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Abstract

In this paper we introduce the transformed two-parameter Poisson–Dirichlet distribution
�σθ,α on the ordered infinite simplex. Furthermore, we prove the central limit theorem
related to this distribution when both the mutation rate θ and the selection rate σ
become large in a specified manner. As a consequence, we find that the properly scaled
homozygosities have asymptotical normal behavior. In particular, there is a certain phase
transition with the limit depending on the relative strength of σ and θ .
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1. Introduction

In 1975 Kingman et al. [9] introduced the Poisson–Dirichlet distribution denoted by �θ
to describe allele frequencies in descending order with parameter θ > 0. It is a probability
measure on the ordered infinite simplex

∇∞ =
{
(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∑
xi = 1

}
.

It plays an important role as the stationary distribution of the neutral infinite-alleles model.
We refer the reader to [8] for more literature on this distribution. In population genetics, the
parameter θ > 0 reflects the mutation rate and θ = 4Neu, where u is the individual mutation
rate and Ne is the effective population size. For convenience, throughout the paper, we call θ
the mutation rate.

Applying a size-biased sampling procedure to the random frequencies X = (X1, X2, . . .)

with the Poisson–Dirichlet distribution, we can obtain the GEM representation (X̃1, X̃2, . . .)

of the Poisson–Dirichlet distribution. The GEM distribution is defined as follows. Let Vi, i =
1, 2, . . . , be a sequence of independent, identically distributed (i.i.d.) random variables with
Beta(1,θ ) density f (v) = θ(1−v)θ−11(0,1)(v). A size-biased permutation of (Xi)∞1 is given by
X̃1 = V1, X̃k = (1 − V1) · · · (1 − Vk−1)Vk, k ≥ 2, which is called the GEM representation.
By ordering (X̃i)∞1 in descending order we can retrieve the (Xi)∞1 . In 1997 Pitman andYor [12]
generalized the GEM distribution to the two-parameter case in which the distribution of Vi is
Beta(1 − α, θ + iα). Ranking the two-parameter GEM in descending order gives the two-
parameter Poisson–Dirichlet distribution denoted by �θ,α for 0 < α < 1 and θ > −α.
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The transformed two-parameter Poisson–Dirichlet distribution 393

Besides mutation, selection is another important factor in the population evolution. In the
infinite-alleles model with overdominant selection intensity σ > 0, the stationary distribution
denoted by �σθ has been shown to be absolutely continuous with the Poisson–Dirichlet distri-
bution �θ . The corresponding Radon–Nikodym derivative is given explicitly as a special case
in [2]:

d�σθ
d�θ

(x) = exp{−σH2(x)}
C(σ, θ)

,

where the population homozygosity

H2(x) = H(x1, x2, . . .) =
∞∑
i=1

x2
i , x = (x1, x2, . . .) ∈ ∇,

andC(σ, θ) = ∫
∇ exp{−σH2(x)}�θ(dx) is a normalizing constant. In this paper we generalize

the selection density to the two-parameter case. For convenience, we name it the two-parameter
Poisson–Dirichlet distribution with selection though the two-parameter Poisson–Dirichlet dis-
tribution has no direct application in population genetics. Define the two-parameter Poisson–
Dirichlet distribution with selection, denoted by �σθ,α , as

d�σθ,α
d�θ,α

(x) = exp{−σHm(x)}
C(σ, θ, α)

,

where Hm(x) = ∑∞
i=1 x

m
i , x = (x1, x2, . . .) ∈ ∇, m = 2, 3, . . ., denotes the mth-order

homozygosity, and C(σ, θ, α) = ∫
∇ exp{−σHm(x)}�θ,α(dx).

Population genetics applications have motivated much study of the limiting behavior of the
one-parameter model when the mutation rate θ goes to ∞. In this setting, θ is the scaled
population mutation rate and large θ corresponds to a large population size. Relevant results
include the limit theorem of Griffiths [4], the associated large deviation estimates of Dawson
and Feng [1], and the central limit theorem obtained by Joyce et al. [5].

