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Abstract

We study the uncertain dichotomous choice model. In this model, a group of expert
decision makers is required to select one of two alternatives. The applications of this
model are relevant to a wide variety of areas. A decision rule translates the individual
opinions of the members into a group decision, and is optimal if it maximizes the
probability of the group making a correct choice. In this paper, we assume the correctness
probabilities of the experts to be independent random variables selected from some given
distribution. Moreover, the ranking of the members in the group is (at least partly) known.
Thus, one can follow rules based on this ranking. The extremes are the expert rule and the
majority rule. The probabilities of the two extreme rules being optimal were compared
in a series of early papers, for a variety of distributions. In most cases, the asymptotic
behaviours of the probabilities of the two extreme rules followed the same patterns.
Do these patterns hold in general? If not, what are the ranges of possible asymptotic
behaviours of the probabilities of the two extreme rules being optimal? In this paper, we
provide satisfactory answers to these questions.
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1. Introduction

1.1. Background

There are many situations where a group of expert decision makers is required to select one
of two alternatives, of which exactly one is regarded as correct. A decision rule is a rule for
translating the individual opinions of the members into a group decision. The decision skill of
each expert is characterized by the individual’s probability of making the right choice.

There are several aspects to the study of this so-called dichotomous choice model. One of
them is dealing with the Condorcet jury theorem in various setups. Condorcet [14] believed
that a group of individuals facing a binary choice and using a simple majority rule is likely to
make the correct choice. Moreover, this likelihood tends to complete certainty as the number
of members of the group tends to infinity (see [2]). A Condorcet jury theorem is a formulation
of conditions substantiating this belief. The classical conditions of this theorem assume the
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Optimality probability of the expert and majority rules 17

independence of the decision makers and the same value p > 1
2 of the individual correctness

probabilities. Attempts to generalize the theorem in a variety of ways have been made (see
[16], [19], [25], [12], [13], [10], [18], [1], [21], [5], [11], [3], [9], and [24]).

In some situations, the group is free to choose the decision rule, and the identification of the
optimal rule is of primary importance (see [23], [20], [16], [15], [17], and [8]). If the probability
of each member making the right choice is known and the alternatives are symmetric, then the
optimal decision rule is a weighted majority rule (see [20]).

The starting point of this paper is the problem of identifying the optimal decision rule under
partial information of the decision skills. Specifically, we assume the correctness probabilities
of the group members to be independent random variables distributed according to some given
distribution rule. Moreover, while the values these variables take are unknown, we assume
that the ranking of the members in terms of their individual correctness probabilities is known.
Thus, we can follow rules based on this ranking. The poles (or extremes) are the expert rule –
following the advice of the most qualified individual while ignoring all the rest – and the majority
rule – always taking the majority advice, even when advocated by mostly less qualified group
members. The probabilities of these two ‘polar’ rules being optimal were compared in a series
of early papers, for a variety of distributions. In most cases, the asymptotic behaviours of
the probabilities of the two polar rules followed the same patterns. Do these patterns hold in
general? If not, what are the ranges of possible asymptotic behaviours of the probabilities of
the two extreme rules being optimal? In this paper we provide satisfactory answers to these
questions.

Before turning to the main results, we present our model more precisely (in Section 1.2)
and review previous results on our problem (in Section 1.3), which allows us to compare
the optimality probabilities of the expert and majority rules for various types of distribution.
Section 2, where we investigate the range of possible asymptotic behaviours of the optimality
probabilities, contains the main results. In Section 3, we provide the proofs.

1.2. Setup and notation

A committee consisting of n members is required to select one of two alternatives, +1 and
−1, of which exactly one is correct. The alternatives are symmetric, that is, a-priori equally
likely to be correct, and the benefit (or loss) associated with a success (correct choice) or a
failure (incorrect choice) is independent of the particular alternative chosen. We assume that
the members are independent in their choices; pi is the probability of the ith expert making
the right choice. The vector p = (p1, p2, . . . , pn) is the vector of abilities (or skills) or the
competence structure.

