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Abstract

Correlated random walks provide an elementary model for processes that exhibit
directional reinforcement behavior. This paper develops optimal multiple stopping
strategies—buy/sell rules—for correlated random walks. The work extends previous
results given in Allaart and Monticino (2001) by considering random step sizes and
allowing possibly negative reinforcement of the walk’s current direction. The optimal
strategies fall into two general classes—cases where conservative buy-and-hold type
strategies are optimal and cases for which it is optimal to follow aggressive trading
strategies of successively buying and selling the commodity depending on whether the
price goes up or down. Simulation examples are given based on a stock index fund
to illustrate the variation in return possible using the theoretically optimal stop rules
compared to simpler buy-and-hold strategies.
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1. Introduction

This paper develops optimal multiple stopping strategies—buy/sell rules—for commodities
whose prices follow a generalized class of correlated random walks. The work extends previous
results given in Allaart and Monticino (2001) by considering random step sizes and allowing
for possibly negative reinforcement of a walk’s current direction. Interestingly, the optimal
strategies fall into two general classes—cases where a conservative buy-and-hold strategy
is optimal and cases for which it is optimal to follow a very aggressive trading strategy of
successively buying and selling the commodity depending on whether the price goes up or
down.

Define a random walk with correlation (RWC), {Sn}n≥0, by S0 ≡ s0 ∈ R and Sn = S0 +
X1 + · · · + Xn for n ≥ 1, where the increments X1, X2, . . . form a Markov sequence in the
following way. Let Yu and Yd be real-valued random variables with finite expectations. For
each n ∈ N, L(Xn+1 | Xn ≥ 0) = L(Yu) and L(Xn+1 | Xn < 0) = L(Yd), where L denotes
the probability law. Let p = P(Yu ≥ 0) and q = P(Yd < 0). (Assume that 0 < p, q < 1
to avoid uninteresting cases.) So, if the price goes up at time n, it will go up (or stay equal)
at time n + 1 with probability p and will go down with probability 1 − p. The distribution of
the price change at time n + 1 after a price increase at time n is L(Yu). Similarly, if the price
goes down at time n, it will go down at time n + 1 with probability q and will go up or stay the

Received 1 November 2005; revision received 3 January 2008.
∗ Postal address: Mathematics Department, University of North Texas, PO Box 311430, Denton, TX 76203-1430,
USA.
∗∗ Email address: allaart@unt.edu
∗∗∗ Email address: monticino@unt.edu

33

https://doi.org/10.1239/jap/1208358949 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358949


34 P. ALLAART AND M. MONTICINO

same with probability 1 − q. The distribution of the price change at time n + 1 given a price
decrease at time n is L(Yd).

The objective of this paper is to determine a sequence of buying and selling times that
maximize the investor’s expected return from trading a commodity whose price follows the
walk Sn, given an investment time horizon N and transaction cost c ≥ 0. That is, the goal is to
find stopping times

0 ≤ τ1 < τ2 < · · · < τ2m ≤ N,

such that if the commodity is bought at times τ2j−1 and sold at times τ2j then the expected
value of the total return

R(N) =
m∑

j=1

(Sτ2j
− Sτ2j−1) − 2mc

is maximized, where m is possibly random. Note that the investor incurs a transaction cost for
each trade whether it is a buy or a sell. Since the investor is required to sell the commodity by
time N if it is ever bought, each buy is paired with a sell.

Optimal trading strategies are developed for four basic cases of commodity price behavior.
The first is trivial: the price process is a supermartingale and the obvious optimal strategy is
never to buy. On the other hand, when the price process is a submartingale, it is optimal to
hold onto the commodity until the time horizon once the commodity is purchased. It is just
a question of whether to buy given the investment time horizon. The third case considered is
when the price is expected to decrease on the next step if the price went up on the previous stage,
and the price is expected to increase if the price went down on the previous stage. The form
of the optimal strategy depends on the transaction costs for this case. Either the commodity is
bought and sold a single time according to buy and sell signals or, if costs are low enough, it is
optimal to successively buy and sell according to the familiar investment axiom of ‘buying on
the dips and selling on the peaks’. The final case considered reverses the commodity behavior
and optimal strategies of the third case. Optimal strategies for all cases are given in the next
section.