The Poisson–Dirichlet distribution and its two-parameter counterpart share much structural
similarities, including the GEM representation and the sampling formula (see [11]). It is natural
to ask if we can establish similar limiting theorems for the two-parameter model. These results
include the large deviation principle in [3] and a comprehensive study of the two-parameter
Poisson–Dirichlet distribution in [7].

This paper is inspired by the central limit theorem obtained for the one-parameter model
in [6]. There the authors showed that the limiting behavior of the infinite-alleles model with
overdominant selection is similar to the neutral infinite-alleles model when both the mutation
rate and the selection rate become large. The goal of this paper is to find the limiting distribution
of the properly scaledpth population homozygosity under the two-parameter Poisson–Dirichlet
distribution with selection density as θ approaches ∞. In particular, letting the selection
intensity σ be some power of the mutation rate leads to similar results, which indicates that
both the large selection intensity and the large mutation behave like the large mutation alone.
Also, there exists a certain phase transition which depends on the relative strength of the
mutation rate and the selection intensity. We use the approach of proving the convergence of
the characteristic function. The main difficulty is obtaining the uniform integrability of certain
exponential functions of homozygosity. This property comes intuitively from the corresponding
result in the one-parameter case. But the two-parameter GEM loses the identical property. We
solve this problem via decomposing the two-parameter Poisson–Dirichlet distribution �θ,α
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394 F. XU

into a random variable with Poisson–Dirichlet distribution�θ and an i.i.d. sequence of random
variables with distribution �0,α .

We can identify from the results obtained that the Poisson–Dirichlet distribution with
selection and its two-parameter counterpart have similar asymptotic properties for large θ
when α is fixed. It also indicates similar mathematical structure between the Poisson–Dirichlet
distribution and its two-parameter counterpart.

To state the main result, we need to introduce some notation and related results.
For p = 2, 3, . . . and X = (X1, X2, . . .) ∼ �θ,α , define

Zp,θ = √
θ

(
�(1 − α)

�(p − α)
θp−1Hp(X)− 1

)
, (1.1)

where Hp(X) denotes the pth homozygosity of X. Similarly, for Y = (Y1, Y2, . . .) ∼ �σθ,α ,
where σ = cθm−1/2−β, m = 2, 3, . . . , β ≥ 0, and c is a constant, set

Z
β
p,θ = √

θ

(
�(1 − α)

�(p − α)
θp−1Hp(Y )− 1

)
. (1.2)

The main ingredient used in the proof of our theorem is the following central limit theorem
for (Zp,θ )∞p=2 obtained in [7]. We remark that this result can be proved by an argument similar
to that given in [5].

Lemma 1.1. Let (Z2,α, Z3,α, . . .) be multivariate normal with mean 0, and let the covariance
of Zi,α and Zj,α be given by

�(1 − α)�(i + j − α)

�(i − α)�(j − α)
+ α − ij . (1.3)

Then, as θ → ∞, we have

(Z2,θ , Z3,θ , . . .)
d−→ (Z2,α, Z3,α, . . .).

Here and in what follows, ‘
d−→’ denotes convergence in distribution. The next theorem is the

main result of this paper.

Theorem 1.1. Suppose that Y = (Y1, Y2, . . .) ∼ �σθ,α and σ = cθm−1/2−β , where β ≥ 0,
c > 0 is a constant, and m = 2, 3, . . .. Let (Zβ2,θ , Z

β
3,θ , . . .) be defined as in (1.2), and let

(Z2,α, Z3,α, . . .) be given as in Lemma 1.1. As θ → ∞,

(Z
β
2,θ , Z

β
3,θ , . . .)

d−→
{
(Z∗

2,α, Z
∗
3,α, . . .) if β = 0,

(Z2,α, Z3,α, . . .) if β > 0,

where
Z∗
p,α = Zp,α − cbp, bp = (1 − α)(p−1) cov(Zp,α, Zm,α),

and (1 − α)(p−1) = �(p − α)

�(1 − α)
= (1 − α) · · · (p − 1 − α) for p = 2, 3, . . . .

