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LEFSCHETZ NUMBERS AND UNITARY GROUPS

K.F. LAI

We give a formula for the Euler-Poincare characteristic of the fixed point set of the
Cartan involution on the set of integral equivalence classes of integral unimodular
hermitian forms, in terms of a product of special values of Riemann zeta functions
and Dirichlet L-functions. This is done via reduction by Galois cohomology to a
volume computation using the Tamagawa measure on the unitary groups.

1. INTRODUCTION

(1.1). Rohlfs studied in [7, 8] the Galois action on arithmetic groups and calculated
the Lefschetz number of these actions. In the particular case when F is SL(n, Z) and
g = {1, o-} is the group of order two with action given by a A = At~1(A € F), the
first non-abelian cohomology .ff^g, F) is just the set of integral-equivalence classes of
integral unimodular symmetric bilinear forms. In this note, we carry out the procedure
of Rohlfs for unimodular hermitian forms.

(1.2). Let a denote the complex conjugate of an element a in the ring Z[-\/—1] of
Gaussian integers. The non-trivial element a of the group g of order 2 acts on
SL(n, Z[N/=T]) by

crA = A

Let F be a subgroup of SL(n, Z[\/—1]) . An element 2? €E F determines a cocycle
(1, H) of the nonabelian cohomology set FJ(g, F) if 1 = H.a(H), that is, H = B7*
is an integral hermitian matrix. Two cocydes (1, H) and (1, H') are F equivalent if
there exists a B € F such that BtHB = H'. We can associate to a cocycle (1, H) a
sesqui-linear form

H{x, y) = xxEy.

Here z, y £ (Z[\/—1]) are column vectors. If for example F = SL(n, 7\\/— 1]) , then
we get a bijection of J 1 (g , F) with the set of integral equivalence classes of integral
unimodular hermitian forms.

To simplify the notation, we shall write H for the cohomology class represented
by the cocycle (1,H).
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194 K.F. Lai [2]

(1.3). Let H be a hermitian matrix in SL(n, Z[\/^T]). We denote by G the special
unitary group with respect to H, that is

G(Q) = {g e SL(n, Q(>/=1)) I g'Hg = H).

Fix a maximal compact subgroup of G(R). Let XH denote the hermitian symmetric
space K \ G.

Let F be a torsion-free congruence subgroup of SL(n, Z[\/— 1]). Write TH for
F n G(Q). Then TH acts on XH • We compute in this note the sum

)

where X(H) = ^ ( -1) ' dim Hi(XH/TH, R)

is the Euler-Poincare characteristics of

This computation begins with Haider's Gauss-Bonnet theorem which says that
there exists an Euler-Poincare form wx on XH such that

X(H) = / wx-

Then one uses Rohlfs' exact sequence of the Hasse map h:

(1.4) 1 - C -

to reduce the calculation of the above integral to the computation of local volumes.

Here Tv = SL(n, Zo[%/—1]) for almost all v, and

r = f|(r, n5£(n,Q(>/=i)))
and C = SU(n, Q) \ SU(n, A)/n(F/ n) ,

and (TIn)v =SU{n, Zv)nTv.

(1.5). Let t be an odd prime, F be the congruence subgroup of SL(n, Z[\/—1]) of level
1. Write L{s, V>) for the Dirichlet L-function for the quadratic charactor i/> — (—4/-).
Define A(n) as follows: if n is odd then

r=2
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[3] Lefschetz numbers 195

and if n = 2 mod 4 then

A(n) = -

THEOREM 1 . 6 .

n - 1

= A(n)

r = 2

n - 1

(1.7). For example, for I = 3, we get

n
2
3
4
5

£
22 . 3
2s . 3 2

22 . 3 4

2s . 3 8

. 7

. 7 .

. 5 .
61
7 . 61

(1.8). The paper is divided into four sections. The local volume computations are
carried out in Section 2. The final result is assembled in Section 4.

