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Abstract

Weak local linear approximations have played a prominent role in the construction
of effective inference methods and numerical integrators for stochastic differential
equations. In this note two weak local linear approximations for stochastic differential
equations with jumps are introduced as a generalization of previous ones. Their respective
order of convergence is obtained as well.
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1. Introduction

In a number of problems in mathematical physics, biology, economics, finance, and other
fields the estimation of functionals of jump diffusion processes plays a prominent role; see
[4], [5], [15], and [23]. In particular, the jump diffusion processes defined through stochastic
differential equations (SDEs) have become an important mathematical tool for describing the
dynamics of several phenomena, for example, the dynamic of assets prices in the market, the
firing of neurons, and so on. Since exact representation for functionals of these processes
is only possible in a few cases, approximate representations are required. Different types
of such weak approximations have already been proposed in [2], [6], [11], [12], [13], and
[19], which are essentially based on Itô–Taylor expansions of the jump diffusion process. The
weak convergence properties of the approximations based on these expansions as well as their
numerical instability for a number of nonlinear SDEs have also been studied; see [3] and [14].

The main aim of this paper is to investigate another kind of weak approximation for SDEs
with jumps: the weak local linear (WLL) approximation. In the framework of ordinary SDEs
(without jumps), the WLL approximations have recently been proposed as stable alternatives
to the abovementioned conventional approximations based on Itô–Taylor expansions (see [3],
[14], [16], and [21]), and they have been key in the derivation of effective inference methods
for SDEs (see [20], [21], and [22]) and for continuous–discrete space-state models (see [7], [8],
and [17]). Therefore, the present study is well motivated.

Specifically, in this note the WLL approximations for SDEs are extended to the more general
case of equations with jumps, and their rate of weak convergence is studied.
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2. WLL approximations

Let (�, F , P) be the underlying complete probability space, and let {Ft , t ≥ t0} be an
increasing right-continuous family of complete sub-σ -algebras of F . Consider a d-dimensional
jump diffusion process x defined by the following SDE:

dx(t) = f (t, x(t)) dt + G(t) dw(t) +
p∑

i=1

hi (t, x(t)) dqi (t), t ∈ [t0, T ], T < ∞,

x(t0) = x0.

(1)

Here, w is an m-dimensional Ft -adapted standard Wiener process and each qi , i = 1, . . . , p,
could be either an Ft -adapted Poisson counting process ni with intensity µi or an Ft -adapted
compensated Poisson processes {ni (t) − µit : t ≥ t0}. Also, f , hi : R × R

d → R
d and

G : R → R
d × R

m are functions satisfying linear growth restriction, and uniform Lipschitz
and smoothness conditions that ensure the existence and uniqueness of a solution to (1). It is
also assumed that w and qj are all independent with zero probability of simultaneous jumps.

Let (t)δ = {t0 ≤ t1 ≤ · · · ≤ tn < · · · < ∞} be a time partition defined as a sequence of
Ftn -measurable stopping times tn, n = 0, 1, . . . , that satisfy

sup
n

(δn) ≤ δ < 1 with probability 1,

where δn = tn+1 − tn, and define

nt := max{n = 0, 1, 2, . . . : tn ≤ t} < ∞.

2.1. WLL discretizations for SDEs

Let us consider the d-dimensional diffusion process z defined by the SDE

dz(t) = f (t, z(t)) dt + G(t) dw(t) for t ∈ [a, b],
z(a) = z0,

(2)

where f is a differentiable function, w and G are defined as in (1), and t0 ≤ a ≤ b ≤ T .

