) = x−αL(x). If,
for k = 0, . . . , m,

lim
x→∞

P(Uk > x)

P(|U0| > x)
= ck

and

lim
x→∞

P(Uk > x, Ul > x)

P(|U0| > x)
= 0, k �= l, (2.2)

then

lim
x→∞

P(
∑m

k=0 Uk > x)

P(|U0| > x)
=

m∑
k=0

ck.

Proof. The lower bound follows from

lim
x→∞

P(
∑m

k=0 Uk > x)

P(|U0| > x)
≥ lim

x→∞
P(

∑m
k=0 Uk 1{Uk>0} > x)

P(|U0| > x)

and Lemma 2.1 of [8]. The upper bound may be obtained by the same calculation as in the
proof of Lemma A3.26 of [9], using (2.2) instead of independence.

Lemma 2.2. ([16].) Assume that Z is nonnegative and that P(Z > x) = x−αL(x), α > 0.
Then there exists an x0 such that

E[(cZ ∧ x)α+η] ≤
{

const. cα+ηxα+ηP(Z > x) if c ≥ 1 and x/c ≥ x0,

const. cα−ηxα−ηP(Z > x) if c < 1 and x > x0.

Lemma 2.3. Assume that (A), (B), and (2.1) hold. Then, for all t and k �= l,

lim
x→∞

P(Ct,kZt−k > x, Ct,lZt−l > x)

P(|Z| > x)
= 0.

Proof. Since P(Ct,kZt−k > x, Ct,lZt−l > x) ≤ P(|Ct,kZt−k| > x, |Ct,lZt−l | > x) we
may assume without loss of generality that the random variables are nonnegative. Let ε > 0
and choose k �= l. We have

P(Ct,kZt−k > x, Ct,lZt−l > x) ≤ P(Ct,k1{Ct,k>ε}Zt−k > x) + P(Ct,l1{Ct,l>ε}Zt−l > x)

+ P(Ct,k ≤ ε, Ct,l ≤ ε, Ct,kZt−k > x, Ct,lZt−l > x)

≤ P(Ct,k1{Ct,k>ε}Zt−k > x) + P(Ct,l1{Ct,l>ε}Zt−l > x)

+ P(Zt−k > x/ε, Zt−l > x/ε).

For the first two terms, respectively I1 and I2, by (2.1) and Breiman’s lemma we have

lim
x→∞

I1

P(Z > x)
= E[Cα

t,k1{Ct,k>ε}],

which converges to 0 as ε → ∞, since

lim sup
ε→∞

E[Cα
t,k1{Ct,k>ε}] ≤ E

[
lim sup
ε→∞

Cα
t,k1{Ct,k>ε}

]
.

Moreover, the third term is o(P(Z > x)), by (A).
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Proof of Proposition 2.1. For all finite m ≥ 1, we have

P(Xt > x) ≥ P

( m∑
k=0

Ct,k 1{Ct,k>0} Zt−k 1{Zt−k>0} > x

)

+ P

( m∑
k=0

Ct,k 1{Ct,k<0} Zt−k 1{Zt−k<0} > x

)
.

Thus, the lower bound follows from Lemmas 2.1 and 2.3 and the standard argument; see,
e.g. [13, pp. 228–230].

To determine the upper bound we use an approach similar to that of [16]. We have

lim
x→∞

P(
∑∞

k=0 Ct,kZt−k > x)

P(|Z| > x)

≤ lim
x→∞

P(
∑m

k=0 Ct,kZt−k > (1 − ε)x)

P(|Z| > x)
+ lim

x→∞

∑∞
k=m+1 P(|Ct,kZt−k| > εx)

P(|Z| > x)

+ lim
x→∞

P(
∑∞

k=m+1 |Ct,kZt−k|1{|Ct,kZt−k |<εx} > εx)

P(|Z| > x)

=: I1 + I2 + I3.

The first term, I1, gives the required asymptotics. By Breiman’s lemma and (D), I2 → 0
provided that we can interchange limits with summations. To see this, consider that

P(|Ct,kZt−k| > εx)

P(|Z| > x)

= E[1{|Ct,k |≤ε}P(|Ct,kZt−k| > εx | Ct,k)]
P(|Z| > x)

+ E[1{|Ct,k |>ε}P(|Ct,kZt−k| > εx | Ct,k)]
P(|Z| > x)

≤ const. (E[1{|Ct,k |≤ε}|Ct,k|α+δ] + E[1{|Ct,k |>ε}|Ct,k|α−δ])
≤ const. (E[|Ct,k|α+δ] + E[|Ct,k|α−δ]),

which bound is summable, by (D).
It remains to show that I3 = o(1). We may assume that the random variables are nonnegative.