2. VOLUME COMPUTATIONS

In this section we calculate the volume of some of the local compact subgroups of
the special unitary group G with respect to an integral hermitian form H of n variables
over Z[\/=T\.

(2.1). Let Q be the Lie algebra of G. Choose a Chevalley basis e\, ..., ena_1 of Gz •
Then w = de\ A . . . A deni_J is a form of highest degree on the semisimple group G.
Moreover w is bi-invariant.

We can use w to define measure (see Weil [9], Harder [3]). For each place v of
Q, w determines a bi-invariant measure uv on the locally compact group, G(Qr). In
particular, if Woo is the measure belonging to the metric determined by the Killing
form, and if p is a rational prime, V a sufficiently small neighbourhood of 0 in
so that the exponential map exp is biannalytic then

/ WP = / w-
./exp V JVexpV

Moreover, u> determines a bi-invariant measure Jluv on G(A), which, by the product
formula, is independent of the choice of the form a;.
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(2.2). We first do a calculation at infinity. Assume the signature of the form H is
(?» i) with, n = p + q. In this subsection write G for G(R) = SU(p, q) and K for its
maximal compact subgroup S(U(p) X U(q)).

(2.2.1). We have a Cartan decomposition

with

K =

V

\A

/

jA-Ae u(p), D e n(q), trA + trD = ol

M(px

Let £P J be the matrix (^t>^7«)1<j -^n- Then K has a basis consisting of the
following elements.

ro

E.r =

E.r) =

r

s

P

T

8

P

r
•

- 1

r

-

8

1

V

I

P
•

•

*

/-T
p

•

ET, — E,T =
- l

oJ

< a

r < a < p

L >/=T

p + l r a
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And V has a basis consisting of

ET, + E,T —

P + l

P + l

P + l

=\(Er. - EtT) = P + l

p < 8 < n

p < .s < n

(2.2.2). The Kilhng form is given by

B(X,Y) = 2nti(X,Y).

We choose the metric to be

ea(X, Y) = -\tT(X, Y).

Let WG , UK , WJC be the volumes form with respect to the metric e of G, K, X = K\G.
If we write the basis of K. (in a suitable order) as e\, ..., en2_2pq-i anc^ ̂ e basis of
V as enj_2 p g, . . . , enj_j, then the matrix ((ej, Cj)), 1 ̂  i, j ^ n2 — 1 is

ri - |
i i
2 x

n2 - 2pq

and

= det(e(e,,ei)WiJ<

Similarly we have
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( 2 . 3 ) . Suppose that the rational prime p = 3 mod4 . Then p is unramifiedin Q(\/— 1) .

Define

G,U) : = {?£ G(lp) | g = Jmodp>};

where g(lp) = (Q ® Qp J n M(n, Zp)

and l(a«)lp =
 m a x {k i l p : 1 < t, J < n}.

The following lemma is well known ([1], Chapter III.7).
oo

LEMMA 2 . 3 . 1 . For j ^ 1, the exponential map exp (A) = Y!, Ar/r\, defines an

isomorphism

of anaiytic manifolds.

REMARK. The above lemma remains true for p = 2 and j ^ 2.
It follows from (2.3.1) that with respect to the measure wp defined by the Chevalley

basis ei, . . . , enj —1 we get the following formula.

LEMMA 2 . 3 . 2 .

An immediate corollary is:

LEMMA 2 . 3 . 3 .

volWp

REMARK. The above formula is true for p = 2 if j > 2.

We have an isomorphism

1) « G(Z/PZ).

The group is of type 2An-i. It is well known [2], that

r = 2

Therefore
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LEMMA 2 . 3 . 4 . When p = 3mod4,

volWp(G(Zp))=n(l-(-Pr).
r = 2

(2.4). Now if p = Imod4, then p splits in Q(v/ =l) P = VP, V ^ V, (say). In this
case G(Zp) is isomorphic with SL(n, Zp). Well known formulas ([2]) give

LEMMA 2 . 4 . 1 . When p = I(mod4)

r = 2

2.5. We come to the case p = 2. It is well-known that a hermitian matrix H with
coefficients over 2[y/~ 1] is equivalent to one of the following three matrices

5 =

"0
1

1
0

0
1

1

0

0 1
1 0

V =

0 1
1 0

0 1
1 0

(See Lee [6]). As in (2.3), it reduces to the computation of the order of the finite group
SU(H, O/2>O). Here O is Z[v/=T].