Theorem 1.1 is proved in Section 3. In Section 2 we present a uniform integrability argument
for exp{−tZp,θ }. We also use several results obtained in [6].
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2. Uniform integrability

To obtain the uniform integrability of exp{−tZp,θ }, it suffices to show the following lemma.

Lemma 2.1. Suppose that, for any fixed t > 0 and p ≥ 2, Zp,θ is defined as in (1.1). Then
there exists θ0 = θ0(t) < ∞ such that

sup
θ>θ0

E(exp{−tZp,θ }) < ∞.

We first need to introduce an important result of [10] in the following lemma.

Lemma 2.2. ([10].) Suppose that (X′
n) is given by the Poisson–Dirichlet distribution with

parameter θ > 0. Independent of (X′
n), let (Umn), m = 1, 2, . . . , be a sequence of independent

copies of (Un) which has the two-parameter Poisson–Dirichlet distribution with θ = 0 and
α > 0, i.e.�0,α . Let (Xn) be defined by ranking the collection of products {X′

mUmn, m, n ∈ N}.
Then (Xn) has the two-parameter Poisson–Dirichlet distribution with parameters θ and α,
i.e. �θ,α .

In virtue of the above representation, we can rewrite the homozygosity corresponding to
the two-parameter Poisson–Dirichlet distribution as well as Zp,θ in a form that keeps the i.i.d.
property.

Suppose that Wm, m = 1, 2, . . . , is a sequence of i.i.d. random variables as copies of∑∞
n=1 U

p
n for fixed p ≥ 2. Therefore, 0 < Wm ≤ 1 and its moments depend on α alone.

For anyp = 2, 3, . . ., by the GEM representation and the exchangeability ofHp as a function
of (Xn)∞1 , we have

Hp =
∞∑
n=1

X
p
n =

∞∑
m,n=1

(X′
m)
pU

p
mn

d=
∞∑
m=1

(X′
m)
p
Wm = V

p
1 W1 + (1 − V1)

pH̃p,

where V1 ∼ Beta(1, θ) and H̃p is a random variable with the same distribution as Hp and
independent of V1 and W1. Here ‘

d=’ denotes equality in distribution.
Since

Zp,θ = √
θ

(
�(1 − α)

�(p − α)
θp−1Hp − 1

)
= √

θ

(
θp−1

(1 − α)(p−1)
Hp − 1

)
,

we deduce that

(1 − α)(p−1)Zp,θ = √
θ(θp−1Hp − (1 − α)(p−1))

d= √
θ(θp−1V

p
1 W1 + θp−1(1 − V1)

pH̃p − (1 − α)(p−1))

= √
θ(θp−1V

p
1 W1 + (1 − V1)

p(1 − α)(p−1) − (1 − α)(p−1)

+ (1 − V1)
p(θp−1H̃p − (1 − α)(p−1)))

= fp(V1,W1)+ (1 − α)(p−1)(1 − V1)
pZ̃p,θ ,

where
fp(V1,W1) = √

θ(θp−1V
p
1 W1 − (1 − α)(p−1)(1 − (1 − V1)

p)), (2.1)

and

Z̃p,θ = √
θ

(
θp−1

(1 − α)(p−1)
H̃p − 1

)
,
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with the same distribution asZp,θ , is independent ofV1 andW1. Since 0 < 1−(1−V1)
p ≤ 2pV1

and 0 < W1 ≤ 1,

1√
θ
(θpV

p
1 W1 − (1 − α)(p−1)2

pθV1) ≤ fp ≤ 1√
θ
(θpV

p
1 W1 + (1 − α)(p−1)2

pθV1). (2.2)

Also,

|fp(V1,W1)| ≤ 1√
θ
(θpV

p
1 + (1 − α)(p−1)2

pθV1).

