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Abstract

We consider possibly nonlinear distributional fixed-point equations on weighted branch-
ing trees, which include the well-known linear branching recursion. In Jelenković and
Olvera-Cravioto (2012), an implicit renewal theorem was developed that enables the
characterization of the power-tail asymptotics of the solutions to many equations that fall
into this category. In this paper we complement the analysis in our 2012 paper to provide
the corresponding rate of convergence.
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1. Introduction

Distributional fixed-point equations of the form

R
d= f (Ci, Ri, 1 ≤ i ≤ N), (1.1)

where f (·) is a possibly random real-valued function, N ∈ N ∪ {∞}, N = {0, 1, 2, 3, . . . },
{Ci}i∈N are real-valued random weights, and {Ri}i∈N are independent and identically distributed
(i.i.d.) copies of R, independent of (N, C1, C2, . . . ), appear in many applications in applied
probability, e.g. analysis of algorithms and statistical physics; see [1], [6], [8], [9], [10], and
[11] for more details. Throughout the paper, ‘

d=’ stands for equality in distribution.
As previously stated in the abstract, the work in [10] provides an implicit renewal theorem

(Theorem 3.4) that enables the characterization of the power-tail behavior of the solution R to
(1.1). The results in [10] fully generalize the implicit renewal theorem of Goldie [7], which
was derived for equations of the form R

d= f (C, R) (equivalent to N ≡ 1 in our case), to
recursions (fixed-point equations) on trees. The work in [7], for the N ≡ 1 case, also includes
the rate of convergence in the implicit renewal theorem. Similarly, in this paper we complement
Theorem 3.4 of [10] by deriving its corresponding convergence rate.

More specifically, Theorem 3.4 of [10] provides a general tool to study the tail behavior
of the endogenous solutions to fixed-point equations of the type in (1.1), such as the
linear and max-plus branching equations; see [9] and [10] for more details. This theorem,
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under the natural moment assumption E[∑N
i=1 |Ci |α] = 1, with positive derivative at α, 0 <

E[∑N
i=1 |Ci |α log |Ci |] < ∞, characterizes both left and right power-law tails of R, e.g.

P(R > t) ∼ H+t−α as t → ∞.

This was a natural generalization of the result in [7] for N ≡ 1 to the branching case. In this
paper, under the expected additional assumption E[∑N

i=1 |Ci |α+θ ] < ∞, θ > 0, and some
minor technical conditions, we determine the corresponding rate of convergence, i.e.

|tαP(R > t) − H+| = o(t−θ ) as t → ∞.

Previously, this result was derived in [7] in Theorems 3.2 and 3.3 for N ≡ 1. Our extension to
trees is facilitated by a matrix form derivation of Corollary 3.4 of [7] that allows the treatment
of both nonnegative and real-valued weights simultaneously.

Our main theorem, Theorem 3.1, can be used to determine the rate of convergence of the
power-law tails of various solutions to multiplicative max-plus recursions, such as those studied
in [9] and [10]. Our recent work is motivated by the nonhomogeneous multiplicative branching
recursion

R
d=

N∑
i=1

CiRi + Q,

where N ∈ N ∪ {∞}, {Ci}i∈N are real-valued random weights, Q is a nonzero real-valued
random variable, and {Ri}i∈N are i.i.d. copies of R, independent of (Q, N, C1, C2, . . . ).
In the context of deterministic weights this recursion was previously studied in [3]; more
recently, the work in [2] characterizes the additional nonendogenous solutions. Historically,
the homogeneous version of this equation, Q ≡ 0, has been extensively studied in the literature;
for recent work, see [4] and the references therein.

2. Weighted branching tree

We use the model from [10] for defining a weighted branching tree. First we construct a
random tree T . We use the notation ∅ to denote the root node of T , and An, n ≥ 0, to denote
the set of all individuals in the nth generation of T , A0 = {∅}. Let Zn be the number of
individuals in the nth generation, that is, Zn = |An|, where | · | denotes the cardinality of a set;
in particular, Z0 = 1.

