KERNEL FUNCTORS FOR WHICH THE ASSOCIATED IDEMPOTENT KERNEL FUNCTOR IS STABLE

by J. N. MANOCHA

(Received 27 July, 1974; revised 22 March, 1975)

1. Preliminaries. Let R be a ring with unity and let \mathfrak{M}_R denote the category of unital right R-modules. A preradical γ of \mathfrak{M}_R is a functor $\gamma : \mathfrak{M}_R \to \mathfrak{M}_R$ such that

(i) $\gamma(M) \subseteq M$ for each *R*-module *M*,

(ii) for $f: M \to N$, $\gamma(f)$ is the restriction of f to $\gamma(M)$.

 γ is a radical if (iii) $\gamma(M/\gamma(M)) = 0$ for all *R*-modules *M*. γ is left exact or γ is a kernel functor in the sense of Goldman [2] if (iii)' for a submodule *N* of an *R*-module *M*, $\gamma(N) = \gamma(M) \cap N$. A left exact radical is nothing but an idempotent kernel functor as defined in [2].

Let σ be an idempotent kernel functor. An *R*-module *M* is said to be σ -torsion (σ -torsion-free) if $\sigma(M) = M(\sigma(M) = 0)$. If we denote the classes of σ -torsion and σ -torsion-free modules by \mathcal{T}_{σ} and \mathcal{F}_{σ} respectively, then the pair ($\mathcal{T}_{\sigma}, \mathcal{F}_{\sigma}$) is a hereditary torsion theory for \mathfrak{M}_R . More precisely: a torsion theory for \mathfrak{M}_R is a pair (\mathcal{T}, \mathcal{F}) of classes of *R*-modules such that

 $\mathcal{F} = \{N_R | \operatorname{Hom}_R[K, N] = 0 \text{ for all } K \in \mathcal{F}\},\$ $\mathcal{T} = \{M_R | \operatorname{Hom}_R[M, L] = 0 \text{ for all } L \in \mathcal{F}\}.$

 \mathcal{T} is closed under homomorphic images, direct sums and extensions. \mathcal{F} is closed under submodules, direct products and extensions.

The torsion theory $(\mathcal{T}, \mathcal{F})$ is said to be *hereditary* if \mathcal{T} (or equivalently \mathcal{F}) is closed under submodules (injective envelopes).

We have a one-to-one correspondence between idempotent kernel functors on \mathfrak{M}_R and hereditary torsion theories for \mathfrak{M}_R . The correspondence is given by

$$\sigma \to \mathcal{T}_{\sigma} = \{ M_R \, | \, \sigma(M) = M \}$$

with the inverse correspondence $\mathcal{T} \to \sigma_{\mathcal{T}}$, where, for an *R*-module M, $\sigma_{\mathcal{T}}(M) = \Sigma\{N \mid N \text{ is a submodule of } M \text{ and } N \in \mathcal{T}\}$. For details, we refer the reader to Goldman [2], Lambek [3] and Stenstrom [7].

If γ_1 and γ_2 are preradicals, $\gamma_1 \leq \gamma_2$ if $\gamma_1(M) \subseteq \gamma_2(M)$ for all *R*-modules *M*.

For the proof of the following proposition, we refer to Stenstrom [7, Proposition 1.1] or Goldman [2, Proposition 1.1, Theorem 1.6].

PROPOSITION 1.1. With each preradical γ , one can associate a radical to be denoted by $\overline{\gamma}$, such that

(i) $\gamma \leq \overline{\gamma}$,

(ii) $\bar{\gamma}$ is a radical,

(iii) if μ is a radical and $\gamma \leq \mu$, then $\overline{\gamma} \leq \mu$.

Moreover, if γ is a kernel functor, so is $\overline{\gamma}$. That is, $\overline{\gamma}$ defines an idempotent kernel functor.

J. N. MANOCHA

 $\bar{\gamma}$ is obtained by transfinite induction as follows: let M be an R-module. For a non-limit ordinal β , define γ_{β} by $\gamma_{\beta}(M)/\gamma_{\beta-1}(M) = \gamma(M/\gamma_{\beta-1}(M))$ and for a limit ordinal β , define γ_{β} by $\gamma_{\beta}(M) = \sum_{\alpha < \beta} \gamma_{\alpha}(M)$. This yields an ascending sequence of preradicals. $\bar{\gamma}$ is now given by $\bar{\gamma}(M) = \sum_{\beta} \gamma_{\beta}(M)$. Equivalently, we can define $\bar{\gamma}(M) = \bigcap \{N \mid N \subseteq M \text{ and } \gamma(M/N) = 0\}$. We note that $\gamma(M) = 0$ implies that $\bar{\gamma}(M) = 0$.