The random walk model considered here is an immediate extension of the correlated random
walks introduced in Goldstein (1951). Basic properties of correlated random walks such as
transition probabilities and first passage times have been examined in a number of papers.
For instance, Seth (1963) gave return probabilities and first-passage time distributions for
symmetric correlated random walks. Jain (1971) generalized these results to the nonsymmetric
case. Renshaw and Henderson (1981) presented occupation probabilities and a diffusion
approximation. Gillis (1955) developed a d-dimensional version, and conjectured it to be
transient for all d ≥ 3. Gillis’ conjecture was proved in Iossif (1986) and then for more general
correlated random walks in Chen and Renshaw (1994). Other results on correlated random
walks and boundary problems include Proudfoot and Lampard (1972), Jain (1973), Mukherjea
and Steele (1987), Zhang (1992), and Böhm (2000).

Gambler ruin type problems for correlated random walks are examined in Mohan (1955)
and Mukherjea and Steele (1986). Optimal buy/sell strategies are developed for a more general
class of processes called directionally reinforced random walks inAllaart and Monticino (2001).
Results given there are extended here by allowing random step sizes and accounting for negative
reinforcement addressed by the ‘buy on the dips and sell on the peaks’ strategy. Allaart (2004)
examined the single stop problem of when to sell a commodity whose price follows a correlated
random walk in order to maximize the discounted return.

https://doi.org/10.1239/jap/1208358949 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358949


Optimal buy/sell rules for correlated random walks 35

Other applications using correlated random walks include Goldstein (1951), where certain
physical diffusion processes were modeled, and Henderson and Renshaw (1980) in which
tree root growth was examined. Renshaw and Henderson (1981) studied the behavior of a
certain kind of pinball machine. Mauldin et al. (1996) used the more general directionally
reinforced random walks as an elementary model of ocean surface waves. A comprehensive
list of references for correlated random walks is given in Chen and Renshaw (1994).

The problem explored here is motivated by the popular notion among proponents of stock
market technical analysis that movements in security prices are not memoryless. In particular,
price changes—up or down—from one day to the next affect succeeding day changes. Various
assertions are given to justify this idea of price momentum, such as fundamental information
about a company ripples out from insiders to investment professionals to individual investors.
As this happens, the theory goes that the stock price is pushed ever higher if the information
is favorable, or lower if the news is bad. Of course, it is far from agreed that the market
consistently exhibits any behavior other than a random walk about an underlying trend (see,
for instance, Malkiel (1999)). Regardless of one’s belief in this postulated market phenomena,
very little seems to be known about optimal stopping for processes exhibiting momentum.
The intention here is not to take a stand on the existence of price momentum in the market,
but to gain insight into how an investor might take advantage of momentum, if present, by
examining a simple model of such processes. In Section 3 we illustrate the strategies developed
through the behavior of a stock index fund. Using a model based on the price history of the
fund, simulation results are given which indicate the variation in return possible from using
theoretically optimal stop rules. The simulations also compare the performance of optimal stop
rules to simpler buy-and-hold strategies.

2. Optimal buy/sell strategies

In this section we present optimal buy/sell strategies. As mentioned above, there are
four main cases that determine the form of the optimal strategy. Some necessary notation
is developed first.

Let E+ := E[Yu] and E− := E[Yd ]. Define the total correlation by r := p + q − 1 and the
drift by

δ := (1 − q)E+ + (1 − p)E−

1 − r
.

Recall that each purchase of the commodity is paired with a sell. So, without loss of
generality, assume that a single transaction cost C representing total buying and selling costs
is (only) assessed when the commodity is bought.

For j ∈ N, let V +
H (j) denote the optimal expected additional net gain when there are

j time periods remaining, when the last increment was nonnegative, and when after seeing
that increment, a decision was made resulting in the commodity now being held. Let V +

F (j)

denote the same, except that after the last decision moment, the commodity is not being held
(‘free’ state). Similarly, define V −

H (j) and V −
F (j), replacing ‘nonnegative’ with ‘negative’.