For k ≥ 1,
E(|fp(V1,W1)|k) ≤ θ−k/2 E((θpV p1 + (1 − α)(p−1)2

pθV1)
k)

≤ θ−k/22k[E((θV1)
pk)+ (1 − α)k(p−1)2

pk E((θV1)
k)]

≤
(

2√
θ

)k
[(pk)! + (1 − α)k(p−1)2

pkk!]
∼ O(θ−k/2),

where in the last step we used the fact that 0 ≤ E((θV1)
j ) = j ! θj /(θ + 1) · · · (θ + j) ≤ j !,

j ≥ 1.
Next we give the estimation with respect to fp.

Lemma 2.3. For p ≥ 2, let fp(V1,W1) be defined as in (2.1), where V1 ∼ Beta(1, θ), and
W1 has the same distribution as the pth homozygosity corresponding to allele frequencies with
distribution �0,α . Then, for θ > 1 and each j ≥ 1, there is a positive function gp,j (t,W1)

increasing in t such that, for all t > 0,∣∣∣∣
∞∑
k=j

(−tf p)k
k!

∣∣∣∣ ≤ tj gp,j (t,W1)|fp|j .

Proof. Note that∣∣∣∣
∞∑
k=j

(−tf p)k
k!

∣∣∣∣ = |tf p|j
∣∣∣∣

∞∑
k=j

(−tf p)k−j
k!

∣∣∣∣ = tj |fp|j gj (tf p),

where

0 < gj (x) =
∞∑
k=j

(−x)k−j
k! =

⎧⎪⎪⎨
⎪⎪⎩

e−x − ∑j−1
k=0(−x)k/k!
(−x)j , x �= 0,

1

j ! , x = 0.

Define f (x) = W1x
p − (1 − α)(p−1)2px. Hence, f has a lower bound on [0,∞). Let x∗ =

((1 − α)(p−1)2p/W1p)
1/(p−1) be the point in [0,∞) at which f (x) achieves its minimum,

that is,

f (x∗) = W
−1/(p−1)
1

(
(1 − α)(p−1)2p

p

)p/(p−1)

(1 − p) < 0.

By (2.2),

fp ≥ f (θV1)√
θ

≥ f (x∗)√
θ

> f (x∗) for θ > 1.

Since gj (x) is a decreasing function of x ∈ (−∞,∞), gj (tf p) ≤ gj (tf (x
∗)) =: gp,j (t,W1)

for all t > 0.

https://doi.org/10.1239/jap/1245676095 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676095


The transformed two-parameter Poisson–Dirichlet distribution 397

The next lemma shows that the moments of Zp,θ are uniformly bounded for large θ .

Lemma 2.4. Let Zp,θ be defined as in (1.1). Then, for all integers r ≥ 1 and p ≥ 2,

sup
θ>1

E(|Zp,θ |r ) < ∞.

Proof. Suppose that (X′
1, X

′
2, . . .) ∼ �θ . Set H ′

p = ∑
n(X

′
n)
p, and set

Z′
p,θ = √

θ

(
θp−1

(p − 1)!H
′
p − 1

)
.

By the sampling formulae of the Poisson–Dirichlet distribution and the two-parameter Poisson–
Dirichlet distribution, we know that E((Z′

p,θ )
2r ) and E((Zp,θ )2r ) have the same highest finite

order of θ . Thus,

lim
θ→∞

E((Zp,θ )2r )

E((Z′
p,θ )

2r )
= k < ∞.

Using the result obtained in Lemma 5 of [6], we know that

sup
θ>1

E(|Z′
p,θ |r ) < ∞.

Since E(|Zp,θ |r ) ≤ √
E((Zp,θ )2r ), it follows that supθ>1 E(|Zp,θ |r ) < ∞.

Now we are ready to give the proof of Lemma 2.1.

Proof of Lemma 2.1. For each integer r , define

Z̃θ = (1 − α)(p−1)Z̃p,θ and µr,θ = (1 − α)r(p−1) E(Zrp,θ ).

