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ABSTRACT. We revisit the results of the ISMIP-HEINO benchmark by first analyzing the differences in
various model outputs using a wavelet-based spectral technique. Second, the ISMIP-HEINO benchmark
experiments are recomputed with a novel numerical ice-sheet model based on the SIA-I algorithm
that enables both the shallow-ice and a higher-order approximation of the ice-flow equations to be
performed. To assess the significance of the higher-order approximation in the ISMIP-HEINO experiment,
a numerical sensitivity study for the shallow-ice approximation (SIA) simulations is also carried out. A
high sensitivity of the SIA model response to surface temperature perturbations is found. We conclude
that the variations in ISMIP-HEINO results are due to the differences in (1) simulated basal temperatures
and (2) numerical treatment of the basal sliding condition.

INTRODUCTION
The ISMIP-HEINO (Ice Sheet Model Intercomparison
Project–Heinrich Event INtercOmparison) benchmark,
which was proposed by R. Calov and R. Greve
(http://www.pik-potsdam.de/calov/heino project.html),
attempts to validate a mechanism for Heinrich events
(HE) (Heinrich, 1988; Bond and others, 1992; Broecker,
1994; Andrews, 1998; Clarke and others, 1999) by a
hypothesis of an intrinsic dynamic–thermodynamic ice-
sheet instability caused by successive thermal activations
and deactivations of an ice stream over a soft sedimentary
area. Such a mechanism was supported by previous findings
of MacAyeal (1993), Payne (1995), Greve and MacAyeal
(1996), Hindmarsh and Le Meur (2001) and Calov and
others (2002); however, several different mechanisms
were also proposed (e.g. Meier and Post, 1987; Hulbe
and others, 2004). To assess the robustness of the earlier
conclusions, the ISMIP-HEINO experiment was designed
to mimic the conditions in Hudson Bay and Hudson Strait,
Canada, in a simplified way by assuming they form a soft
sedimentary basin over which the basal sliding (if it occurs)
is considerably faster than in the surrounding ice-covered
basal areas overlying a coarser bedrock. The climatic forcing
(i.e. the surface temperatures and accumulation/ablation
rates) and the geothermal heat flux are specified for the
model simulations and constrain the ice-sheet evolution.
The ice-sheet model is thermomechanically coupled and
the sliding condition at the base allows for local switching
from ‘stick’ to ‘slip’ behavior, depending upon local basal
temperatures. The ‘Heinrich’ ice-sheet instability is then
associated with the activation of a fast-sliding ice stream over
the sedimentary basin once the basal melting conditions are
met. The induced massive discharge of ice mass results in
successive thinning of the ice cover over the sedimentary
basin and eventually allows for refreezing of the base. In
that case, the whole process is repeated (quasi-)periodically.
Our aim is to recompute the ISMIP-HEINO results

with a novel numerical ice-sheet model that enables the
implementation of the shallow-ice (SI) and higher-order (HO)

approximations of the ice-flow equations. We assess the
effect of the HO approximation compared to that of the SI
alone.
We briefly review the ISMIP-HEINO experiment set-up

and discuss the previous results. We then introduce our novel
thermomechanical numerical ice-sheet model and validate
its ability to successfully compute thermomechanically cou-
pled ice-sheet simulations in a series of European Ice-Sheet
Modelling Initiative (EISMINT) benchmark experiments. The
ISMIP-HEINO simulations are then carried out in the SI
mode. Of particular importance is ISMIP-HEINO experiment
T1, performed in the HO mode by employing the SIA-
I algorithm (Souček and Martinec, 2008), where the role
of the inclusion of longitudinal stresses in the momentum
equations, rheology and sliding law is quantified. We then
investigate the robustness of our ISMIP-HEINO results by
computing the sensitivity of the model output with respect to
small perturbations in surface temperatures. We use wavelet
analysis to quantify the differences in these results.

ISMIP-HEINO SET-UP
The set-up of the ISMIP-HEINO experiment is given
in http://www.pik-potsdam.de/calov/heino/he setup 2006
11 02.pdf. The model domain is depicted in Figure 1. The
region of ‘Hudson Bay’ and ‘Hudson Strait’ (ABCD ∪ EFGH)
represents the sedimentary basin, and the rest of the base
is assumed to be coarser bedrock. The accumulation rate,
b, prescribed as a linear function of the distance, d , from
the domain center, increases from a minimal value, bmin at
d = 0, to a maximal value, bmax at d = D :

b = bmin +
bmax − bmin

D
× d . (1)

Immediate calving is prescribed for distances d > D . The
surface temperature is defined as

Tsurf = Tmin + STd
3 , (2)

where ST is the surface temperature gradient, and a
homogeneous geothermal heat flux is prescribed at the
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Fig. 1. Model domain of the ISMIP-HEINO experiment. The ocean
is shaded in dark gray; the sedimentary basin is the light gray
square ABCD and rectangle EFGH, representing the ‘Hudson Bay’
and ‘Hudson Strait’, respectively. The remaining land (in white)
corresponds to coarser bedrock.