First, note that
Ct,kZt−k1{Ct,kZt−k<εx} ≤ Ct,kZt−k ∧ εx.

Using Lemma 2.2, for α ∈ (0, 1) we have

P

( ∞∑
k=m+1

Ct,kZt−k1{Ct,kZt−k<εx} > εx

)

≤ const.

xα+η

{ ∞∑
k=m+1

E[E[(Ct,kZt−k ∧ εx)α+η1{Ct,k≥ε} | Ct,k]]

+ E[E[(Ct,kZt−k ∧ εx)α+η1{Ct,k<ε} | Ct,k]]
}

≤ const.

xα+η

{ ∞∑
k=m+1

E[Cα+η
t,k ] +

∞∑
k=m+1

E[Cα−η
t,k ]

}
,
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and, hence, I3 = o(1) follows by dividing the latter expression by P(Z > x) and applying
condition (D). Similarly, by using Minkowski’s inequality, for α ≥ 1 we have

P

( ∞∑
k=m+1

Ct,kZt−k1{Ct,kZt−k<εx} > εx

)

≤ const.

xα+η
E

[( ∞∑
k=m+1

Ct,kZt−k ∧ εx

)α+η]

≤ const.

xα+η

( ∞∑
k=m+1

E[(Ct,kZt−k ∧ εx)α+η]1/(α+η)

)α+η

≤ const.

xα+η

( ∞∑
k=m+1

E[Cα+η
t,k ]1/(α+η) +

∞∑
k=m+1

E[Cα−η
t,k ]1/(α+η)

)α+η

and condition (D) can again be used to show that I3 = o(1). This concludes the proof.

To simplify our notation we shall assume, in the remaining part of this section, that all
random variables are nonnegative. Thus, in (B), p = 1.

Let Sn = ∑n
t=1 Xt and note that it may be written as

Sn =
−∞∑
k=0

( n∑
j=1

Cj,j−k

)
Zk +

n∑
k=1

( n∑
j=k

Cj,j−k

)
Zk.

By using the same argument as in Proposition 2.1, we obtain the following result.

Proposition 2.2. Assume that conditions (A)–(D) hold. Then

lim
x→∞

P(Sn > x)

P(Z > x)
=

∞∑
k=0

E

[( n∑
j=1

Cj,j+k

)α]
+

n∑
k=1

E

[( n∑
j=k

Cj,j−k

)α]
. (2.3)

Now we apply Propositions 2.1 and 2.2 to some special models.

Example 2.1. The result of Proposition 2.1 means that, in the case of heavy-tailed variables
Zt and appropriately chosen Ct,k , the tail asymptotics of X is the same as it would be if the
Ct,k were replaced with their α-norms, ck := ‖Ct,k‖α = E[|Ct,k|α]1/α . If this is the case then
condition (D) is equivalent to

∑∞
k=0 c

γ

k < ∞ for some γ , 0 < γ < α ∧ 1, and is standard in
the MA(∞) case. The tail of the linear process (1.1) can be found in [13, p. 227].

Moreover, by replacing the Ct,k in (2.3) with the corresponding E[Cα
k ]1/α , we obtain

lim
x→∞

P(Sn > x)

P(Z > x)
=

∞∑
k=0

( n∑
j=1

E[Cα
j,j+k]1/α

)α

+
n∑

k=1

( n∑
j=k

E[Cα
j,j−k]1/α

)α

, (2.4)

that is, the tail asymptotics for the MA(∞) model. Note that (2.4) does not coincide with (2.3)
unless α = 1. Hence, in general, the tail of the partial sum in the random coefficient model
is not the same as that in the MA(∞) process. Moreover, if α > 1 then, by Minkowski’s
inequality, E[(∑n

j=1 Cj )
α] ≤ (

∑n
j=1 E[Cα

j ]1/α)α , and the tail of Sn in the random coefficient
model is asymptotically dominated by the one in the MA(∞) model.
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Example 2.2. Consider the stochastic recurrence equation (1.3), where {(Yt , Zt ), t ∈ Z} is an
i.i.d. sequence. If −∞ ≤ E[log(Yt )] < 0 and E[log+ Zt ] < ∞, then the unique stationary
solution to (1.3), {Xt, t ∈ Z}, exists and is given by

Xt = Zt +
∞∑

k=1

Zt−k

k−1∏
i=0

Yt−i =
∞∑

k=0

Zt−k

k−1∏
i=0

Yt−i

(we use the convention that
∏−1

i=0 ≡ 1). Therefore, this is the special case of (1.4) with
Ct,k = ∏k−1

i=0 Yt−i .
Assume that (B) holds for Z and that E[Yα] < 1 and E[Yα+δ] < ∞ for some δ > 0. Then the

above series exists and is well defined; see, e.g. [1]. Moreover, there exists some η, 0 < η < δ,
such that E[Yα+η] < 1; hence, condition (D) is easily verified to hold. Condition (C) is also
fulfilled. Therefore, we obtain the following corollary.