Definition 1. ([3].) For a given time discretization (t)δ , the order-(β = 1, 2) WLL discretiza-
tion of the diffusion process z is defined by the recurrent relation

ytn+1 = ytn + φβ(tn, ytn; tn+1 − tn) + η(tn, ytn; tn+1 − tn), (3)

where yt0 = z0,

φβ(t, y; δ) =
∫ δ

0
exp

(
∂f (t, y)

∂y
(δ − s)

)
(f (t, y) + bβ(t, y)s) ds, (4)

bβ(t, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂f (t, y)

∂t
, β = 1,

∂f (t, y)

∂t
+ 1

2

d∑
k,l=1

(G(t)G�(t))k,l ∂
2f (t, y)

∂yk∂yl
, β = 2,
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for all (t, y) ∈ R×R
d and δ > 0, and η(t, y; δ) is a zero-mean Gaussian process with variance

matrix

�(t, y; δ) =
∫ δ

0
exp

(
∂f (t, y)

∂y
(δ−s)

)
G(t+s)G�(t+s) exp

((
∂f (t, y)

∂y

)�
(δ−s)

)
ds. (5)

On the basis of this discretization, various weak numerical integrators and inference methods
for SDEs have been proposed (see [3] and [9] for an updated review), which differ in the way
that they compute the integrals in (4) and (5).

Definition 2. ([3].) For a given time discretization (t)δ , the stochastic process yδ
β = {yδ

β(t),

t ∈ [t0, T ]} is called the order-(β = 1, 2) WLL approximation of the diffusion process z if

yδ
β(t) = ytnt

+ φβ(tnt , ytnt
; t − tnt ) + η(tnt , ytnt

; t − tnt ), (6)

where {ytn}, n = 0, 1, . . . , is the WLL discretization (3).

Note that the WLL approximation (6) is a continuous-time stochastic process that coincides
with the WLL discretization (3) at each discretization time tn ∈ (t)δ .

It is also convenient to remark that the WLL approximation (6) coincides with the weak
solution to the piecewise SDE

dy(t) = pβ(t, y(t); tn, y(tn)) ds + G(t) dw(t), t ∈ [tn, tn+1], n = 0, 1, . . . , nT − 1,

y(tn) = ytn ,
(7)

where the function pβ is defined as

pβ(s, v; r, u) = f (r, u) + ∂f (r, u)

∂u
(v − u) + bβ(r, u)(s − r)

for all v, u ∈ R
d and s, r ∈ R, s > r , which, for β = 1 and β = 2, is just the first-order Taylor

and Itô–Taylor expansions of f , respectively; see [3].

2.2. WLL discretizations for SDEs with jumps

Consider the sequence of jump times {σ }µi = {σi,n : n = 0, 1, 2, . . .} associated to qi , which
is defined as an increasing sequence of random variables such that σi,n+1 −σi,n is exponentially
distributed with parameter µi for all n and i. Without loss of generality, we can assume that
{σ }µi ⊂ (t)δ ⊂ [t0, T ] for all i = 1, . . . , p. In addition, let us assume that only the first r

Poisson processes qi are compensated.
It is well known that (see [18]) the solution to (1) is given by

x(t) = x(t−) +
p∑

i=1

hi (t, x(t−))�ni
t ,

where �ni
t is the increment of the process ni at the time instant t and x(t−) denotes the solution

to the SDE (2) with

f (t, z(t)) = f (t, z(t)) −
r∑

i=1

hi (t, z(t))µ
i, (8)

and initial condition z(σi,n) = x(σi,n) for all t between two consecutive jump times σi,n and
σj,m.

The above leads to the following two definitions.
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Definition 3. For a given time discretization (t)δ , the order-(β = 1, 2) WLL discretization of
the jump diffusion process x is recursively defined by

ytn+1 = ytn+1− +
p∑

i=1

hi (tn+1, ytn+1−)�ni
tn+1

, (9)

where
ytn+1− = ytn + φβ(tn, ytn; tn+1 − tn) + η(tn, ytn; tn+1 − tn)

denotes the WLL discretization of (2) with f defined as in (8).