glacier base. The ice rheology is governed by Glen’s flow law
(Glen, 1955). The values of the physical parameters involved
are given in Table 1. The sliding law differs according to
the region. For the sedimentary basin (in Hudson Bay and
Hudson Strait) the basal sliding velocity, vb, obeys a linear
relation

vb = −CSρg τ b , if T ′
b = T0 , (3)

while for the coarser part the sliding is assumed to be
Weertman-type:

vb = −CRρg
|τ b|2
N2b

τ b , if T ′
b = T0 , (4)

where T ′
b is the absolute temperature at the glacier base

relative to the pressure melting,

T ′
b = Tb + βp , (5)

with β the Clausius–Clapeyron constant, p the pressure,
Nb = −tbzz the normal stress at the base, τ b = −(tbxz , tbyz , 0)
the tangential basal stress, tαβ the components of the Cauchy
stress tensor at the base, and CS, CR the sliding parameters. If
temperature is below the pressure-melting point, the frozen-
bed condition is applied:

vb = 0 if T ′
b < T0 . (6)

For all simulations, the horizontal resolution of the numerical
model is 50 km, which corresponds to 81 × 81 gridpoints
in the horizontal plane. The vertical resolution is specified
by 61 equally spaced gridpoints in the ‘stretched’ vertical
coordinates (when the glacier geometry is mapped to a layer
of uniform thickness). The time-step is 0.25 years. The ice
sheet is built up from initial ice-free conditions over a time
interval 0–200 ka. A total of eight model simulations are
examined: ST, T1, T2, S1, S2, S3, B1 and B2, which may
be divided into the following four groups, according to the
quantity varied in the experiment:

The reference simulation ST, for the set-up given in
Table 1.

Table 1. Values of the physical parameters for ISMIP-HEINO
reference simulation ST (from Calov and others, 2010)

Parameter Value

Density of ice, ρ 910 kgm−3
Gravity acceleration, g 9.81m s−2
Power-law exponent, n 3
Flow-enhancement factor, E 3
Rate factor, A(T ′) A0 exp(−Q/RT ′)
Pre-exp. factor, A0, T ′ ≤ 263.15K: 3.61× 10−13 s−1 Pa−3

T ′ > 263.15K: 1.73× 103 s−1 Pa−3
Activation energy, Q , T ′ ≤ 263.15K: 60 kJmol−1

T ′ > 263.15K: 139 kJmol−1
Sliding parameter for hard rock, CR 105 a−1
Sliding parameter for soft sediment, CS 500 a−1
Geothermal heat flux, qgeo 4.2× 10−2 Wm−2
Melting point at atmospheric pressure, T0 273.15K
Heat conductivity of ice, κ 2.1Wm−1 K−1
Specific heat capacity of ice, c 2009 J kg−1 K−1
Clausius–Clapeyron gradient, β 8.7× 10−4Km−1
Latent heat of ice, L 3.35× 105 Jmol−1 K−1
Universal gas constant, R 8.314 Jmol−1 K−1
Seconds per year 31 556 926 s a−1
Domain radius, D 2000 km
Minimum surface mass balance, bmin 0.15m ice eq. a−1
Maximum surface mass balance, bmax 0.3m ice eq. a−1
Minimum surface temperature, Tmin 233.15K
Surface temperature gradient, ST 2.5× 10−9 K km−3

Temperature variation experiments (T1, T2): Tmin varied
by ±10K: Tmin = 223.15K (T1) and Tmin = 243.15K
(T2).

Surface accumulation variation experiments (B1, B2):
bmin = 0.075ma−1, bmax = 0.15ma−1 (B1) and bmin =
0.3ma−1, bmax = 0.6ma−1 (B2).

Sediment sliding parameter variation experiments (S1,
S2, S3): CS = 100a−1 (S1), CS = 200 a−1 (S2), CS =
1000 a−1 (S3).

OVERVIEW OF ISMIP-HEINO RESULTS
The results of the ISMIP-HEINO experiment are outlined in
detail by Calov and others (2010). In total, nine models
participated in the benchmark, eight of which were based on
the shallow-ice approximation (SIA) (Hutter, 1983; Morland,
1984) while one represented a combination of the SIA
and shallow-shelf approximation (SSA) approach (Morland,
1987; MacAyeal, 1989). Each participating model exhibits
oscillations for at least one model set-up of the total number
of eight introduced simulations. These findings therefore
support the idea that the HEs are caused by a mechanism
involving an intrinsic thermomechanical instability. All
models display an enhanced tendency to oscillate when the
surface temperature and accumulation rate are decreased.
However, a more detailed inspection of the results reveals
significant differences in the behavior of the models. While
two models (‘b’ and ‘d’) oscillate for all eight simulations,
model ‘h’ does so for only one experiment; the response
of the other models lies between these two limits. The
HEINO experiments also display a satisfactory agreement
with respect to reproducing the HE-like oscillations at
periods from 5 to 15 ka, which is in relatively good agreement
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with the geological evidence (Heinrich, 1988). However,
the monitored output quantities, i.e. the melt fraction and
ice thickness averaged over the sedimentary basin, when
they are plotted as functions of time, differ significantly from
model to model in terms of their shape and the precise
timing of the oscillations (if they occur), and, in addition,
in the mean value. The Fourier amplitude spectra used to
characterize the frequency content of signals show a rather
poor agreement in shape, number and position of significant
frequency peaks. These differences are puzzling in view of
the overall similarity of the applied numerical approaches.
As the models (except for model ‘h’) are all of the SIA type,
much better consistency and agreement between the results
should be expected.
To better quantify the differences in the results, we first