Next, let N+ = {1, 2, 3, . . . } be the set of positive integers and let U = ⋃∞
k=0(N+)k be the

set of all finite sequences i = (i1, i2, . . . , in) ∈ U , where by convention N
0+ = {∅} contains

the null sequence ∅. To ease the exposition, for a sequence i = (i1, i2, . . . , ik) ∈ U, we
write i|n = (i1, i2, . . . , in), provided k ≥ n, and i|0 = ∅ to denote the index truncation at
level n, n ≥ 0. Also, for i ∈ A1, we simply use the notation i = i1, that is, without the
parenthesis. Similarly, for i = (i1, . . . , in), we will use (i, j) = (i1, . . . , in, j) to denote the
index concatenation operation; if i = ∅ then (i, j) = j .

We iteratively construct the tree as follows. Let N be the number of individuals born to the
root node ∅, N∅ = N , and let {Ni}i∈U, i 
=∅ be i.i.d. copies of N . Now define

A1 = {i ∈ N : 1 ≤ i ≤ N}, An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}. (2.1)

It follows that the number of individuals Zn = |An| in the nth generation, n ≥ 1, satisfies the
branching recursion

Zn =
∑

i∈An−1

Ni .
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Figure 1: Weighted branching tree.

Now, we construct the weighted branching tree TC as follows. Let

{(Ni, C(i,1), C(i,2), . . .)}i∈U, i 
=∅

be a sequence of i.i.d. copies of (N, C1, C2, . . . ). Here N∅ determines the number of nodes
in the first generation of T according to (2.1), and each node in the first generation is then
assigned its corresponding vector (Ni, C(i,1), C(i,2), . . .) from the i.i.d. sequence defined above.
In general, for n ≥ 2, to each node i ∈ An−1 we assign its corresponding (Ni, C(i,1), C(i,2), . . .)

from the sequence and construct An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}. For each node
in TC, we also define the weight �(i1,...,in) via the recursion

�i1 = Ci1 , �(i1,...,in) = C(i1,...,in)�(i1,...,in−1), n ≥ 2,

where � = 1 is the weight of the root node. Note that the weight �(i1,...,in) is equal to the
product of all the weights C(·) along the branch leading to node (i1, . . . , in), as depicted in
Figure 1.

3. Rate of convergence in the implicit renewal theorem on trees

In this section we present an extension of Corollary 3.4 of [7]. Similarly as in [10], the key
observation that facilitates this generalization is the following lemma which shows that a certain
measure on a tree is a matrix product measure; its proof can be found in [10]. For the case of
positive weights, a similar observation was made for a scalar measure in [5]. Throughout the
paper, we use the standard convention 0α log 0 = 0 for all α > 0.

Let F = (Fij ) be an n×n matrix whose elements are finite measures on R. The convolution
F ∗ G of two such matrices is the matrix with elements (F ∗ G)ij �

∑n
k=1 Fik ∗ Gkj , i, j =

1, . . . , n, where Fik ∗ Gkj is the convolution of individual measures; ‘�’ stands for equal by
definition.

Definition 3.1. A matrix renewal measure is the matrix of measures

U =
∞∑

k=0

F ∗k,

where F ∗1 = F , F ∗(k+1) = F ∗k ∗ F = F ∗ F ∗k , F ∗0 = δ0I, δ0 is the point measure at 0, and
I is the n × n identity matrix.
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Lemma 3.1. Let TC be the weighted branching tree defined by the vector (N, C1, C2, . . . ),
where N ∈ N ∪ {∞} and the Cis are real valued. For any n ∈ N and i ∈ An, let Vi = log |�i |
and Xi = sgn(�i); V∅ ≡ 0, X∅ ≡ 1. For α > 0, define the measures

µ(+)
n (dt) = eαt

E

[∑
i∈An

1(Xi = 1, Vi ∈ dt)

]
,

µ(−)
n (dt) = eαt

E

[∑
i∈An

1(Xi = −1, Vi ∈ dt)

]
,

for n = 0, 1, 2, . . . , and let η±(dt) = µ
(±)
1 (dt). Suppose that E[∑N

i=1 |Ci |α log |Ci |] ≥ 0 and
E[∑N

i=1 |Ci |α] = 1. Then (η+ + η−)(·) is a probability measure on R that places no mass at
−∞ and has mean∫ ∞

−∞
u η+(du) +

∫ ∞

−∞
u η−(du) = E

[ N∑
j=1

|Cj |α log |Cj |
]
.