For convenience, define V +
H (0) = V −

H (0) = V +
F (0) = V −

F (0) = 0. The following recursive
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relationships hold:

V +
H (j + 1) = E+ + p max{V +

H (j), V +
F (j)} + (1 − p) max{V −

H (j), V −
F (j)}, (1)

V +
F (j + 1) = p max{V +

H (j) − C, V +
F (j)} + (1 − p) max{V −

H (j) − C, V −
F (j)}, (2)

V −
H (j + 1) = E− + (1 − q) max{V +

H (j), V +
F (j)} + q max{V −

H (j), V −
F (j)}, (3)

V −
F (j + 1) = (1 − q) max{V +

H (j) − C, V +
F (j)} + q max{V −

H (j) − C, V −
F (j)}. (4)

Lemma 1, below, collects some elementary properties of the functions defined above. The
straightforward proofs are omitted.

Lemma 1. (a) V +
H (j), V +

F (j), V −
H (j), and V −

F (j) are all nondecreasing in j .

(b)V +
F (j) ≥ 0 and V −

F (j) ≥ 0 for all j .

(c) If E+ ≥ 0 then V +
H (j) ≥ V +

F (j) for all j . If E− ≥ 0 then V −
H (j) ≥ V −

F (j) for all j .

(d) If E+ ≤ 0 then V +
H (j) − C ≤ V +

F (j) for all j . If E− ≤ 0 then V −
H (j) − C ≤ V −

F (j)

for all j .

(e) If E+ ≥ E− then V +
H (j) ≥ V −

H (j) and V +
F (j) ≥ V −

F (j) for all j . If E+ ≤ E−, the
reverse inequalities hold.

Next, define the differences

D+(j) := V +
H (j) − V +

F (j), D−(j) := V −
H (j) − V −

F (j),

DH(j) := V +
H (j) − V −

H (j), DF(j) := V +
F (j) − V −

F (j).

Observe that with j time periods remaining, it is optimal to buy after an up-step if and only if
D+(j) ≥ c and it is optimal to buy after a down-step if and only if D−(j) ≥ c.

Lemma 2. (a) If E+ ≥ E− then D+(j) ≥ D−(j) for all j ≥ 0.

(b) If E+ ≤ E− then D+(j) ≤ D−(j) for all j ≥ 0.

Proof. Assume that E+ ≥ E−. For j ≥ 0, define

�(j) = max{V +
H (j), V +

F (j)} − max{V −
H (j), V −

F (j)}
− max{V +

H (j) − C, V +
F (j)} + max{V −

H (j) − C, V −
F (j)}.

It will be shown inductively that, for all j ∈ N,

D+(j) ≥ D−(j), �(j − 1) ≥ 0. (5)

Since D+(1) − D−(1) = E+ − E− and �(0) = 0, (5) holds for j = 1. Assume that it holds
for j = k. Then, by (1)–(4),

D+(k + 1) − D−(k + 1) = DH(k + 1) − DF(k + 1)

= E+ − E− + r�(k). (6)

If V −
H (k) − C ≥ V −

F (k) then V +
H (k) − C ≥ V +

F (k) by the induction hypothesis and �(k) = 0.
Likewise, if V +

H (k) ≤ V +
F (k) then V −

H (k) ≤ V −
F (k) and again �(k) = 0. In both cases (5)

clearly holds for j = k + 1. Assume, therefore, that

V −
H (k) − C < V −

F (k) and V +
H (k) > V +

F (k). (7)
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Then
�(k) = min{D+(k), C} − max{D−(k), 0}. (8)

This, along with the induction hypothesis and (7), implies that �(k) ≥ 0. If r ≥ 0, this
immediately yields D+(k + 1) ≥ D−(k + 1). If r < 0 then, by (8) and the induction
hypothesis,

�(k) ≤ D+(k) − D−(k) = E+ − E− + r�(k − 1) ≤ E+ − E−. (9)

Since r ≥ −1, substituting (9) into (6) yields D+(k + 1) ≥ D−(k + 1). This proves part (a).
The proof of part (b) is analogous.