Since supθ>1 E(|Zp,θ |r ) < ∞ for each r , we only need to show that, for t > 0, there exist
finite values l = l(t) and θ0 = θ0(l, t) such that

sup
θ>θ0

∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ < ∞.

It is obvious that

[(1 − α)(p−1)Zp,θ ]r d= (fp(V1,W1)+ (1 − α)(p−1)(1 − V1)
pZ̃p,θ )

r

=
r∑
k=0

(
r

k

)
f kp (V1,W1)[(1 − α)(p−1)Z̃p,θ ]r−k(1 − V1)

p(r−k)

= (1 − V1)
pr [(1 − α)(p−1)Z̃p,θ ]r

+
r∑
k=1

(
r

k

)
f kp (V1,W1)(1 − V1)

p(r−k)[(1 − α)(p−1)Z̃p,θ ]r−k.

Taking the expectation of both sides and using independence, we have

µr,θ = E((1 − V1)
pr )µr,θ +

r∑
k=1

(
r

k

)
E(f kp (V1,W1)(1 − V1)

p(r−k))µr−k,θ .

https://doi.org/10.1239/jap/1245676095 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676095


398 F. XU

Thus,

µr,θ = pr + θ

pr

r∑
k=1

(
r

k

)
E(f kp (V1,W1)(1 − V1)

p(r−k))µr−k,θ .

Define two sequences of random variables:

Mk := f kp

k! , Nl := (Z̃θ (1 − V1)
p)l

l! .

Thus,∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ =
∣∣∣∣

∞∑
r=l

pr + θ

pr

(−t)r
r!

r∑
k=1

(
r

k

)
µr−k,θ E(f kp (V1,W1)(1 − V1)

p(r−k))
∣∣∣∣

=
∣∣∣∣E

( ∞∑
r=l

r∑
k=1

(
1 + θ

pr

)
MkNr−k(−t)r

)∣∣∣∣
≤

∣∣∣∣E
( ∞∑
r=l

r∑
k=1

MkNr−k(−t)r
)∣∣∣∣ +

∣∣∣∣E
( ∞∑
r=l

r∑
k=1

θ

pr
MkNr−k(−t)r

)∣∣∣∣
=: |E(A1)| + |E(A2)|.

Using the inequality in Lemma 6 of [6] and interchanging the order of summation, we obtain

|A1| ≤
∣∣∣∣

∞∑
j=1

(−t)jMj

∞∑
q=0

(−t)qNq
∣∣∣∣ + tK1l (t),

where

K1l (t) :=
l−1∑
j=1

|Mj |tj−1
l−j−1∑
i=0

|Ni |t i

is an increasing function of t . By Lemma 4 we obtain∣∣∣∣
∞∑
j=1

(−t)jMj

∣∣∣∣ =
∣∣∣∣

∞∑
j=1

(−tfp)j
j !

∣∣∣∣ ≤ tgp,1(t,W1)|fp|

and ∣∣∣∣
∞∑
q=0

(−t)qNq
∣∣∣∣ = exp{−tZ̃θ (1 − V1)

p}

≤ max{1, exp{−tZ̃θ }}
≤ 1 + exp{−tZ̃θ }.

Hence,
|A1| ≤ tgp,1(t,W1)|fp|(1 + exp{−tZ̃θ })+ tK1l (t).

It follows that

|E(A1)| ≤ E(|A1|)
≤ t E(gp,1(t,W1)|fp|)+ t E(fp,1(t,W1)|fp|)E(exp{−tZ̃θ })+ t E(K1l (t)).
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Since E((|fp(V1,W1)|)k) ∼ O(θ−k/2) and E(gp,1(t,W1)) depends only on α, there exists
θ0 = θ0(t) < ∞ such that t E(gp,1(t,W1)|p|) < 1

4 for all θ > θ0(t) by Hölder’s inequality.
In addition, K1l (t) is a sum of a finite number of random variables, and note that the mean
of each random variable is bounded for all θ . Thus, supθ>1 E(K1l (t)) < ∞. Set α1(t) =
supθ>1 E(K1l (t))+ 1

4 . Then, for θ > θ0(t),

|E(A1)| ≤ 1

4
E(exp{−tZ̃θ })+ α1(t) = 1

4

∞∑
r=0

(−t)r
r! µr,θ + α1(t).