Furthermore, if we let µn = (µ
(+)
n , µ

(−)
n ), e = (1, 0), and F =

(
η+ η−
η− η+

)
, then

µn = (µ(+)
n , µ(−)

n ) = (1, 0)

(
η+ η−
η− η+

)∗n

= eF ∗n,

where F ∗n denotes the nth matrix convolution of F with itself.

In what follows, ν̂(s) = ∫ ∞
−∞ esxν(ds) denotes the Laplace transform of measure ν. If F is a

matrix of measures then F̂ (s) is the corresponding matrix of Laplace transforms.

Assumption 3.1. Suppose that the matrix of measures

F =
(

η+ η−
η− η+

)
satisfies the following. For some θ > 0, the equation

(1 − η̂+(s))2 − (̂η−(s))2 = 0

has no roots different from 0 on the strip {s ∈ C : 0 ≤ R(s) ≤ θ}, and there exists an integer
m ≥ 1 such that the Laplace transform of the singular part of F ∗m, denoted by F̂ ∗m

s (ϑ), has
spectral radius strictly smaller than 1 for ϑ ∈ {0, θ}.

Note that in the following theorem the random variable R and the vector (N, C1, C2, . . .)

are arbitrary, except for the independence assumption, and, therefore, this result can be applied
to any random variable R satisfying the theorem’s conditions regardless of whether it satisfies
a particular recursion or not.

Theorem 3.1. Let (N, C1, C2, . . .) be a random vector, where N ∈ N ∪ {∞} and the Cis are
real valued. Suppose that F satisfies Assumption 3.1 for some θ > 0. Furthermore, assume
that

µ � E

[ N∑
j=1

|Cj |α log |Cj |
]

> 0, E

[ N∑
j=1

|Cj |α
]

= 1,

https://doi.org/10.1239/jap/1389370100 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370100


Convergence rates 1081

E

[ N∑
j=1

|Cj |α(log |Cj |)2
]

< ∞, and E

[ N∑
j=1

|Cj |γ
]

< ∞

for some 0 ≤ γ < α, and that R is independent of (N, C1, C2, . . . ).

1. If {Ci} ≥ 0 almost surely, E[(R+)β ] < ∞ for any 0 < β < α, and, for σ ∈ {0, θ},
∫ ∞

0

∣∣∣∣P(R > t) − E

[ N∑
j=1

1(CjR > t)

]∣∣∣∣tα+σ−1 dt < ∞, (3.1)

or, respectively, E[(R−)β ] < ∞ for any 0 < β < α, and, for σ ∈ {0, θ},
∫ ∞

0

∣∣∣∣P(R < −t) − E

[ N∑
j=1

1(CjR < −t)

]∣∣∣∣tα+σ−1 dt < ∞, (3.2)

then
|tαP(R > t) − H+| = o(t−θ ) as t → ∞,

or, respectively,
|tαP(R < −t) − H−| = o(t−θ ) as t → ∞,

where 0 ≤ H± < ∞ are given by

H± = 1

µ

∫ ∞

0
xα−1

(
P((±1)R > x) − E

[ N∑
j=1

1((±1)CjR > x)

])
dx.

2. If P(Cj < 0) > 0 for some j ≥ 1, E[|R|β ] < ∞ for any 0 < β < α, and both (3.1) and
(3.2) are satisfied, then

|tαP(R > t) − H | = o(t−θ ) and |tαP(R < −t) − H | = o(t−θ ) as t → ∞,

where 0 ≤ H = (H+ + H−)/2 < ∞ is given by

H = 1

2µ

∫ ∞

0
xα−1

(
P(|R| > x) − E

[ N∑
j=1

1(|CjR| > x)

])
dx.