Definition 4. For a given time discretization (t)δ , the stochastic process yδ
β = {yδ

β(t), t ∈
[t0, T ]} is called the order-(β = 1, 2) WLL approximation of the jump diffusion process x if

yδ
β(t) = yδ

β(t−) +
p∑

i=1

hi (t, y
δ
β(t−))�ni

t , (10)

where
yδ

β(t−) = ytnt
+ φβ(tnt , ytnt

; t − tnt ) + η(tnt , ytnt
; t − tnt )

denotes the WLL approximation of (2) with f defined as in (8).

3. Convergence of WLL approximations

Let M be the set of multi-indices α = (j1, . . . , jl(α)), ji ∈ {0, 1, . . . , m}, and i =
1, . . . , l(α), where l(α) denotes the length of the multi-index α. Denote by −α and α−
the multi-indices in M that are obtained by deleting the first and the last component of α,
respectively. The multi-index of length 0 will be denoted by ν. Let 	β ⊂ M, β = 1, 2, be the
hierarchical set

	β = {α ∈ M : l(α) ≤ β},
and let B(	β) be the remainder set of 	β ,

B(	β) = {α ∈ M : l(α) = β + 1}.
Denote by Hν, H(0), and H(1) the sets of the adapted right-continuous process h = {h(t), t ≥
0} on (�, F , P) with left-hand limits that satisfy

|h(t)| < ∞,

∫ t

0
|h(s)| ds < ∞, and

∫ t

0
|h(s)|2 ds < ∞, with probability 1,

respectively. In addition, define H(j) = H(1) for j = 2, . . . , m and m ≥ 2. Then, for
α = (j1, . . . , jl(α)), l(α) ≥ 2, recursively define the set Hα as the totality of adapted right-
continuous processes h with left-hand limits such that {Iα−[h(·)]ρ,t , t ≥ 0} ∈ Hjl(α)

, where,
for h ∈ Hα , the multiple Itô integral Iα[h(·)]ρ,τ is recursively defined by

Iα[h(·)]ρ,τ :=

⎧⎪⎨⎪⎩
h(τ), l(α) = 0,∫ τ

ρ

Iα−[h(·)]ρ,s dw
jl(α)
s , l(α) ≥ 1.
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Let

L0 = ∂

∂t
+

d∑
k=1

f
k ∂

∂xk
+ 1

2

d∑
k,l=1

m∑
i=1

Gk,iGl,i ∂2

∂xk∂xl

be the diffusion operator of the SDE (2), and define

Lj =
d∑

k=1

Gk,j ∂

∂xk
, j = 1, . . . , m.

Then, for the hierarchical set 	β and any two stopping times ρ and τ satisfying 0 ≤ ρ ≤ τ ≤ T ,
the expression

x(τ ) = x(τ−) +
p∑

i=1

hi (τ, x(τ−))�ni
t ,

with

x(τ−) = x(ρ) +
∑

α∈	β\{ν}
Iα[λα(ρ, x(ρ))]ρ,τ +

∑
α∈B(	β)

Iα[λα(·, x(·))]ρ,τ ,

provides the weak Itô–Taylor expansion of the jump diffusion process solution x of the SDE
(1), where

λα =
{

Lj1 · · · Ljl(α)−1f , jl(α) = 0,

Lj1 · · · Ljl(α)−1Gjl(α) , jl(α) 	= 0,
(11)

denotes the Itô coefficient function for each α, and Gj is the j th column vector of G.
Furthermore, denote by Cl

P (Rd , R) the space of l time-continuously differentiable functions
g : R

d → R for which g and all its partial derivatives up to order l have polynomial growth.
For l = 1, 2, . . . , define Pl = {p ∈ {1, . . . , d}l} and, for each p = (p1, . . . , pl) ∈ Pl , define
the function Fp : R

d → R as

Fp(x) =
l∏

i=1

xpi .

The following lemma provides general conditions to assure that a discrete-time approxima-
tion uδ converges weakly to x.