Corollary 2.1. ([11].) Assume that (B) holds and that E[Yα+δ] < ∞ for some δ > 0. If
E[Yα] < 1 then

lim
x→∞

P(Xt > x)

P(Z > x)
= 1

1 − E[Yα] .

Moreover, since Cj = Yj−1Cj−1, the first term on the right-hand side of (2.3) is

∞∑
k=0

E

[( n∑
j=1

Cj+k

)α]
= E

[n−1∑
i=0

i∏
j=0

Yj

] ∞∑
k=0

E[Cα
t,k],

and the second term is
n∑

k=1

E

[(n−k∑
j=0

j−1∏
i=0

Yi

)α]
,

we obtain the result of Proposition 3.2 of [11].

Example 2.3. Assume {Zt , t ∈ Z} to be an i.i.d. sequence. The tail asymptotics of the bilinear
process may be obtained using our framework. Assuming that (B) holds, that Z2 is regularly
varying with index α/2, and that c is chosen in such a way that cα/2E[Zα/2] < 1, the unique
stationary solution is given by

Xt = Zt +
∞∑

k=1

ck

(k−1∏
i=1

Zt−i

)
Z2

t−k.

Hence, Ct,k = ck
∏k−1

i=1 Zt−i and Zt−k is replaced with Z2
t−k in (1.4). Clearly, condition (C) is

satisfied, and we hence obtain the following corollary.

Corollary 2.2. ([8].) Assume that (B) holds and that cα/2E[Zα/2] < 1. Then

lim
x→∞

P(Xt > x)

P(Z2 > x)
= cα/2

1 − cα/2E[Zα/2] .

Moreover, (2.3) is also valid.
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3. Point process limit

Let E be a locally compact Hausdorff topological space and let Mp(E) be a space of Radon
point measures on E. The space Mp(E) is equipped with vague metric d(·, ·). We say that a
sequence of measures, µn ∈ Mp(E), converges vaguely to µ ∈ Mp(E) if

∫
E

f dµn → ∫
E

f dµ

for all positive continuous functions on E with compact support. The space of all nonnegative
continuous functions on E with compact support will be denoted by C+

K(E).
Throughout this section we shall assume that, in addition to (A), (B), and (D), the following

conditions hold.

(C′) The array {Ct,k, t ∈ Z, k ≥ 0} is independent of {Zt , t ∈ Z}.
(E) For each fixed m, the sequence {(Ct,0, . . . , Ct,m), t ∈ Z} is strongly mixing.

Assume that the R
∞-valued random elements Ct = {Ct,k, k ≥ 0} form the stationary

sequence {Ct , t ≥ 1}. By (C′), the sequence {Xt, t ≥ 1} is stationary. Also, suppose that the
R

∞-valued random elements Vt = (Vt,0, Vt,1, . . .), t ∈ Z, are i.i.d. with the same distribution
as C0.

A Poisson process on E with mean measure ν will be denoted by PRM(ν). It is known that,
for the linear process (1.1),

Nn :=
∞∑
t=1

δ
a−1
n Xt

w−→
∞∑
t=1

∞∑
k=0

δckjt

in Mp(E), where ‘
w−→’ denotes weak convergence and

∑∞
t=1 δjt is a PRM(ν) with density

ν(dx) = αx−α−1 1(0,∞](x) + qp−1α(−x)−α−1 1[−∞,0)(x)

(see [13, Proposition 4.27]). In the general model (1.4) we have the following results.

Theorem 3.1. Suppose that the stationary sequence {Xt } is given by (1.4). Assume that (A),
(B), (C′), (D), and (E) hold. Then

n∑
t=1

δ
a−1
n Xt

w−→
∞∑
t=1

∞∑
k=0

δjtVt,k

in Mp([−∞, ∞] \ {0}).
Theorem 3.2. Under the assumptions of Theorem 3.1 we have

n∑
t=1

δ
a−1
n (Xt ,...,Xt−h)

w−→
∞∑
t=1

∞∑
k=0

δjt (Vt,k,...,Vt,k−h)

in Mp([−∞, ∞]h+1 \ {0}).
For k = 0, . . . , m, let ek be the kth standard unit vector in R

m+1, i.e. the vector whose kth
component is 1, the rest being 0.