Remark 3.1. Note that, when N ≡ 1, then (3.1) and (3.2) need to only hold for σ = θ , since
in this case ∫ ∞

0
|P(±R > t) − P(±CR > t)|tα−1 dt

≤
∫ 1

0
tα−1 dt +

∫ ∞

1
|P(±R > t) − P(±CR > t)|tα+θ−1 dt

< ∞,

which is equivalent to conditions (3.7) and (3.9) in Theorems 3.2 and 3.3 of [7]. Furthermore,
for N ≡ 1, our condition E[|C|α(log |C|)2] < ∞ is weaker than E[|C|α+θ ] < ∞ in [7].
However, it is likely that in applications of this theorem to specific recursions one might need
to assume that E[∑N

1=1 |Ci |α+θ ] < ∞ in order to verify conditions (3.1) and (3.2).
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Lemma 3.2. Let α, b > 0 and 0 ≤ H < ∞. Suppose that, for some ε > 0,∣∣∣∣t−b

∫ t

0
bxα+b−1

P(R > x) dx − H

∣∣∣∣ = o(t−ε) as t → ∞.

Then

|tαP(R > t) − H | = o(t−ε) as t → ∞.

Proof. Fix δ ∈ (0, 1
2 ) and note that, as t → ∞,

P(R > t)btα+b (1 + δ)α+b − 1

α + b

≥
∫ (1+δ)t

t

bxα+b−1
P(R > x) dx

= ((1 + δ)t)b
(

((1 + δ)t)−b

∫ (1+δ)t

0
bxα+b−1

P(R > x) dx − H

)

− tb
(

t−b

∫ t

0
bxα+b−1

P(R > x) dx − H

)
+ H((1 + δ)t)b − Htb

= Htb((1 + δ)b − 1) + o(tb−ε).

Similarly,

P(R > t)btα+b 1 − (1 − δ)α+b

α + b

≤
∫ t

(1−δ)t

bxα+b−1
P(R > x) dx

= −((1 − δ)t)b
(

((1 − δ)t)−b

∫ (1−δ)t

0
bxα+b−1

P(R > x) dx − H

)

+ tb
(

t−b

∫ t

0
bxα+b−1

P(R > x) dx − H

)
− H((1 − δ)t)b + Htb

= Htb(1 − (1 − δ)b) + o(tb−ε).

Hence, it follows that

H

(
(α + b)((1 + δ)b − 1)

b((1 + δ)α+b − 1)
− 1

)
+ o(t−ε) ≤ P(R > t)tα − H

≤ H

(
(α + b)(1 − (1 − δ)b)

b(1 − (1 − δ)α+b)
− 1

)
+ o(t−ε).

Now choose δ = t−2ε and use the fact that (1 ± δ)c = 1 ± cδ + O(δ2) as δ → 0, to obtain

(α + b)((1 ± δ)b − 1)

b((1 ± δ)α+b − 1)
− 1 = (α + b)(bδ + O(δ2))

b((α + b)δ + O(δ2))
− 1 = 1 + O(δ)

1 + O(δ)
− 1 = O(δ) = o(t−ε)

as t → ∞.
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Proof of Theorem 3.1. Define the measures η+ and η− according to Lemma 3.1, and let

g+(t) = eαt

(
P(R > et ) − E

[ N∑
j=1

1(CjR > et )

])
,

g−(t) = eαt

(
P(R < −et ) − E

[ N∑
j=1

1(CjR < −et )

])
,

and r(t) = eαt
P(R > et ).

Fix b > θ > 0, and define, for any integrable function f , the operator

f̆ (t) =
∫ t

−∞
be−b(t−u)f (u) du.

Now, the same arguments used in the proof of Theorem 3.4 of [10] lead to

r̆(t) = e(U ∗ ğ)(t), (3.3)

where

e = (1, 0), ğ = (ğ+, ğ−)
�
, U =

∞∑
k=0

F ∗k, and F =
(

η+ η−
η− η+

)
.

Next, we proceed to verify the assumptions of Theorem 2 of [12].
Define ϕ(t) = eθt+ , and note that

r1 � lim
t→−∞

log ϕ(t)

t
= 0 and r2 � lim

t→∞
log ϕ(t)

t
= θ.