Theorem 1. If it is optimal to buy after an up-step with j time periods remaining then it is
optimal to buy after an up-step with j + 1 time periods remaining. The analogous statement
holds for buying after a down-step.

Proof. Suppose that D+(j) ≥ C. By Lemma 1(d), this implies that E+ ≥ 0. Thus, if
V −

H (j) − C ≥ V −
F (j) then (1) and (2) immediately yield D+(j + 1) ≥ C. Suppose, therefore,

that V −
H (j)−C < V −

F (j). By Lemma 2, this implies that E+ ≥ E− and, hence, by Lemma 1(e),
V +

F (j) ≥ V −
F (j). Now V +

H (j + 1) ≥ V +
H (j) and

V +
F (j + 1) = p{V +

H (j) − C} + (1 − p)V −
F (j)

≤ p{V +
H (j) − C} + (1 − p)V +

F (j),

so that
D+(j + 1) ≥ (1 − p){V +

H (j) − V +
F (j)} + pC ≥ C.

This completes the proof for buying after an up-step. The proof for buying after a down-step is
similar.

The optimal buy/sell strategies are as follows.

Case I: E+ ≤ 0 and E− ≤ 0. The price process, Sn, is a supermartingale in this case. Thus,
the optimal strategy is not to buy the commodity at all.

Case II: E+ > 0 and E− > 0. In this case the price process is a submartingale. Hence, once
the commodity is bought, it is optimal to hold it until the time horizon. The question is whether
to buy the commodity. Intuitively, the commodity should be bought only if there is enough
time between purchase and the time horizon for the positive drift of the walk to generate an
expected gain greater than the transaction cost.

In this case (1) and (3) simplify to

V +
H (j + 1) = E+ + pV +

H (j) + (1 − p)V −
H (j), (10)

V −
H (j + 1) = E− + (1 − q)V +

H (j) + qV −
H (j). (11)

Hence,
DH(j + 1) = rDH(j) + (E+ − E−), j ≥ 0.

Since DH(0) = 0, it follows that

DH(j) = E+ − E−

1 − r
(1 − rj ), j ≥ 0.
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Substituting V −
H (j) = V +

H (j) − DH(j) into (10) and iterating gives

V +
H (j) =

j∑
k=1

(E+ − (1 − p)DH(k − 1)), j ∈ N.

Thus, after some manipulations,

V +
H (j) = δj + (1 − p)(E+ − E−)

(1 − r)2 (1 − rj ), j ∈ N, (12)

and

V −
H (j) = δj − (1 − q)(E+ − E−)

(1 − r)2 (1 − rj ), j ∈ N. (13)

There are two subcases.

Subcase II(a): E+ ≥ E−. Let j+ be the smallest j for which D+(j) ≥ C, and let j− be
the smallest j for which D−(j) ≥ C. Then j+ ≤ j− by Lemma 2, and an easy induction
argument shows that V +

F (j) = V −
F (j) = 0 for all j ≤ j+. Thus, j+ is the smallest j such

that V +
H (j) ≥ C. Since δ > 0, such a j exists by (12).

If V −
H (j+) ≥ C then j− = j+. Otherwise, let j+ ≤ j < j−. Then

V −
F (j + 1) = (1 − q){V +

H (j) − C} + qV −
F (j),

so, by (3),
D−(j + 1) = qD−(j) + E− + (1 − q)C.

Since
D−(j+) = V −

H (j+) − V −
F (j+) = V −

H (j+),

it follows that, for all j+ < j ≤ j−,

D−(j) = {V −
H (j+) − b−}qj−j+ + b−, b− := E−

1 − q
+ C. (14)

Hence, j− is the smallest j ≥ j+ such that {V −
H (j+)−b−}qj−j+ +b− ≥ C. Since b− > C,

j− is finite.
In summary, to determine whether to buy the commodity, first find j+, the smallest j such

that V +
H (j) ≥ C, using (12). Compute V −

H (j+) using (13). Then use (14) to find j−, the
smallest j ≥ j+ such that D−(j) ≥ C. Now, with j time periods remaining, it is optimal to
buy after an up-step if and only if j ≥ j+ and it is optimal to buy after a down-step if and
only if j ≥ j−. Again, the commodity is held until the time horizon if it is purchased.