In the case where H is the identity matrix, this is given in Zeltinger (see [10]).

LEMMA 2 . 5 . 1 . Let G - SU(In); then we have

(G(Z(2))) = 2 - + 1
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For the two remaining cases, we first consider the unitary group U(H, O/2O),
where we write 0 for the ring Z[\/^T]. Let I be the ideal of generated by 1 + y/^1
and 2. There is an exact sequence

(2.5.2) 0 -* J / 2 0 -> 0 / 2 0 -> 0 / 1 -> 0

where 1 /20 is cyclic of order 2 generated by 1 + y/—l and 0/2" is isomorphic to the
field of 2 elements, 0/X « F 2 . It follows that | 0 / 2 0 | = 4. This can also be seen from
the fact that

0 / 2 0 = {a + bT | T2 = 1, a, b £ F2}.

Denote by V the free 0-module 0 n of rank n = 2m. An element x in V is said
to be primitive if Ox is a direct summand in V. An equivalent condition for x to be
primitive is that x ̂  OmodX. Let P(V) be the set of primitive elements in V. From
(2.5.2), we get an exact sequence

0 -> V <g> J / 2 0 - • V ® 0 / 2 0 -+ F <g> 0 / 2 -» 0;

since |F <g> J / 2 0 | = |V <g> 0 / J | = 2 n , it Mows that

(2.5.3.) |P(V)|=2n(2n-l).

LEMMA 2 . 5 . 4 . Let H be the hermitian matrix

0 Im

Then the unitary group U(H2m, 0 / 20 ) acts transitively on S(V).

PROOF: Given any x in S(V), there exists a y in S(V) such that H(x, y) = 1.
For otherwise, H(x~, y) — 0 for all y in 0 / J and this would contradict x in S(V).

Let Vo be the subspace generated by x and y and let F ^ be its orthogonal
complement, V = Vo ® V^. There exists a basis {xlf yi, ...xm-\, ym-i} in V such
that with respect to the combined basis {x, y, xi, j/i, . . . , z m - i , 3/m_i}, the hermitian
matrix fl^ takes the following form

It follows that there exists an isometry in U(H2m, 0 /20 ) which brings the element

e i = ( l , 0 , . . . , 0 ) t o * .

Let U(ei) denote the isotropy subgroup in U(H2m, 0 / 2 0 ) which keeps the ele-

ment ei = ( 1 , 0 , . . . , 0) in P{V) fixed. Comparing this with the definition of a maximal
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parabolic subgroup, it is not difficult to see that every element in U(ei) has a unique
product decomposition

1
x2

z
y*

-Vm.

0 0

o o
1 -x2...-\

0 0 Im-l

r i o o o

0 A 0 B
0 0 1 0

0 C 0 D

(Langlands' decomposition). Since in the first unipotent matrix, the entries x2, . . . , xm,
2/2 > • • • i y-m can be any abitrary elements in (0 /20) m~ , and z = ~z, skew-symmetric
elements in O/2O, it follows that

\U(ei)\ = 2\2«m-1Wm-1\ \U(H2im_lh O/2O)\,

= 2im-2.\U(H2{m_1),O/2O)\.

Hence we obtain

2.(l - 2"2m). |tf ( t f ^ - D , O/2O)\,

1-/2]

r = l

Let U2j denote the subgroup of level 2J in U(H, O):

U2j = {ge U(H, O)\g = I m o d 2 > ' 0 } .