We will now show that provided (3.1) and (3.2) hold, ğ satisfies the following properties:

(a) ğ ∈ L1(R);

(b) ğ(t)ϕ(t) ∈ L∞(R);

(c) ğ(t)ϕ(t) → 0 as |t | → ∞ outside of a set of Lebesgue measure 0;

(d) ϕ(t)
∫ ∞
t

|ğ(x)|dx → 0 as t → ∞ and ϕ(t)
∫ t

−∞ |ğ(x)|dx → 0 as t → −∞.

For part (a), note that, by (3.1) and (3.2), we know that g± ∈ L1(R), so, by Lemma 9.2 of
[7], ğ± is directly Riemann integrable, and, in particular, ğ ∈ L1(R).

For part (b), note that

ğ±(t)ϕ(t) = be−bt+θt+
∫ t

−∞
ebug±(u) du

= be−bt+θt+
∫ t

−∞
e(b+α)u

(
P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

])
du

= be−bt+θt+
∫ et

0
xb+α−1

(
P((±1)R > x) − E

[ N∑
j=1

1((±1)CjR > x)

])
dx.
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Since, for 0 ≤ x ≤ et , we have xb ≤ e(b−θ)t xθ , it follows that

sup
t≥0

|ğ±(t)ϕ(t)| ≤ sup
t≥0

b

∫ et

0
xα+θ−1

∣∣∣∣P((±1)R > x) − E

[ N∑
j=1

1((±1)CjR > x)

]∣∣∣∣ dx

< ∞,

by (3.1) and (3.2). For the supremum over the negative reals, note that, since 0 ≤ x ≤ et , we
have xb ≤ ebt ; hence,

sup
t<0

|ğ±(t)ϕ(t)| ≤ sup
t<0

b

∫ et

0
xα−1

∣∣∣∣P((±1)R > x) − E

[ N∑
j=1

1((±1)CjR > x)

]∣∣∣∣ dx

< ∞.

To verify (c) for t → ∞, note that if∫ ∞

0
xb+α−1

∣∣∣∣P((±1)R > x) − E

[ N∑
j=1

1((±1)CjR > x)

]∣∣∣∣ dx < ∞

then we trivially have limt→∞ ğ±(t)ϕ(t) = 0; if it is infinite, we can apply l’Hôpital’s rule to
obtain

lim
t→∞ ğ±(t)ϕ(t) ≤ lim

t→∞
be(b+α−1)t |P((±1)R > et ) − E[∑N

j=1 1((±1)CjR > et )]|et

(b − θ)e(b−θ)t

= b

b − θ
lim

t→∞ e(α+θ)t

∣∣∣∣P((±1)R > et ) − E

[ N∑
j=1

1((±1)CjR > et )

]∣∣∣∣,
which is 0 by (3.1) and (3.2). The fact that limt→−∞ ğ±(t)ϕ(t) = 0 follows from the estimates
used to verify (b).

For part (d), note that, for t ≥ 0,

ϕ(t)

∫ ∞

t

|ğ±(x)| dx

= eθt

∫ ∞

t

∣∣∣∣be−bx

∫ x

−∞
e(b+α)u

(
P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

])
du

∣∣∣∣ dx

≤ beθt

∫ ∞

t

e−bx

∫ x

−∞
e(b+α)u

∣∣∣∣P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

]∣∣∣∣ du dx

= beθt

∫ ∞

−∞

∫ ∞

t∨u

e−bxe(b+α)u

∣∣∣∣P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

]∣∣∣∣ dx du

= eθt

∫ ∞

−∞
e−b(t∨u)e(b+α)u

∣∣∣∣P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

]∣∣∣∣ du

= e−(b−θ)t

∫ et

0
vb+α−1

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv
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+ eθt

∫ ∞

et

vα−1
∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv

≤ e−(b−θ)t

∫ et/2

0
vb+α−1

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv (3.4)

+
∫ ∞

et/2
vα+θ−1

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv, (3.5)

where in the last inequality we split the range of integration of the first integral into [0, et/2] and
[et/2, et ], and used the inequalities vb ≤ e(b−θ)t vθ for et/2 ≤ v ≤ et and eθt ≤ vθ for v ≥ et .
The integral in (3.5) converges to 0 as t → ∞ since it is the tail of a finite integral; the integral
in (3.4) is bounded by

e−(b−θ)t/2
∫ ∞

0
vα+θ−1

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv,

which also converges to 0 as t → ∞. Similarly, for t < 0,

ϕ(t)