Subcase II(b): E+ < E−. Here the order of j+ and j− is reversed. First, find j−, the smallest
j such that V −

H (j) ≥ C, using (13). Compute V +
H (j−) using (12). Then use the formula

D+(j) = {V +
H (j−) − b+}pj−j− + b+, b+ := E+

1 − p
+ C,

to find j+, the smallest j ≥ j− such that D+(j) ≥ C. Finally, use j+ and j− as in
Subcase II(a).
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Case III: E+ ≤ 0, E− > 0. This case and the next are the most interesting as the optimal
strategies may involve multiple trades in and out of the commodity. Some additional definitions
are needed before specifying the optimal strategies.

Define

js := inf

{
j ≥ 1 : 1 − qj ≥ (1 − q)|E+|

(1 − p)E−

}
, (15)

where the infimum of an empty set is taken to be ∞. Let

f −(j) :=

⎧⎪⎪⎨
⎪⎪⎩

1 − qj

1 − q
E−, j ≤ js + 1,

(j − js − 1)δ + r(qjs E− − δ)
1 − rj−js−1

1 − r
+ 1 − qjs+1

1 − q
E−, j > js + 1,

and define
jb := inf{j ≥ 1 : f −(j) ≥ C}. (16)

It is not difficult to see that js is finite if and only if δ > 0. Similarly, jb is finite if and only if
δ > 0 or E− > C(1 − q).

Theorem 2. If E+ ≤ 0 and E− > 0 then the optimal strategy is

(i) never sell after a down-step;

(ii) never buy after an up-step;

(iii) buy after a down-step if and only if there are at least jb time periods remaining;

(iv) sell after an up-step if and only if |E+| ≥ C(1 − p) or the number of remaining time
periods is at most min(jb, js).

Proof. Parts (i) and (ii) of the optimal strategy follow directly from Lemma 1(c) and
Lemma 1(d), respectively. To prove parts (iii) and (iv), let j∗ be the smallest value of j

(possibly infinite) such that D−(j) ≥ C. Since V +
F (j) = V −

F (j) = 0 for j ≤ j∗, it follows
that j∗ is in fact the smallest j such that V −

H (j) ≥ C. It will now be shown that j∗ = jb. There
are again two subcases.

Subcase III(a): |E+| ≥ C(1 − p). In this case

V +
H (j) ≤ V +

F (j) for all j . (17)

This follows by a routine induction argument. In particular, V +
H (1) = E+ ≤ 0 = V +

F (1). If
V +

H (j) ≤ V +
F (j) for some j then, since V −

H (j) ≥ V −
F (j),

V +
H (j + 1) = pV +

F (j) + (1 − p)V −
H (j) + E+,

V +
F (j + 1) ≥ pV +

F (j) + (1 − p){V −
H (j) − C}, (18)

so that
V +

H (j + 1) − V +
F (j + 1) ≤ E+ + (1 − p)C ≤ 0.

By (17), it is always optimal to sell after an up-step. Hence, part (iv) of the optimal strategy
follows for the case in which |E+| ≥ C(1 − p).

Next, (17) implies that, for k < j∗,

V −
H (k + 1) = E− + (1 − q)V +

F (k) + qV −
H (k) = E− + qV −

H (k). (19)
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Hence,

V −
H (j) = 1 − qj

1 − q
E−, 1 ≤ j ≤ j∗, (20)

and it follows that

j∗ = inf

{
j : 1 − qj

1 − q
E− ≥ C

}
. (21)

Since |E+| ≥ C(1 − p), (15) and (21) imply that j∗ ≤ js . Hence, by (16) and the definition
of f −(j), j∗ = jb. This establishes part (iii) of the optimal strategy for the case in which
|E+| ≥ C(1 − p).

Subcase III(b): |E+| < C(1 − p). If j ≥ j∗, then equality holds in (18), so that

V +
H (j + 1) − V +

F (j + 1) ≥ E+ + C(1 − p) > 0. (22)

Thus, if the commodity is being held after an up-step with more than j∗ time periods
remaining, it is optimal to hold it for at least one more time period.