Proposition 3.1. Let Vt = (V
(0)
t , . . . , V

(m)
t ), where V

(k)
t = Ct,kZt−k , k = 0, . . . , m. Under

the assumptions of Theorem 3.1 we have

n∑
t=1

δ
a−1
n Vt

w−→
∞∑
t=1

m∑
k=0

δjtVt,kek
.
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Proof. Let Em = [−∞, ∞]m \ {0}. We first show that

n∑
t=1

δ
(a−1

n (Zt ,...,Zt−m),Ct,0,...,Ct,m)

w−→
∞∑
t=1

m∑
k=0

δ(jt ek,Vt,0,...,Vt,m) (3.1)

in Mp(Em+1 × [−∞, ∞]m+1). Let

A
(m)
n,t = (a−1

n (Zt , . . . , Zt−m), Ct,0, . . . , Ct,m).

The random vectors A
(m)
n,t have the following properties.

• The sequence {A(k)
n,t , t ≥ 1} is stationary and strongly mixing, by (E).

• If Fm is a distribution of (Ct,0, . . . , Ct,m), then

nP(a−1
n (Zt , . . . , Zt−m) ∈ (dz0, . . . , dzm), (Ct,0, . . . , Ct,m) ∈ (dx0, . . . , dxm))

→
m∑

k=0

ν(dzk)
∏
j �=k

δ0(dzj )Fm(dx0, . . . , dxm),

by (B) and (C′).

• For all g ∈ C+
K(Em+1 × [−∞, ∞]m+1),

lim
m→∞ lim sup

n→∞
n

[n/m]∑
t=2

E[g(A
(k)
n,1)g(A

(k)
n,t )] = 0.

Indeed, let B be a compact subset of E1 and assume that g has support contained in
B1 = (B × [−∞, ∞])m+1. By (A), we have

lim sup
n→∞

n

[n/m]∑
t=2

E[g(A
(k)
n,1)g(A

(k)
n,t )] ≤ lim sup

n→∞
n

[n/m]∑
t=2

P(a−1
n Z1−k ∈ B, a−1

n Zt−k ∈ B)

= lim sup
n→∞

n2

m
P(a−1

n Z ∈ B)2,

which converges to 0 as m → ∞, by (B).

Hence, (3.1) follows by Theorem 2.1 of [7]. Now let

gi,m(x0, . . . , xm, u0, . . . , um) =
{

xiui if ui < ∞,

0 otherwise.

This induces a continuous mapping from Mp(Em+1×[−∞, ∞]m+1) into [−∞, ∞]. Therefore,
the result follows (see the proof of Proposition 3.2 of [8] for technical details).

Proof of Theorem 3.1. By Proposition 3.1 and an application of continuous mapping, we
have

n∑
t=1

δ
a−1
n

∑m
k=0 V

(k)
t

w−→
m∑

k=0

∞∑
t=1

δjtVt,k
.
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Note that Xt = ∑∞
k=0 V

(k)
t ; it thus suffices to show that

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣
n∑

t=1

f

(
a−1
n

m∑
k=0

V
(k)
t

)
−

n∑
t=1

f (a−1
n Xt )

∣∣∣∣ > ξ

)
= 0 (3.2)

for all ξ > 0 and f ∈ C+
K(E1); cf. [13, Proposition 4.27]. By Proposition 2.1, for each θ > 0

we have

lim
m→∞ lim sup

n→∞
nP

(∣∣∣∣
m∑

k=0

V
(k)
t − Xt

∣∣∣∣ > anθ

)
= lim

m→∞ lim sup
n→∞

nP

( ∞∑
k=m+1

Ct,kZt−k > anθ

)
= 0

and, hence, (3.2) follows.

Proof of Theorem 3.2. Assume that h = 1 and note that

(V
(1)
t , . . . , V

(m)
t , V

(0)
t−1, . . . , V

(m−1)
t−1 ) = (Zt−1(Ct,1, Ct−1,0), . . . , Zt−m(Ct,m, Ct−1,m−1)).

Thus, if

R
(m)
t = (Zt−1(1, 1), . . . , Zt−m(1, 1); Ct,1, Ct−1,0, . . . , Ct,m, Ct−1,m−1) =: (Z

(m)
t ; D

(m)
t ),

z = (z1, . . . , z2m), and x = (x1, . . . , x2m),

then

nP(a−1
n Z

(m)
t ∈ dz, D

(m)
t ∈ dx) →

m−1∑
k=0

ν(dz2k+1)δz2k+1(dz2k+2)
∏

j �=2k+1,2k+2

δ0(dzj )Gm(dx),

where Gm is a distribution of D
(m)
t . We may conclude our proof using the same method as in

the proof of Theorem 3.1, coupled with the proof of Theorem 3.4(ii) of [8].