We also have the same inequality for A2:

|E(A2)| ≤ 1

4

∞∑
r=0

(−t)r
r! µr,θ + α2(t).

Since A2 involves the factor θ/pr , it needs a more delicate estimation, but the argument is
similar to that of A1. The reader can find a similar detailed proof in Lemma 9 of [6], which we
will not repeat here.

By the inequalities for A1 and A2 above we have

∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ ≤ 1

2

∞∑
r=0

(−t)r
r! µr,θ + α1(t)+ α2(t).

Thus, ∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ − 1

2

∞∑
r=l

(−t)r
r! µr,θ ≤ 1

2

l−1∑
r=0

t r

r! |µr,θ | + α1(t)+ α2(t).

It follows that
1

2

∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ ≤ 1

2

l−1∑
r=0

t r

r! |µr,θ | + α1(t)+ α2(t).

Therefore, |∑∞
r=l (−t)rµr,θ /r!| is bounded by the sum of a finite number of terms, which are

uniformly bounded for θ . It can be concluded that

sup
θ>θ0

∣∣∣∣
∞∑
r=l

(−t)r
r! µr,θ

∣∣∣∣ < ∞.

3. Proof of Theorem 1.1

For σ = cθm−1/2−β, β ≥ 0 and m = 2, 3, . . ., we know that the characteristic function of
Z
β
p,θ can be calculated as follows:

ψp(x) = E(exp{ixZβp,θ })
= E(exp{ixZp,θ } exp{−σHm})

E(exp{−σHm})
= E(exp{ixZp,θ − c(1 − α)(m−1)θ

−βZm,θ })
E(exp{−c(1 − α)(m−1)θ−βZm,θ }) .

https://doi.org/10.1239/jap/1245676095 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676095


400 F. XU

By Lemma 1.1, (Z2,θ , Z3,θ , . . .)
d−→ (Z2,α, Z3,α, . . .) as θ goes to ∞, where (Z2,α, Z3,α, . . .)

is multivariate normal with mean 0 and the covariance matrix ofZi,α andZj,α is given by (1.3).
For β = 0, combining the uniform integrability of exp{−tZp,θ } with Zp,θ

d−→ Zp,α for any
p = 2, 3, . . . we have

E(exp{−c(1 − α)(m−1)Zm,θ }) → E(exp{−c(1 − α)(m−1)Zm,α}) as θ → ∞.

Therefore,

E(exp{ixZp,θ − c(1 − α)(m−1)Zm,θ }) → E(exp{ixZp,α − c(1 − α)(m−1)Zm,α}).
It follows that, when θ goes to ∞,

ψp(x) → exp

{
−x

2

2
varZp,α − icx(1 − α)(m−1) cov(Zp,α, Zm,α)

}
.

Define bp = (1 − α)(m−1) cov(Zp,α, Zm,α), and let Z∗
p,α = Zp,α − cbp. It follows that

Z
β
p,θ

d−→ Z∗
p,α for p = 2, 3, . . . as θ → ∞.

Using the same method to calculate the characteristic function for a finite linear combination
of Zp,θ , we obtain

(Z
β
2,θ , Z

β
3,θ , . . .)

d−→ (Z∗
2,α, Z

∗
3,α, . . .) as θ → ∞.

For β > 0 and θ > 1,

exp{−c(1 − α)(m−1)θ
−βZm,θ } ≤ max{exp{−c(1 − α)(m−1)Zm,θ }, 1}.

Using the dominated convergence theorem, we have

E(exp{−c(1 − α)(p−1)θ
−βZq,θ }) → 1 as θ → ∞.

Therefore, (Zβ2,θ , Z
β
3,θ , . . .)

d−→ (Z2,α, Z3,α, . . .) as θ → ∞.
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