Next, let j < j∗ be fixed, and suppose that V +
H (k) ≤ 0 for k = 1, . . . , j . Then

V +
H (j + 1) = E+ + (1 − p)V −

H (j).

Since j < j∗, (19) holds for k = 0, 1, . . . , j . Hence, V −
H (j) is given by (20), so the

following equivalences hold:

V +
H (j + 1) ≥ 0 ⇐⇒ V −

H (j) ≥ |E+|
1 − p

⇐⇒ j ≥ js. (23)

If j∗ ≤ js then (23) implies that V +
H (j) < 0 for all j ≤ j∗, which means that (20) holds

for all j ≤ j∗. Hence,

j∗ = inf

{
j : 1 − qj

1 − q
E− ≥ C

}
= jb.

If j∗ > js then (20) holds for 1 ≤ j ≤ js +1. However, (23) shows that with js +1 or more
time periods remaining, it is no longer optimal to sell after an up-step, so that the calculation
of V −

H (j) is different when j > js + 1. In fact, for js < j < j∗, V +
H (j) and V −

H (j) satisfy
the difference equations (10) and (11), but with different initial conditions. Specifically,

V −
H (js + 1) = 1 − qjs+1

1 − q
E− (by (20))

and

V +
H (js + 1) = E+ + pV +

F (js) + (1 − p)V −
H (js)

= E+ + (1 − p)
1 − qjs

1 − q
E−

(again by (20) and the fact that V +
F (js) = 0, since js < j∗). Define

D(k) := D+
H (k + js + 1), k = 0, 1, 2, . . . .
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Then D(k) = rD(k − 1) + (E+ − E−) for k = 1, 2, . . . , j∗ − js − 1 and, hence,

D(k) = rkD(0) + (E+ − E−)
1 − rk

1 − r
, k = 1, 2, . . . , j∗ − js − 1, (24)

where

D(0) = V +
H (js + 1) − V −

H (js + 1)

= E+ + (1 − p)
1 − qjs

1 − q
E− − 1 − qjs+1

1 − q
E−

= E+ + rqjs − p

1 − q
E−. (25)

Now substituting V +
H (j) = V −

H (j) + D(j − js − 1) into (11) gives

V −
H (j + 1) = V −

H (j) + (1 − q)D(j − js − 1) + E−, j = js + 1, . . . , j∗ − 1.

Iterating this recursive relationship yields, for j = js + 2, . . . , j∗,

V −
H (j) = V −

H (js + 1) +
j−js−1∑

k=1

(E− + (1 − q)D(k − 1)). (26)

After straightforward calculations using (24), (25), and the definitions of r and δ, (26)
reduces to

V −
H (j) = (j − js − 1)δ + r(qjs E− − δ)

1 − rj−js−1

1 − r
+ 1 − qjs+1

1 − q
E−.

Thus, for all j ≤ j∗, V −
H (j) = f −(j), and it follows that j∗ = jb, which proves part (iii) of

the optimal strategy. Part (iv) follows from the comment following (22) and the equivalences
(23) (which hold for j < j∗).

This completes the proof.

Case IV: E+ > 0 and E− ≤ 0. This case is a mirror image of case III, and can be treated in
the same way. The optimal strategy is stated formally in Theorem 3, below.

Analogous to case III, define

js := inf

{
j ≥ 1 : 1 − pj ≥ (1 − p)|E−|

(1 − q)E+

}
.

Let

f +(j) :=

⎧⎪⎪⎨
⎪⎪⎩

1 − pj

1 − p
E−, j ≤ js + 1,

(j − js − 1)δ + r(pjs E+ − δ)
1 − rj−js−1

1 − r
+ 1 − pjs+1

1 − p
E+, j > js + 1,

and define
jb := inf{j ≥ 1 : f +(j) ≥ C}.
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Theorem 3. If E+ > 0 and E− ≤ 0 then the optimal strategy is

(i) never sell after an up-step;

(ii) never buy after a down-step;

(iii) buy after an up-step if and only if there are at least jb time periods remaining;

(iv) sell after a down-step if and only if |E−| ≥ C(1 − q) or the number of remaining time
periods is at most min(jb, js).