introduce a novel spectral tool based on wavelet analysis.
The reason for wavelet analysis rather than Fourier analysis
is that for the ice-thickness time series, if they oscillate
(mainly in experiments ST, T1, B1, S3), the oscillations
are not precisely periodic since the lag between two
subsequent oscillations appears to be a random quantity.
For such a signal, the Fourier spectrum becomes distorted
even for a relatively elementary quasi-periodic signal, as
a consequence of the global support of the Fourier basis
functions (see Appendix). To obtain a better insight into
the principal periods present in a quasi-periodic signal,
time-localized basis functions are needed. We develop
a focused global wavelet spectrum (FGWS), which is
derived from the traditional continuous wavelet spectrum
(CWS) (see Appendix for details). The FGWS makes use
of the information redundancy of the CWS, allowing
its modification without affecting the reconstructed time-
domain signal. Our modification is designed to give a better
spectral resolution than the CWS for a certain class of quasi-
periodic signals, having the same basic characteristics as the
investigated ISMIP-HEINO ice-thickness output signal.
We choose a particular mother wavelet function (see

Appendix) such that there is a correspondence between the
scales of the wavelet spectra and the periods in the Fourier
amplitude spectrum. The FGWS can then be compared
with the Fourier amplitude spectrum. Figure 2 compares the
FGWS and the normalized Fourier amplitude spectrum, trun-
cated at the period T = 25ka, for the original ISMIP-HEINO
average ice-thickness time series over the sedimentary basin
for experiment ST. The time-series data have been kindly
provided by R. Calov and other ISMIP-HEINO participants
(http://www.pik-potsdam.de/calov/heino data.html).
We can see that the FGWS are more localized than the

Fourier amplitude spectra and provide a better insight into
the principal periods contained in the signals. The FGWS
also shows large differences between the models. Despite
distinct numbers of spectral peaks present in the FGWS,
the amplitudes of these peaks differ significantly, and their
positions vary between 5 and 20 ka.

DESCRIPTION AND VALIDATION OF THE NOVEL
3-D THERMOMECHANICAL ICE-SHEET MODEL
This study uses a novel numerical ice-sheet model, JOSH
(JOint Shallow-ice/Higher-order model), which combines the
traditional SIA with a higher-order approach based on the
SIA-I algorithm developed by Souček and Martinec (2008).
This algorithm computes the SIA in the first step and then
iteratively improves the solution. The iterations are based
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Fig. 2. The normalized amplitude Fourier spectrum (left) and the
FGWS (right), truncated at a period of 25 ka for the participating
models a–i in the ST ISMIP-HEINO experiment.

https://doi.org/10.3189/002214311798843278 Published online by Cambridge University Press

https://doi.org/10.3189/002214311798843278
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Table 2. EISMINT experiment A, B, C, D, G results. V : glaciated
volume; A: glaciated area; f : melt fraction at the glacier bed; h: ice-
divide thickness; T : basal temperature below the ice divide; ΔX−Y :
change of a quantity between experiments X and Y . Two sets of
results are displayed for the JOSHmodel: the SIA simulations and the
HO simulations by the SIA-I algorithm. The EISMINT averages and
ranges for the investigated quantities are reprinted for comparison
from Payne and others (2000)

Quantity JOSH EISMINT
SIA HO(SIA−I) mean range

V (106 km3) 2.072 2.063 2.128 0.145
A (106 km2) 1.031 1.031 1.034 0.086

A f 0.577 0.616 0.718 0.290
h (m) 3709.692 3671.180 3688.342 96.740
T (K) 254.534 256.640 255.605 2.929

ΔVB−A (%) −2.957 −2.813 −2.589 1.002
B ΔfB−A (%) 12.129 10.915 11.836 18.669

ΔhB−A (%) −5.460 −5.374 −4.927 1.316
ΔTB−A (K) 4.586 4.428 4.623 0.518

ΔVC−A (%) −27.892 −28.073 −28.505 1.204
ΔAC−A (%) −20.376 −20.376 −19.515 3.554

C ΔfC−A (%) −22.088 −23.837 −27.806 31.371
ΔhC−A (%) −12.683 −12.807 −12.928 1.501
ΔTC−A (K) 3.678 3.964 3.707 0.615

ΔVD−A (%) −11.942 −11.949 −12.085 1.236
ΔAD−A (%) −10.188 −10.188 −9.489 3.260

D ΔfD−A (%) −1.823 −2.734 −1.613 5.745
ΔhD−A (%) −2.049 −2.052 −2.181 0.532
ΔTD−A (K) −0.180 −0.222 −0.188 0.060

V (106 km3) 1.498 1.502 1.589 0.702
A (106 km2) 1.031 1.031 1.032 0.071

G f 0.303 0.272 0.352 0.530
h (m) 2209.206 2211.509 2365.206 1468.880
T (K) 248.177 248.926 249.134 7.681

