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1. Preliminaries. Let R be a ring with unity and let 5D?X denote the category of unital
right /{-modules. A preradical y of lS)lR is a functor y : WHR -> 10lR such that

(i) v(M) £ M for each .R-module M,
(ii) f o r / : M ^ N, y(J) is the restriction o f / t o y(M).

y is a radical if (iii) y(M/y(M)) = 0 for all /^-modules M. y is /e/C exacf or y is a kernel functor
in the sense of Goldman [2] if (iii)' for a submodule N of an i?-module M, y{N) = y(M) n N.
A left exact radical is nothing but an idempotent kernel functor as defined in [2].

Let a be an idempotent kernel functor. An i?-module M is said to be a-torsion (a-torsion-
free) if a(M) = M(a(M) = 0). If we denote the classes of a-torsion and cr-torsion-free modules
by 2T„ and 3F9 respectively, then the pair {$"„, 3^a) is a hereditary torsion theory for 9JtR.
More precisely: a torsion theory for 9)JR is a pair (3~, &) of classes of i?-modules such that

F = {NR | HomR [tf, N] = 0 for all

^ = {MK | Horn* [M,L] = 0 for all

&~ is closed under homomorphic images, direct sums and extensions. !F is closed under
submodules, direct products and extensions.

The torsion theory {ST, &) is said to be hereditary ii3T (or equivalently &) is closed under
submodules (injective envelopes).

We have a one-to-one correspondence between idempotent kernel functors on tS0lR and
hereditary torsion theories for SDIR. The correspondence is given by

a^3Ta = {MR | <7(M) = M)

with the inverse correspondence y -> 0-5-, where, for an /J-module M, o?{M) = Z{N | Â  is a
submodule of Af and Ne^~}. For details, we refer the reader to Goldman [2], Lambek [3]
and Stenstrom [7].

If yi and y2 are preradicals, yt ^ y2 if yt(M) £ ^ C ^ ) f° r a " -R-modules M.
For the proof of the following proposition, we refer to Stenstrom [7, Proposition 1.1]

or Goldman [2, Proposition 1.1, Theorem 1.6].

PROPOSITION 1.1. With each preradical y, one can associate a radical to be denoted by y,
such that

(•) V ^ 7,
(ii) y is a radical,

(iii) if [i is a radical and y ^ /1, then y ^ y..

Moreover, ify is a kernel functor, so is y. That is, y defines an idempotent kernel functor.
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y is obtained by transfinite induction as follows: let M be an i?-module. For a non-limit
ordinal /?, define yf by yp(M)lyfi-1(M) = ^ ( M / ^ . ^ M ) ) and for a limit ordinal /?, define y^ by
y${M) = £ ya(M). This yields an ascending sequence of preradicals. y is now given by

a<P
y(M) =Yyfi(.M). Equivalently, we can define y(M) = n{N\N^M and y(M/N) = 0}. We

p
note that y(Af) = 0 implies that y{M) = 0.

2. Main result and applications. Let S be a class of i?-modules. By the hereditary
torsion class generated by $ is meant the smallest class 3"s containing & such that 3s is a
hereditary torsion class for some hereditary torsion theory.

LEMMA 2.1. Let y be a kernel functor, Sy = {M \ y(M) = M} and 3~g the hereditary

torsion class generated by Sr Then 3~g = 3~v where 3~^ is the class of torsion modules corre-

sponding to the idempotent kernel functor y.

Proof, y is the smallest idempotent kernel functor larger than y, by Proposition 1.1.
Since there is a one-to-one correspondence between idempotent kernel functors on fflR and
hereditary torsion theories for WR, 3~y must correspond to the smallest hereditary torsion class
containing Sr Thus 3~g = 3~r

LEMMA 2.2. Let y be a kernel functor. Then for each R-module M, y(M) is an essential
submodule ofy(M).

Proof. Let N^y(M) be such that Nny(M) = 0. We show that N = 0. Since y is a
kernel functor, y(N) = Nny(M) = 0. This implies that y(N) = 0. But N^y(M) and hence
y(N) = N. Thus N = 0 and the lemma follows.

DEFINITION 2.3. A hereditary torsion theory (3~, #") is said to be stable if 3" is closed
under essential extensions. We shall call an idempotent kernel functor a stable if the corre-
sponding hereditary torsion theory is stable. (See Stenstrom [7, §4] and Gabriel [1].)