Let u(Jff, O/2O) be the Lie "algebra" (strictly speaking, this is a Lie ring over O/2O
but a Lie algebra over F2) of 2m x 2m matrices X over O/2O such that

X.H + HJ? = 0.

Then there is an exact sequence

1 ^ U2j ^ U2i-i - t n(ff, 0 /20) -+ 1

where the map <f> is defined by the formula <j>(g) = (g —1)/2'~1.
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A straightforward computation shows that

[Uv-i : U2i) = \n(H, O/2O)\

and so [U2 : U2J] = 2 n ' ( j - 1 ) .

0
LEMMA 2 . 5 . 7 . Let U(H2m,O) and U3j be defined as above. Then

[U(E2m, O) : Uv-] = 2n '+n

r = l

DPROOF: Use (2.5.5) and (2.5.6).

The above formula also works for the unitary group U(H2m, O) where

T 0 v/^T
0

0 1
1 0

0 1
1 0

This is because H2m and H2m are GL-equivalant to each other, and so the correspond-
ing unitary groups are conjugate to each other.

(2.5.8) MH2m, O) : U2i] = 2" '+n JJ (l " 2"2r)-
r = l

As for the special unitary group SU, we consider the exact sequence

(2.5.9) 1 -» SU(H, O/2jO) -» U (H, O/2jO) d-2 U -> 1

where H can be either H2m or H2m, and U is the norm group, U = {(I |G O/2'O}. D

PROPOSITION 2 . 5 . 1 0 . Let G be the special unitary SU(H) where H is one
of the following hermitian matrices:

00
1

1
0

0
1

1

0

0 1
1 0

0

0
1

1
0

0
1

1

0
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Write G2j for the subgroup of level 2j in G(Z2). Then

[n/2]
[G(Z2) : G{V)\ = 2>(n "O+" J ] (1 - 2-2p), j > 2

r = l

and voL, (G(Z2)) - 2". J J (l - 2"2').
r = l

PROOF: There is a homomorphism

O/2>O

of the group of units onto U, and the kernel of this homomorphism is the subgroup of
norm 1 elements in O/2'O. In other words, we have

_ GL{1,
1/(1, O/2'O) '

As computed before, we have

\U(l,O/2>O)\=2i+1, j>2

and so |Z/| = 2 i ~ 2 .

The first formula in (2.5.10) follows from our previous computation of |£f ( # , O/2'O) | ,

the exact sequence (2.5.9), and the above formula for U.

As for the second formula, we have

volw, (G(Z2)) - 2- ' ' ( n '

[»/a]
= 2~-'(n J-1).2i(n 2-1)+ n Yl C1 - 2~2 r )

r=l
[n/2]

= 2n Y[ (l-2"2r).

3. SUM OVER A CLASS

D

In this section we use Rohlf's exact sequence (1.4) to sum up the x(-^0 f ° r those
cohomology classes H which have the same image under the Hasse map h, that is, we
first sum over a group class in C. We fix an hermitian matrix with coefficient in
and G in the special unitary group.
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(3.1). Fix a maximal compact subgroup K of G(R), let XH be the symmetric space
K \ G(R), Go be the connected compact real form of G ([4], III Section 6), Xo be the
compact dual K \ Go(R) of XH > j - XH —* Xo be the Borel embedding, and let TH be
the congruence subgroup of G(Q) of level 1^2,1 prime.

Let w (respectively wo) be the right-invariant volume form on XH (respectively
Xo ) determined by the Riemannian metric. Then we can prove the following lemma.