on a procedure analogous to the SIA, but applied only to
deviations of the approximate solution from the exact full-
Stokes solution. Its ability to capture higher-order effects by
including the longitudinal stresses has been demonstrated
in the ISMIP-HOM experiment (Pattyn and others, 2008;
model oso1). We implemented the SIA-I algorithm into
an evolutionary three-dimensional (3-D) thermomechanical
ice-sheet model. A finite-difference technique is applied for
discretizing the governing equations, i.e. the SIA-I linear
momentum and rheology equations, the kinematic equation
for a free glacier surface and the heat-transport equation.
The SIA-I algorithm uses a simple Arakawa A grid (Arakawa,
1977) for discretization, i.e. each node contains all the
field variables. Details of the numerics are given by Souček
(2010).
To verify the capability of JOSH to perform thermomech-

anically coupled ice-sheet simulations, we benchmark it
following the EISMINT experiments (A, B, C, D, G) from the
exercise ‘Effect of thermomechanical coupling’ (Payne and
others, 2000). These experiments compare the steady-state
geometry and the thermodynamic state of an axisymmetric
ice sheet whose evolution is simulated from initially ice-
free conditions under a prescribed steady climatic forcing.
In addition, the effect of variations in climate forcing on
the resultant steady state is investigated. Table 2 shows our

results for both the SIA and the HO modes, together with
the published EISMINT results. For the HO simulations, we
used 20 SIA-I iterations with projection parameters Θ1 =
0.2 and Θ2 = 0.2 (Souček and Martinec, 2008). Table 2
shows that JOSH is capable of reproducing the EISMINT
results with sufficient accuracy. It also provides us with a
crude estimate of the effect of HO dynamics for such a
type of experiment. The differences between our SI and HO
simulations by JOSH confirm the findings of a different HO
model by Pattyn (2003). Employing the HO approximation
results in a slightly thinner ice sheet (∼40m difference at
the ice divide for experiment A) and a slightly warmer base
(∼ 2K at the base below the ice divide for experiment A).
Note that the differences between the HO and the SI results
are approximately of the same order as the range among the
published SIA-based EISMINT models.

ISMIP-HEINO RESULTS FOR THE JOSH MODEL
SI mode
We first recomputed the ISMIP-HEINO experiments in the
SI mode by performing only the first iteration of the SIA-
I algorithm. In Figure 3, the time series of averaged ice
thickness over the sedimentary basin for the three types of
experiments (T1, T2), (B1, B2), (S1, S2, S3) are shown and
compared with the reference simulation, ST. We plot the
results for the time interval 50–200 ka of simulation time,
during which the ice sheet is already fully developed. In
Figure 4, the Fourier amplitude spectra truncated at the
period of T = 25ka and normalized to unity over this interval
are shown, while in Figure 5 we present the corresponding
FGWS.
We observe that only few oscillations are generated

by JOSH for the reference ST simulation, but significant
oscillations occur in the T1 experiment (a colder surface),
the B1 experiment (a reduced accumulation rate) and the S3
experiment (fast sliding over the sedimentary basin). This is in
good qualitative agreement with results of the ISMIP-HEINO
experiment, as all three conditions favor repeated refreezing
of the glacier base after a period of rapid sliding. Note that the
dominant period in the FGWS for all significantly oscillating
signals is ∼10 ka.
HO mode (SIA-I)
The T1 experiment, which exhibits clear oscillations, is
taken as a reference simulation for investigating the effect
of the HO approximation in the ice-flow equations. The
HO approximation is implemented by the SIA-I algorithm
(Souček and Martinec, 2008) (using 20 SIA-I iterations and
projection parameters Θ1 = 0.2, Θ2 = 0.2). The SIA-I
algorithm converges to a solution adjusting the rheology
equations exactly and linear momentum equations with an
error of O(ε2) (ε being the height/length aspect ratio of the
ice sheet). The algorithm is presented in detail by Souček
and Martinec (2008), and its convergence and accuracy are
discussed by Souček (2010). The SIA-I algorithm solves only
the linear momentum and rheology equations. The heat-
transport equation is solved in the SI approximation (e.g.
Greve, 1997) with the HO advection velocities delivered by
the SIA-I. Two different HO simulations are performed. In
the first simulation, denoted ‘HO-1’, the sliding law is kept
in the SI form, i.e. τ b in Equations (3) and (4) is taken as

τ b = ρgH∇hH , (7)
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Fig. 3. The average ice thickness, H, over the sedimentary basin for experiments ST, T1, T2 (top panel), ST, B1, B2 (middle panel) and ST,
S1, S2, S3 (bottom panel), for the ISMIP-HEINO experiments with the JOSH model in SI mode.
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Fig. 4. The normalized Fourier amplitude spectra of the time series of Figure 3 truncated at 25 ka.
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Fig. 5. Same as Figure 4, but for the FGWS.
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Fig. 6. The average ice thickness, H, over the sedimentary area for the T1 experiment, performed in the SI mode (SIA), higher-order mode
with the SIA sliding law (HO-1) and fully HO mode (HO-2).

where ∇hH is the horizontal gradient of the ice thickness,
H. In the second simulation, denoted ‘HO-2’, a HO
approximation of the basal traction, τ b, obtained by the
SIA-I solution is employed in the sliding law, i.e. we take
τ b = −(tbxz , tbyz , 0), where tbxz and tbyz are the components of
the HO Cauchy stress tensor at the glacier base.
Both HO simulations are performed for the T1 experiment

set-up. The simulations are initiated from ice-free conditions
and run for 200ka with a time-step of 0.25 years. The
simulated time series of average ice thickness and the
reference T1 SIA solution above the sedimentary basin are
shown in Figure 6. In Figure 7 the Fourier amplitude spectra
and FGWS for the three simulations (SIA, HO-1, HO-2) are
shown. While already visible in the time series, the spectra
confirm that (1) the principal periods of HO-1, HO-2 and the
SIA oscillations coincide very well, with a tiny shift of the
HO-1 spectrum to larger periods compared with the HO-2
spectrum; and (2) the amplitude and number of oscillations
relative to the SIA run is slightly decreased in the HO-1
experiment and increased in the HO-2 experiment, resulting
in the observed differences in amplitudes of the FGWS.