Lemma 1. ([1, Theorem 10.7.1].) Let uδ be a discrete-time approximation of the process x

(the solution to (1)) corresponding to a time discretization (t)δ , and assume that

E(|x0|i ) < ∞ for i = 1, 2, . . . ,

|E(g(x0)) − E(g(uδ
0))| ≤ C0δ

β

for any g ∈ C
2(β+1)
P (Rd , R), where C0 is a positive constant. Suppose that

f k, Gk,j , hk
l ∈ C

2(β+1)
P ([t0, T ] × R

d , R) (12)

for all k = 1, . . . , d, j = 1, . . . , m, and l = 1, . . . , p, and suppose that the Itô coefficient
functions λα satisfy linear growth bounds for all α ∈ 	β . In addition, suppose that, for each
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q = 1, 2, . . . , there exist constants K < ∞ and r ∈ N
+, which do not depend on δ, such that

E
(

max
0≤n≤nT

|uδ
tn−|2q

∣∣∣ Ft0

)
≤ K(1 + |uδ

0|2r ), (13)

E(|uδ
tn+1− − uδ

tn
|2q | Ftn ) ≤ K

(
1 + max

0≤k≤n
|uδ

tk
|2r

)
(tn+1 − tn)

q, (14)

and ∣∣∣∣E(
Fp(uδ

tn+1− − uδ
tn
) − Fp

( ∑
α∈	β\{ν}

Iα[λα(tn, u
δ
tn
)]tn,tn+1

) ∣∣∣∣ Ftn

)∣∣∣∣
≤ K

(
1 + max

0≤k≤n
|uδ

tk
|2r

)
(tn+1 − tn)δ

β, (15)

for all n = 0, 1, . . . , nT − 1, l = 1, . . . , 2β + 1, p ∈ Pl , and tn, tn+1(t)δ . Then we obtain

|E(g(xT )) − E(g(uδ
T ))| ≤ Cgδ

β

for some positive constant Cg .

The main result of this section is stated in the next theorem. It establishes the weak
convergence of the WLL approximation (10) to the jump diffusion process x. Its proof will be
based on demonstrating that the WLL approximation yδ

β satisfies the conditions of Lemma 1.

Theorem 1. Suppose that

E(|x0|j ) < ∞ for j = 1, 2, . . . ,

|E(g(x0)) − E(g(yδ
β(t0)))| ≤ C0δ

β

for some C0 > 0 and all g ∈ C
2(β+1)
P (Rd , R). Also assume that condition (12) holds, and let

K̃ be a positive constant such that

|f (t, x)| + |G(t)| ≤ K̃(1 + |x|),∣∣∣∣∂f (t, x)

∂t

∣∣∣∣ +
∣∣∣∣∂f (t, x)

∂x

∣∣∣∣ +
∣∣∣∣∂2f (t, x)

∂x2

∣∣∣∣ ≤ K̃,

|hi (t, x)| ≤ K̃(1 + |x|), i = 1, . . . , p, (16)

for all t ∈ [t0, T ] and x ∈ R
d . Then there exists a positive constant Cg such that the WLL

approximation yδ
β satisfies

|E(g(x(T ))) − E(g(yδ
β(T )))| ≤ Cgδ

β.

In order to prove Theorem 1, the following two lemmas will be needed. Lemma 2, below,
presents known results on WLL approximations for ordinary SDEs, while Lemma 3, below,
extends these results to the WLL approximations for ordinary SDEs with jumps.