∫ t

−∞
|ğ±(x)| dx

≤ b

∫ t

−∞
e−bx

∫ x

−∞
e(b+α)u

∣∣∣∣P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

]∣∣∣∣ du dx

=
∫ t

−∞
e(b+α)u

∣∣∣∣P((±1)R > eu) − E

[ N∑
j=1

1((±1)CjR > eu)

]∣∣∣∣(e−bu − e−bt ) du

=
∫ et

0
vb+α−1(v−b − e−bt )

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv

≤
∫ et

0
vα−1

∣∣∣∣P((±1)R > v) − E

[ N∑
j=1

1((±1)CjR > v)

]∣∣∣∣ dv

→ 0 as t → −∞.

We split the rest of the proof into two different cases.
Case 1: Ci ≥ 0 for all i. For this case, we have η− ≡ 0, from where it follows that

eU = (1, 0)

∞∑
k=0

(
η+ 0
0 η+

)∗k

= (1, 0)

(∑∞
i=1 η∗k+ 0

0
∑∞

k=0 η∗k+

)
=

( ∞∑
k=0

η∗k+ , 0

)
,

which in turn implies that

r̆(t) =
∞∑

k=0

(ğ+ ∗ η∗k+ )(t).
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We can then think of this case as a standard one-dimensional problem by renaming F = η+ and
U = ∑∞

k=0 η∗k+ . The ‘matrix’ F (R) is clearly irreducible and its spectral radius ρ[F (R)] = 1
(since η+ is a probability measure in this case). Also,

∫ ∞

−∞
xF (dx) =

∫ ∞

−∞
xη+(dx) = E

[ N∑
j=1

Cα
j log Cj

]
= µ ∈ (0, ∞).

We now note that, by Fubini’s theorem,

∫ 0

−∞
(1 + |x|)2ϕ(x)η+(dx) =

∫ 0

−∞
(1 + |x|)2eαx

E

[ N∑
i=1

1(log Ci ∈ dx)

]

= E

[ N∑
i=1

∫ ∞

0
(1 + |x|)2eαx 1(log Ci ∈ dx)

]

= E

[ N∑
i=1

Cα
i (1 + | log Ci |)2

]
,

which is finite by assumption. This observation, by the remarks preceding Theorem 2 of
[12], implies that T 2F ∈ S(ϕ), where, for any finite complex-valued measure ν, T ν is
defined as the σ -finite measure with density v(x; ν) � ν((x, ∞)) for x ≥ 0 and v(x; ν) � −
ν((−∞, x]) for x < 0, and S(ϕ) is the collection of all complex-valued measures κ such that∫ ∞
−∞ ϕ(x)|κ|(dx) < ∞, with |κ| the total variation of κ .

Then, by Theorem 2 of [12],

∣∣∣∣r̆(t) − 1

µ

∫ ∞

0
ğ+(x) dx

∣∣∣∣ =
∣∣∣∣U ∗ ğ+(t) − 1

µ

∫ ∞

0
ğ+(x) dx

∣∣∣∣ = o(e−θt ) as t → ∞.

To derive the result for P(R < −t), follow the same steps leading to (3.3) in the proof of
Theorem 3.4 of [10] but starting with a telescoping sum for P(−R > et ) instead, and defining
r(t) = eαt

P(R < −et ). Using the same arguments as above then gives

∣∣∣∣r̆(t) − 1

µ

∫ ∞

0
ğ−(x) dx

∣∣∣∣ =
∣∣∣∣U ∗ ğ−(t) − 1

µ

∫ ∞

0
ğ−(x) dx

∣∣∣∣ = o(e−θt ) as t → ∞.