ASSESSING THE ROBUSTNESS OF THE
ISMIP-HEINO RESULTS
Sensitivity study I: effect of surface temperature noise
To assess the robustness of the results from the previous
section, we perturb the surface temperature field, Tsurf , by
spatially non-correlated normal Gaussian noise with the
distribution N(0, 1) and amplitude ΔT = 0.01K. The T1
experiment is performed for a number of the realizations

of the noise, ΔT · N(0, 1), where again the time series
and corresponding Fourier amplitude spectra and FGWS for
the average ice thickness over the sedimentary basin are
monitored. The model response to relatively low levels of
noise in the surface temperature, shown in Figure 8 for
several time series, is surprisingly strong. We can see that
the curves become quickly out of phase after initialization,
typically within the characteristic period of the oscillations,
which is ∼10 ka for this experiment. Despite the similarity
in amplitude and shape of the oscillations, the time series
appears chaotic, due to a randomness in the time lag
between subsequent oscillations. As a result, the Fourier
amplitude spectra, shown in Figure 9, are distorted and
poorly resolved. The FGWS, in contrast, are better localized
with less distortion. Nevertheless, the dominant period of the
FGWS is resolved with an uncertainty of ±2 ka. Since it is
unlikely that the applied temperature perturbations should
have a considerable impact on the ice-sheet dynamics, the
resulting chaotic behavior is to be interpreted as a deficiency
in the numerical model, and the value of ±2 ka is to be
understood as the uncertainty of the FGWS for the ISMIP-
HEINO experiments.
In view of these results, the differences between the

HO and the SI approximations investigated in the previous
paragraph are within the uncertainty of the FGWS amplitude
and period, and therefore the effect of HO dynamics
on the HE oscillations is negligible. Also, the model
sensitivity to surface temperature variations suggests a
possible interpretation of the differences among the ISMIP-
HEINO results. We suggest that these differences are caused
by the differences in the modelled temperature fields. The
following experiment supports this hypothesis.
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Fig. 8. The average ice thickness, H, over the sedimentary basin for the surface temperature noise perturbations experiment.

Sensitivity study II: effect of uncertainty in the
modelled temperature field
In the previous subsection we studied the effect of
noise in the surface temperature; we now investigate the
JOSH model’s response to surface temperature variations
with amplitudes corresponding to the uncertainties in the
modelled basal temperature fields. This value is not known
precisely, but may be estimated from the results of the
EISMINT benchmark experiment, exercise ‘Effect of thermo-
mechanical coupling‘ (Payne and others, 2000). We inspect
EISMINT experiments G and H, which include the physical
phenomena influencing the ISMIP-HEINO experiments, i.e.
the dynamics of an ice sheet of continental dimension with a
temperature-dependent ice rheology and basal sliding either
decoupled (experiment G) or coupled (experiment H) with
the basal temperatures. The results (Payne and others, 2000,
tables 8 and 9) show (after rejecting an obvious outlier –
model ‘U’) that there is good agreement in the modelled
topography and ice thickness. However, the divide basal
temperatures and the basal melt fractions differ significantly.
For experiment G, the ice-divide basal temperature varies
between 247.700 and 249.482K and the melt fraction
between 0.250 and 0.391; for experiment H, the divide basal
temperature is between 253.737 and 256.714K and the melt
fraction between 0.351 and 0.622. Based on these EISMINT
discrepancies, we vary the surface temperature uniformly
from ΔT = −3 to +3K and investigate the influence in
the ISMIP-HEINO experiment ST in the SI mode. The time
series in Figure 10 reveal a considerable effect resulting
from the ±3K temperature variations. As expected, the
occurrence of HE-like oscillations is most frequent for the
coldest (ΔT = −3K) scenario. With increasing temperature
the shape of the ‘shark-tooth’ oscillations does not change,

but the time-averaged lag between neighboring oscillations
increases until a threshold value of ΔT = +1.2K, above
which oscillations do not occur.
In Figure 11 the Fourier amplitude spectra and the