Lemma 2. ([3, Lemmas 6 and 7].) Let yδ
β be the WLL approximation (6) to the solution of the

ordinary SDE (2). Then, under the assumptions of Theorem 1, we have

E
(

sup
a≤t≤b

|yδ
β(t)|2q

∣∣∣ Fa

)
≤ K1(1 + |yδ

β(a)|2q),
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where K1 is a positive constant for each q = 1, 2, . . . . Moreover, if

zδ
β(t) = ytnt

+
∑

α∈	β\{ν}
Iα[�α(tnt , ytnt

; tnt , ytnt
)]tnt ,t

+
∑

α∈B(	β)

Iα[�α(·, y·; tnt , ytnt
)]tnt ,t

(17)

denotes the Itô–Taylor expansion of the solution to (7) with Itô coefficient function

�α(s, v; r, u) =
{

Lj1 · · · Ljl(α)−1pβ(s, v; r, u), jl(α) = 0,

Lj1 · · · Ljl(α)−1Gjl(α) , jl(α) 	= 0,

then

yδ
β ≡ zδ

β

and

Iα[�α(tnt , ytnt
; tnt , ytnt

)]tnt ,t
= Iα[λα(tnt , ytnt

)]tnt ,t
(18)

hold for all α ∈ 	β \ {ν} and t ∈ [a, b], where λα is the Itô coefficient function defined in (11).

Lemma 3. Let yδ
β be the WLL approximation (10) to the solution of the SDE with jumps (1),

and let zδ
β = {zδ

β(t), t ∈ [t0, T ]} be the stochastic process defined as

zδ
β(t) = zδ

β(t−) +
p∑

i=1

hi (t, z
δ
β(t−))�ni

t ,

where zδ
β(t−) denotes the Itô–Taylor expansion (17). Then, under the assumptions of

Theorem 1, we find that

E
(

sup
t0≤t≤T

|yδ
β(t)|2q

∣∣∣ Ft0

)
≤ K2(1 + |y0|2q) (19)

and

yδ
β ≡ zδ

β (20)

hold, where K2 is a positive constant.

Proof. Let NT = ∑p
i=1 ni (T ) denote the total number of jumps up to time T , and let

{t}NT
= {tj : j = 0, . . . , NT } denote a sequence of time instants such that {t}NT

⊂ (τ )δ ,
tj ∈ {τ0 ∪ {σ }µ1 ∪ · · · ∪ {σ }µp }, and tj < tj+1, for all j = 0, . . . , NT − 1. Furthermore, let
Zs = {ni (tj ) : tj ≤ s, tj ∈ {t}NT

, i = 1, . . . , p} for s ≥ t0. By defining

ej = E
(

sup
t0≤s≤tj

|yδ
β(s)|2q

∣∣∣ Ft0; Ztj

)
with tj ∈ {t}NT

, we find that

ej+1 ≤ ej + �ej+1,
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where �ej+1 = E(suptj <s≤tj+1
|yδ

β(s)|2q | Ft0; Ztj+1). From (10) and (16), we obtain

�ej+1 ≤ (p + 1)2q−1
(

E
(

sup
tj <s≤tj+1

|yδ
β(s−)|2q

∣∣∣∣ Ft0; Ztj+1

)
+

p∑
i=1

E
(

sup
tj <s≤tj+1

|hi (s, y
δ
β(s−))�ni

s |2q

∣∣∣∣ Ft0; Ztj+1

))
≤ (p + 1)2q−1

(
(1 + 22q−1pK̃2q) E

(
sup

tj ≤s≤tj+1

|yδ
β(s−)|2q

∣∣∣∣ Ft0; Ztj+1

)
+ 22q−1pK̃2q

)
.

By definition, for all s ∈ [tj , tj+1], yδ
β(s−) is the WLL approximation to the solution of an

ordinary SDE (without jumps). Therefore, by using Lemma 2 in that time interval, it follows
that

E
(

sup
tj ≤s≤tj+1

|yδ
β(s−)|2q

∣∣∣ Ft0; Ztj+1

)
= E

(
E
(

sup
tj ≤s≤tj+1

|yδ
β(s−)|2q

∣∣∣ Ftj

) ∣∣∣ Ft0; Ztj+1

)
≤ K1(1 + E(|yδ

β(tj )|2q | Ft0; Ztj+1))

≤ K1

(
1 + E

(
sup

t0≤s≤tj

|yδ
β(tj )|2q

∣∣∣ Ft0; Ztj

))
.