LEMMA 3 . 1 . 1 . If the hermitian form H has signature (p, q), p + q = n, then

X ( * " / r H ) = vol! Su\n)

PROOF: By the Gauss-Bonnet theorem according to Harder [3], there exists on
XH a G-right invariant differential form of degree m = dimR XH such that

The same is true for Xo with respect to

Let G (respectively £o) be the Lie algebra of G (respectively Go)- Let B(x, y) =

tr(ad(x) ad(y)) be the Killing form on Qc- Then B (respectively —B) defines a ho-
mogenous symmetric Riemannian metric on XH (respectively Xo ). Let R (respectively
Ro) be the corresponding Riemannian curvature tensor. Then it follows from Cartan's
formula [5] that

j*Ro = -R

at the "origin". As the Gauss-Bonnet form can be computed as the pfafRan of the
curvature tensor [5], we see that, at the "origin",

where (p, q) = signature of H. Let u (respectively a>o) be the right-invariant volume
form on XH (respectively Xo ) determined by the Riemannian metric above and suppose
that

u>ox = cwo-

Then

By the classical Gauss-Bonnet theorem,

c = x(Xo)voL0(X0)~1;

f -if
using / u — volu(K) I u

and the fact that Go and SU{n) are conjugate in SU(H, C) and so have the same
volume, we get the lemma. D
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(3.2). Write r « = SL(n,C), Tv = SX(n, Z.b/=I)) (v?l),
Tt = ker(SL(n,Zi[>/=I))-»S£(n,(Z//Z)[>/=l))), T = T^ n SL(n, Q(^/=l)),
rK = rnG(Q) , vH,v = r,nG(Qt).

LEMMA 3 . 2 . 1 . Let u> = Uvuv be the Tamagawa measure of G. Then there
exists 5, G SL(n, Q(\/^T)), 1 ̂  » ^ n(H) such that

£ volUoo G(R)/flir5r1 n G(Q) = I I (voU THtV)-\

PROOF: There exists y,- G G(A) such that

By strong approximation we can write j/< = jjiif with gi in SL(n, Q(-\/— 1)) and

ui e n r» • T h e n

yi f H rH,vy,r l n G(Q) j = giYgr1 D i

< \ _ / / \
JlTn.vj-Vi Q - f t ^ . ^ l i r H , , J f t <7, <7i

From y,- f H rH, J yf1 = G(R) x H y,-,

and the fibration

AM lyrVjirffr1 n G(Q) -^ GW/aiTgr1 n G(Q)

n(H) / \

we get G(A)/G(Q) = (J yf1 (G(R)/ffir«/r
1 n G(Q)) x H y^.r^ftr.1 .

If w = [] w, is the Tamagawa measure for G then (by [9], pp.99, 72, 23)

volu(G(A)/G(Q)) = l.

So the lemma follows. D
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(3.3). Write H1(QH, T) for the nonabelian cohomology with the non-trivial element

a of g acting as: A —»

(1.4), an exact sequence

i -» G(Q) \ G(A)/ JJ rHtV - » ^ ( g n , r)

The map h-H is prescribed in the following manner: given a class

use strong approximation to get y — gx with g 6 5L(n,Q(%/—1)) and x € II ^ H , * -

Put C = g'1 .HTj1-1 H'1. Then fctf ( G(Q)j/~1 I l rH, i ; ) is the cohomology class repre-

sented by (1, C). If h is the Hasse map of (1.4), we can now consider the contribution

to C by the X(C) for C in the fibre h-l{h(H)). Clearly h(C) = h(H) if and only if

h-H^C) = 1. The next lemma now follows immediately from the preceding lemmas of

this section.

LEMMA 3 . 3 . 1 . Given an integral hermitian form H of signature (p, q), p + q —

n. Then

Here the sum is extended over those Ce f f ' ^ .T ) such that h(C) - h(H).

4. T H E LEFSCHETZ NUMBER

In this section we assemble together the computation when F is a congruence

subgroup of level £.

(4.1). The first cohomology £T1(g, 1^) classifies equivalence classes of integral 2-adic

hermitian forms. Using Gaussian elimination it is elementary to show that H1(g, ]?2)

is represented by three elements, namely, / , 5 , V as in (2.5). (See [6].)

Also H1(g, Too) is classified by the set of integers (p, q) such that p + q — n and

H1(g,Tp) = l for p ^ 2, oo.