2. Main result and applications. Let \mathscr{E} be a class of *R*-modules. By the *hereditary* torsion class generated by \mathscr{E} is meant the smallest class $\mathscr{T}_{\mathscr{E}}$ containing \mathscr{E} such that $\mathscr{T}_{\mathscr{E}}$ is a hereditary torsion class for some hereditary torsion theory.

LEMMA 2.1. Let γ be a kernel functor, $\mathscr{E}_{\gamma} = \{M \mid \gamma(M) = M\}$ and $\mathscr{T}_{\mathscr{E}_{\gamma}}$ the hereditary torsion class generated by \mathscr{E}_{γ} . Then $\mathscr{T}_{\mathscr{E}_{\gamma}} = \mathscr{T}_{\gamma}$, where \mathscr{T}_{γ} is the class of torsion modules corresponding to the idempotent kernel functor $\overline{\gamma}$.

Proof. $\bar{\gamma}$ is the smallest idempotent kernel functor larger than γ , by Proposition 1.1. Since there is a one-to-one correspondence between idempotent kernel functors on \mathfrak{M}_R and hereditary torsion theories for \mathfrak{M}_R , $\mathcal{T}_{\bar{\gamma}}$ must correspond to the smallest hereditary torsion class containing \mathscr{E}_{γ} . Thus $\mathcal{T}_{\mathscr{E}_{\gamma}} = \mathcal{T}_{\bar{\gamma}}$.

LEMMA 2.2. Let γ be a kernel functor. Then for each R-module M, $\gamma(M)$ is an essential submodule of $\overline{\gamma}(M)$.

Proof. Let $N \subseteq \overline{\gamma}(M)$ be such that $N \cap \gamma(M) = 0$. We show that N = 0. Since γ is a kernel functor, $\gamma(N) = N \cap \gamma(M) = 0$. This implies that $\overline{\gamma}(N) = 0$. But $N \subseteq \overline{\gamma}(M)$ and hence $\overline{\gamma}(N) = N$. Thus N = 0 and the lemma follows.

DEFINITION 2.3. A hereditary torsion theory $(\mathcal{T}, \mathcal{F})$ is said to be *stable* if \mathcal{T} is closed under essential extensions. We shall call an idempotent kernel functor σ stable if the corresponding hereditary torsion theory is stable. (See Stenstrom [7, §4] and Gabriel [1].)

THEOREM 2.4. Let γ be a kernel functor such that $\overline{\gamma}$ is stable. Then the following statements are equivalent.

(i) $\gamma(R)$ is an essential right ideal of R.

(ii) $\gamma(M)$ is an essential submodule of M for all R-modules M.

- (iii) If $M \neq 0$, then $\gamma(M) \neq 0$.
- (iv) $\bar{\gamma}(R) = R$.
- (v) $\bar{\gamma}(M) = M$ for all M; that is $\bar{\gamma}$ is the identity functor on \mathfrak{M}_{R} .

(vi) Each hereditary torsion theory for \mathfrak{M}_R is generated by a class of γ -torsion modules. (Here an *R*-module *M* is γ -torsion if $\gamma(M) = M$.)

104

Proof. (i) \Rightarrow (iv). $\bar{\gamma}(\gamma(R)) = \gamma(R)$. Since $\bar{\gamma}$ is stable, we have $\bar{\gamma}(R) = R$.

 $(iv) \Rightarrow (v)$. Since $\mathscr{T}_{\bar{\gamma}}$ is closed under homomorphic images and direct sums, $\bar{\gamma}(R) = R$ implies that $\bar{\gamma}(M) = M$ for all M.

 $(v) \Rightarrow (iv)$. Trivial.

 $(v) \Rightarrow (ii)$. By Lemma 2.2, $\gamma(M)$ is an essential submodule of $\overline{\gamma}(M)$. Thus since $\overline{\gamma}(M) = M$, the implication follows.

 $(ii) \Rightarrow (iii)$. Trivial.

 $(iii) \Rightarrow (i)$. Suppose not. Then there exists a non-zero right ideal I such that $\gamma(R) \cap I = 0$. Now $\gamma(I) \subseteq \gamma(R)$. This implies that $\gamma(I) = 0$, a contradiction.

 $(v) \Rightarrow (vi)$. The class $\mathscr{E} = \{M \mid \gamma(M) = M\}$ is closed under submodules and factor modules. By Lemma 2.1, the hereditary torsion class generated by \mathscr{E} is all of \mathfrak{M}_R . Now let \mathscr{T} be a hereditary torsion class. Then by Stenstrom [7, Exercise 3, p. 11] \mathscr{T} is generated by $\mathscr{T} \cap \mathscr{E}$. That is \mathscr{T} is generated by a class of γ -torsion modules.