Thus,
�ej+1 ≤ C1ej + C2,

where C1 = (p + 1)2q−1(1 + 22q−1pK̃2q)K1 and C2 = C1 + 22q−1pK̃2q . In this way we
obtain

ej+1 ≤ (1 + C1)ej + C2,

which implies that

ej+1 ≤ (1 + C1)
j+1e0 + C2

C1
((1 + C1)

j − 1)

≤ (1 + C1)
j+1

(
e0 + C2

C1

)
≤ C2

C1
(1 + C1)

j+1(1 + e0).

By using the above inequality and taking j = NT , we have

E
(

sup
t0≤s≤T

|yδ
β(s)|2q

∣∣∣ Ft0; ZtNT

)
≤ C2

C1
(1 + C1)

1+NT (1 + |yδ
β(t0)|2q).

By taking into account the fact that

E(κNT ) = E(exp(NT ln(κ))) = exp

(
(κ − 1)(T − t0)

p∑
i=1

µi

)
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for any constant κ > 1, it follows that

E
(

sup
t0≤s≤T

|yδ
β(s)|2q

∣∣∣ Ft0

)
= E

(
E
(

sup
t0≤s≤T

|yδ
β(s)|2q

∣∣∣ Ft0; ZtNT

) ∣∣∣ Ft0

)
≤ C2

C1
(1 + C1) exp

(
C1(T − t0)

p∑
i=1

µi

)
(1 + |yδ

β(t0)|2q),

which completes the proof of (19). Finally, (20) can be straightforwardly obtained from the
definition of the process zδ

β and its corresponding identity in Lemma 2.

Proof of Theorem 1. Identity (19) directly implies that

E
(

max
0≤n≤nT

|ytn−|2q
∣∣∣ Ft0

)
≤ K2(1 + |y0|2r ),

which is just condition (13) of Lemma 1.
From (20), it is easy to check that the WLL approximation yδ

β(t−) is a solution to (7) for all
t ∈ [tn, tn+1]. Thus, a straighforward application of [10, Theorem 4.5.4] to (7) yields

E(|ytn+1− − ytn |2q | Ftn ) ≤ K1

(
1 + max

0≤k≤n
|ytk |2r

)
(tn+1 − tn)

q

with K1 > 0 for all tn, tn+1 ∈ (t)δ , i.e. the condition (14) in Lemma 1.
Conversely, since (20) holds, a direct application of [10, Lemma 5.11.7] to the Itô–Taylor

expansion (17) yields∣∣∣∣E(
Fp(ytn+1− − ytn ) − Fp

( ∑
α∈	β\{ν}

Iα[�α(tn, ytn; tn, ytn )]tn,tn+1

) ∣∣∣∣ Ftn

)∣∣∣∣
≤ K(1 + |ytn |2r )(tn+1 − tn)δ

β

for all tn, tn+1 ∈ (t)δ and p ∈ Pl , with K > 0 and r ∈ {1, 2, . . .}. Moreover, since (18) also
holds, we have∣∣∣∣E(

Fp(ytn+1− − ytn ) − Fp

( ∑
α∈	β\{ν}

Iα[λα(tn, ytn )]tn,tn+1

) ∣∣∣∣ Ftn

)∣∣∣∣
≤ K(1 + |ytn |2r )(tn+1 − tn)δ

β

≤ K
(

1 + max
0≤k≤n

|ytk |2r
)
(tn+1 − tn)δ

β,

which is just (15). Finally, the proof concludes by applying Lemma 1 to the WLL approximation
yδ

β .

Theorem 1 can also be used for obtaining the global order of weak convergence of numerical
schemes derived from the WLL discretization (9). That is, by providing suitable weak approx-
imations of desired order of convergence to the integrals (4) and (5). In this way, this result
is also valuable for studying the statistical properties of inference methods that could also be
derived from such WLL discretization.
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