FGWS are shown for a series of simulations with gradually
increasing ΔT . It is not possible to draw any conclusions
from the Fourier amplitude spectra, but the FGWS show
a tendency of gradually decreasing amplitudes and peak
values shifting to longer periods with increasing temperature.
This spectral behavior reflects the elongation of the gaps
between subsequent oscillations, as observed in the time
series in Figure 10. This simulation suggests that small
deviations in basal temperature modelling, as deduced from
the results of the EISMINT experiment, may significantly
affect the occurrence of Heinrich oscillations in the numer-
ical model.
In Figure 12, the FGWS for the published ISMIP-HEINO

results (models a–i) are shown. The figure confirms a large
variability in the results, both in the FGWS amplitudes and
the dominant periods, which typically range from 5 to 15 ka.
As shown in Figure 5, our numerical model has a dominant
period of ∼10 ka for all significantly oscillating experiments
(T1, B1, S3).
These results may partially explain the variance among

the ISMIP-HEINO dominant periods in the FGWS. If the
model temperature rises, the average length of gaps between
subsequent oscillations increases, and the FGWS peak
is shifted to larger periods. However, by this argument,
we cannot explain the converse process: a shift of the
dominant peak towards shorter periods, such as 5 ka, clearly
visible in Figure 12 for several ISMIP-HEINO models. In
addition, by inspecting the time series (http://www.pik-
potsdam.de/calov/heino.html), we find that some models
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Fig. 10. Time series of the average ice thickness over the sedimentary
area. ISMIP-HEINO ST set-up is modified by uniform surface
temperature variations ranging from −3 K (top) to +3 K (bottom).

exhibit ‘shark-tooth’-like oscillations, while others have a
more symmetric and rounded shape. We observe, however,
that for different temperatures the shape of the oscillations
does not change significantly, only the gaps between them.
A possible explanation of both these issues is given by the
next experiment.

Sensitivity study III: effect of numerical
implementation of the basal sliding condition
The previous two experiments indicate the large sensitivity of
the appearance of the HE oscillations to surface temperature
variations. This may be caused by a combination of two
effects: (1) the local nature of the sliding condition and
(2) a positive feedback of the frictional heat production
on basal temperatures once sliding starts. As expected,
such a localized coupled mechanism is extremely sensitive
to its numerical implementation. In table 3 of Calov and
others (2010) a variety of numerical schemes adopted for
discretizing the heat-transport equation (Arakawa A, C,
ACH, ABH grids) are presented. Since temperatures are
computed at different nodes to the velocities (except for
the A-grid scheme), an interpolation of temperatures at
the velocity nodes must be performed when evaluating the
stick–slip temperature condition, T = TM, where TM is the
melting temperature. We compare the performance of two
interpolation schemes.
As mentioned above, the SIA-I algorithm that the JOSH

numerical model employs is the Arakawa A grid in the
momentum and rheology equations (velocity and stress
tensor are computed and stored at the same nodes). The
present version of JOSH uses the same grid for discretizing
the heat-transport equation. In all the previous experiments,
when the basal sliding condition is evaluated, for the
sake of better stability, the basal temperature at the node
is computed as a weighted average of temperatures of
surrounding nodes

T i,j =
Ti,j
2
+
Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1

8
. (8)

The sliding is thus activated when

T i,j ≥ TMi,j . (9)

We denote this as scheme A. Scheme B does not use any
temperature averaging, i.e. sliding is activated when

Ti,j ≥ TMi,j . (10)
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Figures 13 and 14 show the time series and corresponding
FGWS for the averaged ice thickness over the sedimentary
basin for schemes A and B, respectively.
The oscillations for scheme A, when they occur, are ‘shark-

tooth’-like, while those for scheme B are more symmetric
and rounded and of smaller amplitudes (with the exception
of experiment B2). The average ice thickness for scheme
B over the sedimentary basin is significantly larger than
for scheme A. By inspecting the FGWS, we observe that
the spectral peaks for scheme B are systematically shifted
towards shorter periods compared with scheme A. Dominant
oscillations occur at 5 ka for scheme B, while they are∼10 ka
for scheme A.

DISCUSSION AND CONCLUSIONS
We have performed all the ISMIP-HEINO simulations with
a novel 3-D thermomechanically coupled numerical ice-
sheet model based on the SIA-I algorithm, which allows
us to incorporate a HO approximation of the rheology and
linear momentum equations. To assess the effects of the
HO dynamics, we first carried out a series of simulations
for the ISMIP-HEINO T1 experimental set-up, where the
surface temperature is varied by a Gaussian spatially non-
correlated noise with a small amplitude (∼0.01K). The ice-
sheet model responds to this minor temperature perturbation
such that the onset of the HEs is random, while their shape
and amplitude remains unchanged. We conclude that this
is caused by the local character of the sliding condition,
i.e. the temperature condition at a particular basal gridpoint
defines whether the ice-sheet bed is frozen or sliding at
this point. This locality and the positive feedback in the
sliding activation by frictional heat produced by sliding leads
to the extreme sensitivity of the basal sliding activation
to temperature variations. This causes random behavior
of the results with respect to temperature variations. This
explanation is supported by an observed break-up of spatial
symmetry (Calov and others, 2010), where the model outputs
exhibit a spatial non-symmetry with respect to the symmetry
axis of the model set-up. For a chaotic dynamical system,
rounding errors of the order of machine precision, which do
not follow any symmetry, will suffice to cause a symmetry
break-up of the long-term model behavior.
We have shown that the Fourier amplitude spectrum is

strongly affected by the random character of the lags between
subsequent HE oscillations. We therefore developed a
FGWS, which is more robust to random behavior within a
signal than Fourier amplitude spectra.
We have recomputed ISMIP-HEINO experiment T1 with