(4.2). Let h2 : H1^, T2) -> H1 (g, SL(n, Z2[^/:IT])) be the cohomology map induced
by the inclusion 1*2 —> SL(n, Z2[V~ 1]) • Using Rohlf's exact sequence (1.4) and the
remarks in (4.1), we can write

E *(7)+ E
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Now we can use the results on summing over a class (Section 3) and the local
volume computations (Section 2) to get the following formulae immediately. We write
\T\ for the cardinality of a set T. Let rj) be the quadratic character (—4/-) attached
to Q(\/—T)/Q, that is

{ - 1 if p = 3mod4

0 if p = 2

1 if p = 1 mod 4.

Let a(n) denote the following product.

- l

(4.2.1). The sum over h2{f) = E is

(n-l/2)]

r = l

(4.2.2). The sum over h2(~/) = S is

\-2-^y1\h-\v)\
r = l

(4.2.3). The sum over h2(-y) = V is

[n/2]

r = l

(4.3). We now apply the functional equation of the Riemann ^-function and the Dirich-
let i-function:

(2r

and we get our Theorem 1.6.
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5. REMARKS

The number C computed in this note is indeed the Lefschetz number of an invo-
lution on a symmetric space.

The symplectic group 5p(2n) is the group of In x 2n invertible matrices A such
that

AJAi=J

0 1
where J = ,

Let F be the congruence subgroup of level £ inside the symplectic group Sp(2n)
of In varibles, that is

T = Ker(5p(2n, Z) -> Sp{2n, l/ll)).

Then T acts on the Siegel upper half space &n of degree n, that is,

e n = {z e Mn(c) | z = z \ im z > o}.

The Cartan involution T which takes a matrix A to the inverse of its transpose
induces maps on the singular cohomology with rational coefficients:

The Lefschetz number of T is

oo

= ^J(—1)* trace T*.
»=o

Write ( 6 n / r ) r for the fixpoint set of the action of r on the locally symmetric
space &n/T. The Lefschetz formula gives

Now observe that for a symmetric matrix B (z V, BJ is of order 4. This allows
us to change the underlying ring from the rational integers to the Gaussian integers
and replace the symplectic form J by a hermitian form. The fixpoint components then
become locally symmetric spaces attached to special unitary groups. The number £
computed in Theorem 1.6 is in fact the number C(r) above. This will be discussed in
a paper written jointly with R. Lee.

https://doi.org/10.1017/S0004972700028963 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028963


[17] Lefschetz numbers 209

REFERENCES

[l] N. Bourbaki, Groups et algebres de Lie (Hermann, Paris, 1972).

[2] R.W. Carter, Simple groups of Lie type (Wiley, New York, 1972).

[3] G. Harder, 'A Gauss-Bonnet formula for discrete arithmetically defined groups', Ann. Sci.

tcole Norm. Sup. 4 (1971), 409-455.

[4] S. Helgason, Differential geometry, Lie groups and symmetric spaces (Academic Press,

New York, 1978).

[5] F. Hirzebruch, 'Automorphe Formen und der Sat von Riemann Roch', in Symposium

International Topology and Algebra, pp. 129-144 (Univ. de Mexico, 1958).

[6] R. Lee, 'Computation of Wall groups', Topology 10 (1971), 149-176.

[7] J. Rohlfs, 'Arithmetisch definierte Gruppen mit Galoisoperation', Invent. Math. 48
(1978), 185-205.

[8] J. Rohlfs, 'Lefschetz number of an involution on the space of classes of positive definite
quadratic forms', Comment. Math. Helv. 56 (1981), 272-296.

[9] A. Weil, Adeles and algebraic groups (Birkhauser, Boston, 1982).
[10] H. Zeltinger, Spitzenanzahlen und Volumina Picardscher Modulvanetaten 136 (Bonner

Math. Schriften, Bonn, 1981).

Department of Pure Mathematics
University of Sydney
New South Wales 2006
Australia

https://doi.org/10.1017/S0004972700028963 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028963

