J. Appl. Prob. **40**, 271–272 (2003) Printed in Israel © Applied Probability Trust 2003

LETTER TO THE EDITOR

Dear Editor,

An intuitive insight into a result of Cowan

Motivated by a problem in DNA replication, Cowan (2001) considered a sequence of water springs distributed along a straight road out of town according to a Poisson process of rate λ . An infinite team of workers leaves the town at constant speed r; on reaching any spring, one worker peels off and builds a pipe back towards town at rate c. The first worker stops when he reaches town, later ones stop when they reach the previous spring.

Given t > 0, let N_t be the number of workers building at time t, and let $g_j(t) = P(N_t = j)$, $g_j = \lim_{t\to\infty} g_j(t)$, and $\phi(s) = \sum_{j\geq 0} g_j s^j$, the corresponding probability generating function of the asymptotic number actually building. Cowan showed that $\phi(s) = \prod_{n\geq 1} (1 + (s-1)b^n)$, where b = r/(c+r), and noted that, if $\{I_n\}$ are independent Bernoulli (b^n) variables, then ϕ is the probability generating function of $\sum_{n\geq 1} I_n$. We give here an intuitive explanation of this elegant representation.

Suppose that $\{X_i : i = 1, 2, ...\}$ are independent $\text{Exp}(\lambda)$ variables, i.e. exponential with mean $1/\lambda$, representing the distance between successive springs, and let $S_n = \sum_{i=1}^n X_i$, so that $S_1 < S_2 < \cdots$ denote the positions of the springs. Let $A_t = \max\{n : S_n < rt\}$ be the label of the last spring found before time t. When $A_t \ge 1$, define $Y_0(t) = rt - S_{A_t}$ and write $Y_n(t) = X_{A_t+1-n}$ for each $n = 1, 2, ..., A_t$. Then $N_t = \sum_{n>1} I_n(t)$, where

$$I_n(t) = \begin{cases} 1 & \text{if } Y_n(t) > \frac{c(Y_0(t) + Y_1(t) + \dots + Y_{n-1}(t))}{r}, \\ 0 & \text{otherwise.} \end{cases}$$

We seek the asymptotic distribution of N_t . Note that the variates $\{Y_i(t) : i \ge 0\}$ are not independent and have a complicated joint distribution. As $t \to \infty$, however, it is intuitively clear that these variates are asymptotically independent and $\text{Exp}(\lambda)$ distributed. Formal passage to the limit of $I_n(t)$ is difficult but, by using the intuitively clear asymptotics for the Y variates, we can describe the limiting *properties* of $\{I_n(t)\}$: let Y_0, Y_1, \ldots be independent $\text{Exp}(\lambda)$ variables, and write $N = \sum_{n>1} I_n$, where

$$I_n = \begin{cases} 1 & \text{if } Y_n > \frac{c(Y_0 + Y_1 + \dots + Y_{n-1})}{r}, \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to show that $P(I_n = 1) = b^n$, as Y_n is independent of $Y_0+Y_1+\cdots+Y_{n-1}$, which has a gamma density. For independence, it is sufficient to show that $P(I_1 = 1, I_2 = 1, \dots, I_n = 1) = P(I_1 = 1) P(I_2 = 1) \cdots P(I_n = 1)$ for all $n \ge 1$. We do this explicitly for the case n = 3: the general case follows by the same method. Plainly, we may take $\lambda = 1$. Now, $P(I_1 = 1, I_2 = 1, I_3 = 1)$ is the same as

$$P\bigg(Y_1 > \frac{cY_0}{r}, Y_2 > \frac{c(Y_0 + Y_1)}{r}, Y_3 > \frac{c(Y_0 + Y_1 + Y_2)}{r}\bigg),$$

Received 27 May 2002; revision received 10 December 2002.

which can be written as an integral and then evaluated as

$$\int_{0}^{\infty} e^{-y_{0}} \int_{cy_{0}/r}^{\infty} e^{-y_{1}} \int_{c(y_{0}+y_{1})/r}^{\infty} e^{-y_{2}} \int_{c(y_{0}+y_{1}+y_{2})/r}^{\infty} e^{-y_{3}} dy_{3} dy_{2} dy_{1} dy_{0}$$

$$= \int_{0}^{\infty} e^{-y_{0}/b} \int_{cy_{0}/r}^{\infty} e^{-y_{1}/b} \int_{c(y_{0}+y_{1})/r}^{\infty} e^{-y_{2}/b} dy_{2} dy_{1} dy_{0}$$

$$= b \int_{0}^{\infty} e^{-y_{0}/b^{2}} \int_{cy_{0}/r}^{\infty} e^{-y_{1}/b^{2}} dy_{1} dy_{0}$$

$$= b \cdot b^{2} \int_{0}^{\infty} e^{-y_{0}/b^{3}} dy_{0}$$

$$= b \cdot b^{2} \cdot b^{3}$$

$$= P(I_{1} = 1) P(I_{2} = 1) P(I_{3} = 1).$$

Reference

COWAN, R. (2001). A new discrete distribution arising in a model of DNA replication. J. Appl. Prob. 38, 754-760.

Yours sincerely,

JOHN HAIGH

Centre for Statistics and Stochastic Modelling School of Mathematical Sciences University of Sussex Falmer Brighton BN1 9QH UK

Email address: j.haigh@sussex.ac.uk