 $(vi) \Rightarrow (v)$. Take $\mathscr{T} = \mathfrak{M}_R$. Then \mathfrak{M}_R is generated by a class of γ -torsion modules. By Lemma 2.1, $\bar{\gamma}$ is the identity functor on \mathfrak{M}_R . Thus $\bar{\gamma}(M) = M$ for all *R*-modules *M*. Let *R* be a ring and *M* an *R*-module. The singular submodule of *M*, to be denoted by

Let R be a ring and M an R-module. The singular submodule of M, to be denoted by $Z_R(M)$, is the set of all elements of M which are annihilated by essential right ideals of R. $Z_R()$ defines a kernel functor on \mathfrak{M}_R . The idempotent kernel functor corresponding to $Z_R()$ is called the *Goldie torsion functor*. It will be denoted by \mathscr{G} .

We note that the Goldie torsion class is generated by the class of modules of the form A/B, where A is an essential extension of B. Moreover, the Goldie torsion functor is stable.

As a special case of Theorem 2.4 we have the following result.

PROPOSITION 2.5. Let R be a ring. Then the following statements are equivalent.

(i) $Z_R(R_R)$ is an essential right ideal of R.

(ii) $Z_R(M)$ is an essential submodule for each R-module M.

- (iii) $Z_R(M) \neq 0$ for every non-zero R-module M.
- (iv) $\mathscr{G}(R) = R$.
- (v) $\mathscr{G}(M) = M$ for each R-module M.
- (vi) Each hereditary torsion theory for \mathfrak{M}_R is generated by a class of singular modules.

REMARK. Using different methods, Ming [4] has also established the equivalence of (i), (ii) and (iii).

PROPOSITION 2.6. Let R be a commutative noetherian ring and let γ be a kernel functor. Then the following statements are equivalent.

- (i) $\gamma(R)$ is an essential ideal of R.
- (ii) For each R-module M, $\gamma(M)$ is an essential submodule of M.
- (iii) $\gamma(M) \neq 0$ for a non-zero module M.
- (iv) Each hereditary torsion theory for \mathfrak{M}_R is generated by a class of γ -torsion modules.

Proof. By a result of Gabriel [1], every hereditary torsion class for a commutative noetherian ring is stable. The result follows from Theorem 2.4.

J. N. MANOCHA

As an application we have

PROPOSITION 2.7. Let R be a commutative noetherian ring. Then the following statements are equivalent.

(i) Socle (R) is an essential ideal of R.

(ii) R is an artinian ring.

(Here, for an R-module M, Socle (M) is the sum of all simple submodules of M.)

Proof. (i) \Rightarrow (ii). Socle () defines a kernel functor on \mathfrak{M}_R . From the last theorem, Socle $(M) \neq 0$ for each non-zero module M. Define an ascending sequence of ideals as follows: $I_0 = \text{Socle}(R)$ and $I_{n+1} \supseteq I_n$ with $I_{n+1}/I_n = \text{Socle}(R/I_n)$. Either $R = I_m$ for some m or we get a strictly ascending sequence $I_0 \subseteq I_1 \subseteq \ldots$, since Socle $(R/I_n) \neq 0$. Since R is noetherian, this sequence terminates, say at m. Thus $R = I_m$ for some integer m. Now I_{n+1}/I_n has finite length for each n. Hence R itself is of finite length. Thus R is artinian.

 $(ii) \Rightarrow (i)$. Trivial.

REMARK. The above sharpens a result of Nita in [6] where, using different methods, the above equivalence is proved assuming further that R is an S-ring in the sense of Morita [5].

REFERENCES

1. P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.

2. O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47.

3. J. Lambek, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Mathematics No. 177 (Springer-Verlag, New York/Berlin, 1971).

4. R. Yue Che Ming, A note on singular ideals, Tohoku Math. J. 21 (1969), 337-342.

5. K. Morita, On S-rings, Nagoya Math. J. 27 (1966), 687-695.

6. M. C. Nita, Sur les anneaux A tells que tout A-module simple est isomorphic à un ideal, C. R. Acad. Paris 268 (1969), 88-91.

7. B. Stenstrom, *Rings and modules of quotients*, Lecture Notes in Mathematics No. 237 (Springer-Verlag, New York/Berlin, 1971).

KENT STATE UNIVERSITY EAST LIVERPOOL CAMPUS EAST LIVERPOOL, OHIO 43920, U.S.A.

106