3. Examples of return variance

In this section we present simulation results to illustrate the variance in return possible when
applying optimal trading strategies. Some questions for further study are also mentioned after
the simulation results. Simulations are based on data from a mutual fund that tracks the common
stock performance of the 1000 largest publicly traded U.S. companies—the Schwab 1000 index
fund (SNXFX). The intention is not to advocate that this fund or any commodity necessarily
obeys a random walk with correlation. Rather, the example provides motivation for exploring
what sort of return variance could be expected if the trading strategies were applied under the
RWC assumption. Since the exact distribution on return is difficult to compute even for simple
distributions of Yu and Yd , simulation is used in the examples given here.

The RWC model used in the simulations is based on the daily closing price of the SNXFX
fund from December 1, 2006 to November 30, 2007. Over that time period, after a decrease in
share price, the change in share price the next day averaged 0.087 with a standard deviation of
0.421. After an increase in share price, the change in share price the next day averaged −0.048
with a standard deviation of 0.396. The distributions of price change following a decrease or
an increase in share price are unimodal and reasonably approximated by a normal distribution.
In the simulation it was assumed that for any trade—buying or selling—1000 shares were
traded. So, motivated by the data, an RWC model with Yu ∼ N (−48, 396), p = 0.452,
Yd ∼ N (87, 421), and q = 0.418 was used. Here, N (µ, σ ) denotes a normal distribution with
mean µ and standard deviation σ .

The optimal strategy given by Theorem 2 was applied over a time horizon of N = 60. For
the assumed distributions on Yu and Yd , the optimal strategy will buy after a down-step and
sell after an up-step whenever the transaction costs, C, are below 87. For C < 87, jb = 2
and js = 1. The buy-and-hold strategy buys 1000 shares of the fund on the first day and holds
them until they are sold at the time horizon. Simulations (100 000 Monte Carlo points and
the walk assumed to have taken a down-step at time 0) were performed for several values of
C < 87. For C = 0, the average return for the buy-and-hold strategy was 1114 with a standard
deviation of 2817, while the average return for the optimal strategy was 2462 with a standard
deviation of 2094. Moreover, for this case, the optimal strategy outperformed the buy-and-hold
strategy more than 70% of the time. The distribution of return for the optimal strategy is shown
in Figure 1 for C = 0. While the optimal strategy significantly improves upon the average
return observed for the buy-and-hold strategy, both strategies have fairly large deviations in
return. For C = 10, the average return for the optimal strategy was 2308 with a standard
deviation of 2074; for C = 20, the average return was 2126 with a standard deviation of 2072;
for C = 40, the average return was 1794 with a standard deviation of 2051; and, for C = 80,
the average return was 1149 with a standard deviation of 2020. The examples indicate that, as
transaction costs increase, the average performances of the buy-and-hold and optimal strategies
become similar. Moreover, the buy-and-hold strategy becomes nearly as likely to outperform
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Figure 1: Distribution of return for the optimal strategy for C = 0 and N = 60 (100 000 Monte Carlo
points). The mean return was 2462 with a standard deviation of 2094.

the optimal strategy as the optimal strategy is to outperform the buy-and-hold strategy—the
buy-and-hold strategy outperforms the optimal strategy 47% of the time for C = 80.

It is a bit surprising that the standard deviation in return was lower for the more aggressive
optimal strategies than for the buy-and-hold strategies, for all the cases considered. It would be
interesting to determine if it is true in general that the variance in return of the optimal strategy
is smaller than for the buy-and-hold strategy. Some other natural questions to pursue include
the following.

• Many commodity funds place a limit on the number of trades that can occur within a
given time. What are optimal strategies given a bound on the number of trades?

• How does a (tax) penalty for rapid buying and selling affect the form of the optimal
trading strategy?

• What is the optimal strategy if there is a (dividend) reward for holding the commodity at
certain times?

• The optimal strategies given here assume that the same number of units of the commodity
are bought and sold each time. What is the optimal strategy when the number of units
traded is allowed to vary?
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