THEOREM 2.4. Let ybea kernel functor such that y is stable. Then the following statements
are equivalent.

(i) y(R) is an essential right ideal of R.
(ii) y{M) is an essential submodule of M for all R-modules M.

(iii) IfM^O, theny(M)?0.
(iv) y(R) = R.
(v) y(M) = M for all M; that is y is the identity functor on <SRR.

(vi) Each hereditary torsion theory for 9JJK is generated by a class of y-torsion modules.
(Here an i?-module M is y-torsion if y{M) = M.)
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Proof, (i) => (iv). y(y(R)) = j(R)- Since y is stable, we have y(R) = R.
(iv) => (v). Since 9~^ is closed under homomorphic images and direct sums, y(R) — R

implies that y(M) = M for all M.
(v) => (iv). Trivial.
(v) => (ii). By Lemma 2.2, y(M) is an essential submodule of y(M)- Thus since y(M) — M,

the implication follows.
(//) => (Hi). Trivial.
(Hi) => (i). Suppose not. Then there exists a non-zero right ideal / such that y(R) n / = 0.

Now y(I) £ y(R). This implies that y(I) = 0, a contradiction.
(v) => (vi). The class $ — {M | y(M) = M} is closed under submodules and factor modules.

By Lemma 2.1, the hereditary torsion class generated by & is all of 93JK. Now let 9~ be a
hereditary torsion class. Then by Stenstrom [7, Exercise 3, p. 11] 9" is generated by 2Tc\8.
That is ST is generated by a class of y-torsion modules.

(vi)=> (v). Take 9~ = WR. Then 9 ^ is generated by a class of y-torsion modules. By
Lemma 2.1, y is the identity functor on WR. Thus y(M) = M for all /{-modules M.

Let R be a ring and M an .R-module. The singular submodule of M, to be denoted by
ZR(M), is the set of all elements of M which are annihilated by essential right ideals of R.
ZR( ) defines a kernel functor on 9)JK. The idempotent kernel functor corresponding to
ZR( ) is called the Goldie torsion functor. It will be denoted by <&.

We note that the Goldie torsion class is generated by the class of modules of the form A/B,
where A is an essential extension of B. Moreover, the Goldie torsion functor is stable.

As a special case of Theorem 2.4 we have the following result.

PROPOSITION 2.5. Let R be a ring. Then the following statements are equivalent.

(i) ZR(RR) is an essential right ideal of R.
(ii) ZR(M) is an essential submodule for each R-module M.

(iii) ZR(M) i=- Ofor every non-zero R-module M.
(iv) <S(R) = R.
(v) <S(M) = Mfor each R-module M.

(vi) Each hereditary torsion theory for WllR is generated by a class of singular modules.

REMARK. Using different methods, Ming [4] has also established the equivalence of (i),
(ii) and (iii).

PROPOSITION 2.6. Let R be a commutative noetherian ring and let y be a kernel functor.
Then the following statements are equivalent.

(i) y(R) is an essential ideal of R.
(ii) For each R-module M, y(M) is an essential submodule of M.
(iii) y(M) ^ Ofor a non-zero module M.
(iv) Each hereditary torsion theory for W.R is generated by a class ofy-torsion modules.

Proof. By a result of Gabriel [1], every hereditary torsion class for a commutative
noetherian ring is stable. The result follows from Theorem 2.4.
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As an application we have

PROPOSITION 2.7. Let Rbea commutative noetherian ring. Then the following statements
are equivalent.

(i) Socle (R) is an essential ideal of R.
(ii) R is an artinian ring.

(Here, for an i?-module M, Socle (M) is the sum of all simple submodules of M.)

Proof, (i) => (if). Socle ( ) defines a kernel functor on 5ttR. From the last theorem, Socle
(M) # 0 for each non-zero module M. Define an ascending sequence of ideals as follows:
/0 = Socle (R) and / „ + t 2 /„ with In+1IIn = Socle (R/In). Either R = Im for some m or we get a
strictly ascending sequence /„ £ ^ £ . . . , since Socle (i?//n) ^ 0. Since R is noetherian, this

sequence terminates, say at m. Thus R = Im for some integer w. Now /„+JIn has finite length
for each n. Hence R itself is of finite length. Thus R is artinian.

(if) => (i). Trivial.

REMARK. The above sharpens a result of Nita in [6] where, using different methods, the
above equivalence is proved assuming further that R is an 5-ring in the sense of Morita [5].
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