Example 3.1. Consider the stochastic recurrence equation (1.3) and assume that {Yt , t ∈ Z}
is independent of {Zt , t ∈ Z}. Because Ct,k = ∏k−1

i=0 Yt−i , it is easy to show that the vectors
At = (Ct,0, . . . , Ct,m) form an m-dependent and, hence, strongly mixing sequence. Condition
(E) is fulfilled. The random variables Vt,k may be given in the form Vt,k = ∏k−1

i=0 Rt,i , where
Rt,i , t ≥ 1, i ≥ 1, are i.i.d. with the same distribution as Y , with Vt,0 ≡ 1. Note, however,
that in [11] the existence of a point process limit was established without the independence
assumption.

4. Applications

4.1. Partial sums

Using Theorems 3.1 and 3.2 we may establish many limit results. For instance, assume that
α ∈ (0, 1). Then Xt is regularly varying with index α ∈ (0, 1). Define Sn = ∑n

t=1 Xt . By
applying Theorem 3.1 of [4] to our Theorem 3.1, we have

a−1
n Sn

w−→
∞∑
t=1

	
−1/α
t At ,

where At = ∑∞
k=0 Vt,k and 	t , t ≥ 1, are points of a standard Poisson process. The limiting

random variable is stable.
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4.2. Self-normalized partial sums

To establish results for partial sums we use normalization constants an that depend on the
tail of Z and, thus, on α. In practice α is very often unknown. Therefore, we consider the
limit for self-normalized partial sums (cf. [3]). By considering two almost-surely continuous
mappings acting on the same point process we can treat them as one almost-surely continuous
mapping. Therefore, for α ∈ (0, 1),

(
max

i=1,...,n
a−1
n Xi, a

−1
n

n∑
t=1

Xt

)
w−→

(
max
t≥1

	
−1/α
t At ,

∞∑
t=1

	
−1/α
t At

)

and, hence,
n∑

t=1

Xt

max{X1, . . . , Xn}
w−→

∞∑
t=1

	
−1/α
t At

maxt≥1 	
−1/α
t At

.

We can observe another difference between moving average processes with random coefficients
and the MA(∞) model. Indeed, the limiting distribution in the random-coefficient model
depends on the behavior of the sequence {At }, which in turns depends on the distributions of
the Ct,k . In the latter case, bearing in mind that At = ∑∞

k=0 ck does not depend on t , we have

n∑
t=1

Xt

max{X1, . . . , Xn}
w−→

∞∑
t=1

(
	1

	t

)1/α

,

and the limit does not depend on the parameters ck .

4.3. Checking linearity

Since the limiting behaviors of moving average processes with random coefficients and stan-
dard MA(∞) processes are different, we need statistical tests to detect possible nonlinearities.
For infinite variance, this problem was studied in [15]. The approach taken there is based on
the behavior of sample autocorrelation functions.

We propose a simple rule to detect nonlinearities in the AR(1) model. Assume that, based
on observations {Xt, t = 1, . . . , n}, we want to check if these data come from the stochastic
recurrence model (1.3) or from the AR(1) model. To do this assume that a distribution, G, of
Y has support [a, b], a > 0, b ≤ ∞. On the one hand, by Theorem 3.2 we may conclude
(cf. [14]) that

n∑
t=2

δXt /Xt−1

w−→
∞∑

k=1

∞∑
t=1

δRt,k

and, hence,

ân :=
n∧

t=2

Xt

Xt−1

w−→ a, b̂n :=
n∨

t=2

Xt

Xt−1

w−→ b.

On the other hand, for the AR(1) model Xt = ρXt−1 + Zt , |ρ| < 1, we have

n∧
t=2

Xt

Xt−1
−

n∨
t=2

Xt

Xt−1

w−→ ρ − ρ = 0.

Thus, |ân − b̂n| being small indicates that the model is linear, and we may then proceed with a
test proposed in [15].
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It should be pointed out that this approach compares only the stochastic recurrence model
with the AR(1) model. Indeed, assume that the observations come from an AR(2) process. It
can be represented as the MA(∞) process (1.1), in which case

n∧
t=2

Xt

Xt−1
−

n∨
t=2

Xt

Xt−1

w−→
n∧

k=1

ck

ck−1
−

n∨
k=1

ck

ck−1
.

Thus, in general, the limit need not be 0.
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