SI and HO approximations of the linear momentum and
rheology equations. For the HO simulation, the sliding law
was either approximated by the SI approximation, or used in
the HO form. By comparing the FGWS for the SI and the two
HO simulations, we conclude that the differences between
all approaches are within an uncertainty limit due to the
chaotic character of the oscillations. Therefore, employing
the HO ice dynamics does not affect the occurrence or
the character of the ‘Heinrich event’ instabilities. All the SI
simulations produce significant oscillations in experiments
T1, B1 and S3, which are manifested in the FGWS by well-
localized peaks at a period approximately corresponding
to 10ka.
We have computed the FGWS for the published ISMIP-

HEINO results and suggest an explanation for the differences
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Fig. 12. The FGWS for all ISMIP-HEINO experiments for models a–i.
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Souček and Martinec: ISMIP-HEINO revisited 1167

Fig. 13. Time series of the average ice thickness over the sedimentary
basin for two different implementations of the sliding condition.
The solid line corresponds to a weighted average of neighboring
temperatures (scheme A), and the dashed line corresponds to the
case where only a local temperature is compared with the local
pressure-melting point (scheme B).

in the model responses. These are caused by (1) differences
in the simulated temperature fields and (2) the numerical
implementation of the basal sliding condition. To estimate
the role of the first effect, we performed a temperature sen-
sitivity study with the temperature-field variations estimated
from the EISMINT experiment uncertainties. By changing the
surface temperatures in the ISMIP-HEINO ST experiment, we
observed an increase in the lags between subsequent HE
oscillations with increasing temperature. For ΔT ≥ 1.2K
the oscillations vanished completely. The amplitude and
the shape of the oscillations are, however, unaffected by
the temperature changes. The FGWS shows a shift of the
dominant spectral peak to larger periods with gradually
decreasing amplitude. This is caused by the enlargement of
the gaps between produced HEs.
Temperature variations solely, however, cannot explain

the differences in the shape of the oscillations in the time
series of average ice thickness. Neither can they explain why
some models exhibit frequency peaks at significantly shorter
periods (∼5 ka) in the FGWS, as found by processing the
ISMIP-HEINO results.
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Fig. 14. FGWS of the time series shown in Figure 13 scheme A (left)
and scheme B (right).
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In the next stage, we therefore focused on the role
of numerical implementation of the sliding condition at
the glacier base. We implemented two schemes. First, the
basal temperature when evaluating the sliding condition
is computed as a weighted average of the temperatures
at neighboring nodes in order to mimic the staggered-grid
approach and to stabilize numerical computations. Second,
the basal temperature when evaluating the sliding condition
is taken as the local temperature at a given basal node.
The two schemes result in significantly different model
outputs: (1) the mean ice thickness over the sedimentary
basin is larger for the latter scheme and (2) the shape and
the dominant FGWS periods of oscillations are changed.
Significant oscillations generated by experiments T1, T2, B1
and S3 are characterized by frequency peak in the FGWS
at a period of 5 ka for the latter scheme, which is about
half the period resulting from implementing the first basal
sliding scheme.
In conclusion, all the performed numerical experiments

imply that the traditional sliding condition needs to be
revised, especially its numerical implementation into SI
models. In its local form, based on evaluating pointwise the
temperature sliding criterion, T ≥ TM, the local character of
the SI approximation of the linear momentum, rheology and
temperature equations, leads inevitably to the occurrence
of numerical instabilities and to an extreme sensitivity to
the numerical implementation. In view of the discrepancy
in simulated basal-temperature and melt-fraction fields, as
documented in the EISMINT experiments (Payne and others,
2000), the implementation of surge-type physics in large-
scale ice-sheet models is rather problematic since the
information about the physical instability may be lost in the
numerics. It is beyond the scope of this paper to suggest
any improvements to the sliding criterion, but we believe
that (1) the onset of sliding should be smooth when the
temperature approaches the basal melting temperature (a
possible regularization by sub-melt sliding has been studied
by Greve and others 2006; see also the ‘Discussion and
conclusion’ section of Calov and others, 2010); and (2) the
sliding criterion should be spatially delocalized in the sense
that it would suppress onset of rapid sliding of a single
basal gridpoint (surrounded by ‘frozen-bed’ gridpoints). Such
behavior is both unrealistic and favors numerical instabilities
in the model.
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APPENDIX
Focused global wavelet spectrum (FGWS)
Sensitivity experiment I shows that if the surface temperature
is perturbed by a Gaussian noise of a small amplitude,
the model response changes dramatically. While the overall
character and amplitudes of the oscillations remain similar,
the phases of the oscillations appear to vary randomly. As
a result, the simulated time series for average ice thickness
quickly become uncorrelated. To analyze such time series by
the traditional Fourier spectrum method is useless, due to the
global support of the Fourier function basis. Here we develop
a spectral tool that is better localized in time and reduces the
distortion of the spectrum due to the randomness in the lags
between the oscillations.
We employ the continuous wavelet transform (CWT),

which satisfies the desired assumption of localization. Mak-
ing use of the information redundancy of CWT (Daubechies,
1992), we construct the FGWS by the following approach.
The CWT of a function, f (t ), is defined (Daubechies, 1992)

as an integral transform

W [f ](a, b) =
∫ ∞

−∞
f (t )ψa,b (t ) dt , (A1)

where

ψa,b (t ) =
1√
a
ψ

(
t − b
a

)
, (A2)

thus

W [f ](a, b) =
∫ ∞

−∞

f (t )√
a
ψ

(
t − b
a

)
dt . (A3)