We have thus shown that∣∣∣∣
∫ t

−∞
be−b(t−s)eαs

P(±R > es) ds − 1

µ

∫ ∞

0

∫ x

−∞
be−b(x−s)g±(s) ds dx

∣∣∣∣
=

∣∣∣∣e−bt

∫ et

0
bvα+b−1

P(±R > v) dv − 1

µ

∫ ∞

−∞
g±(s) ds

∣∣∣∣
=

∣∣∣∣e−bt

∫ et

0
bvα+b−1

P(±R > v) dv − H±
∣∣∣∣

= o(e−θt ) as t → ∞,
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where

H± � 1

µ

∫ ∞

−∞
g±(s) ds

= 1

µ

∫ ∞

−∞
eαt

(
P(±R > et ) − E

[ N∑
j=1

1((±1)CjR > et )

])
dt

= 1

µ

∫ ∞

0
xα−1

(
P(±R > x) − E

[ N∑
j=1

1((±1)CjR > x)

])
dx.

Therefore, by Lemma 3.2, we obtain

|tαP(±R > t) − H±| = o(t−θ ) as t → ∞.

Case 2: P(Cj < 0) > 0 for some j ≥ 1. For this case, η− is nonzero. Also, note that the
matrix

F (R) =
(

E[∑N
j=1 |Cj |α 1(Xj = 1)] E[∑N

j=1 |Cj |α 1(Xj = −1)]
E[∑N

j=1 |Cj |α 1(Xj = −1)] E[∑N
j=1 |Cj |α 1(Xj = 1)]

)
�

(
q 1 − q

1 − q q

)

is irreducible and has eigenvalues {1, 2q − 1}, and, therefore, spectral radius ρ[F (R)] = 1.
Moreover, (1, 1) and (1, 1)� are left and right eigenvectors of F (R), respectively, corresponding
to eigenvalue 1, and, by assumption,

(1, 1)

∫ ∞

−∞
xF (dx)

(
1
1

)
= 2

(∫ ∞

−∞
xη+(dx) +

∫ ∞

−∞
xη−(dx)

)

= 2E

[ N∑
j=1

|Cj |α log |Cj |
]

= 2µ ∈ (0, ∞).

Also, similarly as in the nonnegative case, we have

∫ 0

−∞
(1 + |x|)2ϕ(x)η±(dx) = E

[ N∑
i=1

|Ci |α(1 + | log |Ci ||)2 1(Xi = ±1)

]
,

which is finite by assumption. From the remarks preceding Theorem 2 of [12], it follows that
T 2F ∈ S(ϕ).

Then, by Theorem 2 of [12],∣∣∣∣U ∗ ğ(t) − (1, 1)�(1, 1)

2µ

∫ ∞

−∞
ğ(x) dx

∣∣∣∣ =
∣∣∣∣U ∗ ğ(t) − 1

2µ

(∫ ∞
−∞(ğ+(u) + ğ−(u)) du∫ ∞
−∞(ğ+(u) + ğ−(u)) du

)∣∣∣∣
= o(e−θt ) as t → ∞.

Hence, it follows from r̆(t) = eU ∗ ğ(t) that∣∣∣∣r̆(t) − 1

2µ

∫ ∞

−∞
(ğ+(u) + ğ−(u)) du

∣∣∣∣ =
∣∣∣∣e−bt

∫ et

0
bvα+b−1

P(R > v) dv − 1

2
(H+ + H−)

∣∣∣∣
= o(e−θt ) as t → ∞.
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Let H = (H+ + H−)/2, then, by Lemma 3.2,

|tαP(R > t) − H | = o(t−θ ) as t → ∞.

To derive the result for P(R < −t) simply start by defining r(t) = eαt
P(−R > et ), which

in this case leads to the same result as above, that is,

|tαP(R < −t) − H | = o(t−θ ) as t → ∞.

Finally, we note, by using the representations for H+ and H− from case 1, that

H = 1

2µ

∫ ∞

0
xα−1

(
P(R > x) − E

[ N∑
j=1

1(CjR > x)

])
dx

+ 1

2µ

∫ ∞

0
xα−1

(
P(R < −x) − E

[ N∑
j=1

1(CjR < −x)

])
dx

= 1

2µ

∫ ∞

0
xα−1

(
P(|R| > x) − E

[ N∑
j=1

1(|CjR| > x)

])
dx.
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