LETTER TO THE EDITOR

Dear Editor,

An intuitive insight into a result of Cowan

Motivated by a problem in DNA replication, Cowan (2001) considered a sequence of water springs distributed along a straight road out of town according to a Poisson process of rate λ. An infinite team of workers leaves the town at constant speed r; on reaching any spring, one worker peels off and builds a pipe back towards town at rate c. The first worker stops when he reaches town, later ones stop when they reach the previous spring.

Given $t>0$, let N_{t} be the number of workers building at time t, and let $g_{j}(t)=\mathrm{P}\left(N_{t}=j\right)$, $g_{j}=\lim _{t \rightarrow \infty} g_{j}(t)$, and $\phi(s)=\sum_{j \geq 0} g_{j} s^{j}$, the corresponding probability generating function of the asymptotic number actually building. Cowan showed that $\phi(s)=\prod_{n \geq 1}\left(1+(s-1) b^{n}\right)$, where $b=r /(c+r)$, and noted that, if $\left\{I_{n}\right\}$ are independent $\operatorname{Bernoulli}\left(b^{n}\right)$ variables, then ϕ is the probability generating function of $\sum_{n \geq 1} I_{n}$. We give here an intuitive explanation of this elegant representation.

Suppose that $\left\{X_{i}: i=1,2, \ldots\right\}$ are independent $\operatorname{Exp}(\lambda)$ variables, i.e. exponential with mean $1 / \lambda$, representing the distance between successive springs, and let $S_{n}=\sum_{i=1}^{n} X_{i}$, so that $S_{1}<S_{2}<\cdots$ denote the positions of the springs. Let $A_{t}=\max \left\{n: S_{n}<r t\right\}$ be the label of the last spring found before time t. When $A_{t} \geq 1$, define $Y_{0}(t)=r t-S_{A_{t}}$ and write $Y_{n}(t)=X_{A_{t}+1-n}$ for each $n=1,2, \ldots, A_{t}$. Then $N_{t}=\sum_{n \geq 1} I_{n}(t)$, where

$$
I_{n}(t)= \begin{cases}1 & \text { if } Y_{n}(t)>\frac{c\left(Y_{0}(t)+Y_{1}(t)+\cdots+Y_{n-1}(t)\right)}{r} \\ 0 & \text { otherwise }\end{cases}
$$

We seek the asymptotic distribution of N_{t}. Note that the variates $\left\{Y_{i}(t): i \geq 0\right\}$ are not independent and have a complicated joint distribution. As $t \rightarrow \infty$, however, it is intuitively clear that these variates are asymptotically independent and $\operatorname{Exp}(\lambda)$ distributed. Formal passage to the limit of $I_{n}(t)$ is difficult but, by using the intuitively clear asymptotics for the Y variates, we can describe the limiting properties of $\left\{I_{n}(t)\right\}$: let Y_{0}, Y_{1}, \ldots be independent $\operatorname{Exp}(\lambda)$ variables, and write $N=\sum_{n \geq 1} I_{n}$, where

$$
I_{n}= \begin{cases}1 & \text { if } Y_{n}>\frac{c\left(Y_{0}+Y_{1}+\cdots+Y_{n-1}\right)}{r} \\ 0 & \text { otherwise }\end{cases}
$$

It is straightforward to show that $\mathrm{P}\left(I_{n}=1\right)=b^{n}$, as Y_{n} is independent of $Y_{0}+Y_{1}+\cdots+Y_{n-1}$, which has a gamma density. For independence, it is sufficient to show that $\mathrm{P}\left(I_{1}=1, I_{2}=1\right.$, $\left.\ldots, I_{n}=1\right)=\mathrm{P}\left(I_{1}=1\right) \mathrm{P}\left(I_{2}=1\right) \cdots \mathrm{P}\left(I_{n}=1\right)$ for all $n \geq 1$. We do this explicitly for the case $n=3$: the general case follows by the same method. Plainly, we may take $\lambda=1$. Now, $\mathrm{P}\left(I_{1}=1, I_{2}=1, I_{3}=1\right)$ is the same as

$$
\mathrm{P}\left(Y_{1}>\frac{c Y_{0}}{r}, Y_{2}>\frac{c\left(Y_{0}+Y_{1}\right)}{r}, Y_{3}>\frac{c\left(Y_{0}+Y_{1}+Y_{2}\right)}{r}\right),
$$

[^0]which can be written as an integral and then evaluated as
\[

$$
\begin{aligned}
\int_{0}^{\infty} & \mathrm{e}^{-y_{0}} \int_{c y_{0} / r}^{\infty} \mathrm{e}^{-y_{1}} \int_{c\left(y_{0}+y_{1}\right) / r}^{\infty} \mathrm{e}^{-y_{2}} \int_{c\left(y_{0}+y_{1}+y_{2}\right) / r}^{\infty} \mathrm{e}^{-y_{3}} \mathrm{~d} y_{3} \mathrm{~d} y_{2} \mathrm{~d} y_{1} \mathrm{~d} y_{0} \\
& =\int_{0}^{\infty} \mathrm{e}^{-y_{0} / b} \int_{c y_{0} / r}^{\infty} \mathrm{e}^{-y_{1} / b} \int_{c\left(y_{0}+y_{1}\right) / r}^{\infty} \mathrm{e}^{-y_{2} / b} \mathrm{~d} y_{2} \mathrm{~d} y_{1} \mathrm{~d} y_{0} \\
& =b \int_{0}^{\infty} \mathrm{e}^{-y_{0} / b^{2}} \int_{c y_{0} / r}^{\infty} \mathrm{e}^{-y_{1} / b^{2}} \mathrm{~d} y_{1} \mathrm{~d} y_{0} \\
& =b \cdot b^{2} \int_{0}^{\infty} \mathrm{e}^{-y_{0} / b^{3}} \mathrm{~d} y_{0} \\
& =b \cdot b^{2} \cdot b^{3} \\
& =\mathrm{P}\left(I_{1}=1\right) \mathrm{P}\left(I_{2}=1\right) \mathrm{P}\left(I_{3}=1\right)
\end{aligned}
$$
\]

Reference

Cowan, R. (2001). A new discrete distribution arising in a model of DNA replication. J. Appl. Prob. 38, 754-760.

Yours sincerely,
John Haigh
Centre for Statistics and Stochastic Modelling
School of Mathematical Sciences
University of Sussex
Falmer
Brighton BN1 9QH
UK
Email address: j.haigh@sussex.ac.uk

[^0]: Received 27 May 2002; revision received 10 December 2002.