The function ψ(t ) = ψ1,0(t ) is called the mother wavelet. It
has to satisfy the admissibility condition

Cψ = 2π
∫ ∞

−∞

|ψ(t )|2
|t | dt <∞ . (A4)

The inverse CWT then reads

f (t ) =
1
Cψ

∫ ∞

−∞

∫ ∞

∞

W [f ](a, b)ψa,b (t )
a2

da db , (A5)

where the equality holds in the L2(R) sense. Some typical
examples of wavelets are (e.g. Torrence and Compo, 1998):

ψ(t ) =
1

π
1
4

exp (iω0t ) exp
(
− t

2

2

)
‘Morlet’, (A6)

ψ(t ) =
(−1)m+1√
Γ
(
m + 1

2

) dmdtm
[
exp

(
− t

2

2

)]
‘DOGm ‘. (A7)

We employ only the discretized form of the CWT (not
to be confused with the discrete wavelet transform, DWT),
according to Torrence and Compo (1998). Given a discrete
signal, fn = f (nΔt ), n = 0, . . . ,N−1, and extended by zeros

elsewhere, the discretized continuous wavelet spectrum
(CWS) is defined by

Wn[f ](a) =
(
Δt
a

) 1
2 N−1∑
j=0

f (jΔt )ψ
[
(j − n)Δt

a

]
. (A8)

The scales are taken in the form aj = a02
j δj , j = 0, 1, . . . , J.

The inverse transform then reads

fn =
δj
√
Δt

Cδψ(0)

J∑
j=0

�{Wn[f ](aj )}√aj , (A9)

where � denotes the real part and Cδ is the reconstruction
factor (Torrence and Compo, 1998, table 2). Due to the
time independence of the climatic forcing in the ISMIP-
HEINO experiments, after an initial transient period during
which the glacier grows, the ice sheet becomes stabilized
and switches semi-periodically between two threshold states:
(1) an ice sheet of maximal volume with a frozen bed at the
moment before the onset of sliding and (2) an ice sheet of
minimal volume with the glacier base at the moment before
refreezing. We employ scaled global (amplitude) wavelet
spectrum (GWS), defined for the discretized CWS as

W
2
[f ](a) =

δjΔt
Cδ

1
N

N−1∑
n=0

|Wn[f ](a)|2 , (A10)

to give a stationary characteristic of the average ice-thickness
time series (after the initial transient period).
For the numerical implementation, we use the Fortran

code developed by Torrence and Compo (1998) (http://atoc.
colorado.edu/research/wavelets/), which we slightly modify
as follows. Given the signal

f 0n = fn n = 0, . . . ,N − 1 , (A11)

we initialize the FGWS estimate,

F0n [f ] = 0 , (A12)

and construct a series of signals and their wavelet-spectra
counterparts. Considering given f k = {f kn }N−1

n=0 , for some k ,
we compute its discretized CWS, Wn[f k ](aj ), and evaluate
the period akjmax for which the GWS in Equation (A10) is
maximal. A FGWS estimate at the k th iteration is given as

Fkn [f ](a
k
jmax ) = F

k−1
n [f ](akjmax ) +W

k
n [f

k ](akjmax ) ,

Fkn [f ](aj 	= akjmax ) = Fk−1n [f ](aj ) .
(A13)

The signal reconstruction at the k th iteration is given by the
inverse from the FGWS estimate according to Equation (A9):

r kn =
δj
√
δt

Cδψ(0)

J∑
j=0

�{Fkn [f ](aj )}√aj . (A14)

A new signal, f k+1, is defined as the residuum

f k+1n = f 0n − r kn n = 0, . . . ,N − 1 . (A15)

We employ the statistical significance testing routines of
Torrence and Compo (1998) and compare the wavelet power
spectrum of the signal f k with the wavelet power spectrum of
red noise with the same variance. The red noise is modelled
by a lag-1 autoregressive process, xn+1 = αxn + zn , where
zn is white noise and α is the autocorrelation, chosen as α =
0.99. The iterations stop when, with a statistical significance
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Fig. 15. Four realizations of the time series, f (t ), constructed from
the shape functions, S(t ), separated by gaps of random (Gaussian)
length.

>95%, the residual signal is just red noise. We call the
resultant wavelet spectrum, Fkmax [f ], the focused global
wavelet spectrum (FGWS), because its spectral resolution,
for the type of signal we are dealing with, is better spectrally
localized than the CWS and focused around the maxima of
CWS.
To demonstrate the procedure, we construct an auxiliary

simple signal that bears the basic characteristics of the ISMIP-
HEINO average ice-thickness time series, and compare both
the Fourier amplitude spectrum and the FGWS. Consider a
shape function

S(t ) =

{
t−1

3T/4−1 if 0 ≤ t ≤ 3T
4

1− t−3T/4
T/4 if 3T4 ≤ t ≤ T

, (A16)

for a given period T . Let the signal f (t ) be composed of the
shape functions S separated by gaps with a normal Gaussian
distribution. In Figure 15 we show four different realizations
of such a signal, and in Figure 16 a comparison of the Fourier
amplitude spectrum (left) with the FGWS (right) is shown,
demonstrating the focusing of the FGWS and distortion of
the Fourier spectrum.
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Fig. 16. The Fourier amplitude spectrum (top) and FGWS (bottom)
for the time series in Figure 15.
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