A decision rule is a rule for translating the individual opinions into a group decision. The
number of all possible decision rules in a group of size n is 22n

. A decision rule is optimal if it
maximizes the probability of the group making the correct decision for all possible combinations
of opinions. If the members indexed by some subset A ⊆ {1, 2, . . . , n} of the group recommend
the first alternative, while those indexed by B = {1, . . . , n} \ A recommend the second, then
(see [20]) the first alternative should be chosen if and only if∏

i∈A

pi

1 − pi

≥
∏
i∈B

pi

1 − pi

(1)

or, equivalently, ∑
i∈A

log
pi

1 − pi

≥
∑
i∈B

log
pi

1 − pi

. (2)
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18 D. BEREND AND L. SAPIR

In view of (1) and (2), it is natural to define the odds of an individual, whose probability
of being correct is p, as p/(1 − p), and the logit transform of p as log[p/(1 − p)]. It will be
convenient to consider the functions T and logit, defined by

T (p) = p

1 − p
,

logit(p) = log
p

1 − p
= log T (p).

In other words, the optimal decision rule for a committee with known competence structure p

is given by

R̂ = sgn

( n∑
i=1

wixi

)
, (3)

where wi = logit(pi) and xi is the individual choice of the ith decision maker, defined by
xi = +1 for the first alternative and xi = −1 for the second. With this notation, (3) reduces to
a weighted majority rule with weights wi = logit(pi).

The assumption of full information regarding the decision maker’s competence is very
restrictive and often far from being fulfilled. Therefore, a model incorporating incomplete
information seems to be more realistic. Thus, we assume that the correctness probabilities pi

are distributed according to some known distribution law. This distribution is always supported
on [ 1

2 , 1], and the pi are independent. While we do not know the exact values the pi take,
we assume that the ranking of the members is known, so that we can follow rules based on
this ranking. The poles are the expert rule and the simple majority rule. Clearly, there are
numerous other decision rules between these two extremes. A comparison between the polar
rules raises several questions. One concerns the nonasymptotic part of the Condorcet jury
theorem: for which competence structures p = (p1, p2, . . . , pn), of an odd-sized committee,
is the probability of the committee making the correct choice when utilizing the simple majority
rule larger than the correctness probability of any of its members, i.e. for which values of p

does ∑
y1+···+yn≥(n+1)/2

n∏
i=1

p
yi

i (1 − pi)
1−yi ≥ max

1≤i≤n
pi

hold, where yi = 1 if the ith expert is correct and yi = 0 otherwise? If the pi are independent
random variables distributed according to some known distribution, one might be interested in

P

( ∑
y1+···+yn≥(n+1)/2

n∏
i=1

p
yi

i (1 − pi)
1−yi ≥ max

1≤i≤n
pi

)
.

In this paper, we consider another question, concerned with the probability of the two polar
rules being optimal. It is easily verified that the probability, Pe(n), of the expert rule being
optimal is the probability that, when the top expert disagrees with all other experts, the top
expert is more likely to be correct than the others. The probability, Pm(n), of the majority rule
(defined, strictly speaking, only for odd n = 2s+1) being optimal is equal to the probability that
the s + 1 lowest ranked experts, when opposed by the s highest ranked experts, are more likely
to be correct. Note that we are concentrating on the probability of a polar rule being optimal,
rather than the probability of it being right. The probability of a decision rule being right may
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Optimality probability of the expert and majority rules 19

Table 1: Optimality probabilities of all weighted majority rules for n ≤ 5.

n Rule and corresponding probability

3 (1,0,0) (1,1,1) — — — — —
0.675 0.325 — — — — —

4 (1,0,0,0) — (1,1,1,0) — (2,1,1,1) — —
0.373 — 0.277 — 0.350 — —

5 (1,0,0,0,0) (1,1,1,1,1) (1,1,1,0,0) (3,1,1,1,1) (2,1,1,1,0) (3,2,2,1,1) (2,2,1,1,1)
0.199 0.022 0.175 0.107 0.229 0.194 0.074

be expected to be quite high, and in fact to converge to 1 as the number of experts increases,
as long as a ‘reasonable’ decision rule is employed. However, the probabilities correspond to
the ‘average case’, whereas in this paper we deal with the ‘worst case’. That is, each decision
rule has some borderline cases. While we may usually expect the simple majority rule to lead
to the correct decision, we should hesitate to use it if, say, in a committee comprising eleven
members, the six members known to be least qualified happen to favour one view while all five
more qualified members hold the opposite view. Similarly, employing the expert rule would
seem strange if we happen to be in the borderline situation in which the top expert is opposed
by all the others. To claim that, in a specific case, the majority rule or the expert rule is optimal
is tantamount to asserting that we should indeed favour the opinion of the six members over
that of the five in the first example, or of the top expert in the second example. Consequently,
by comparing the probabilities of the rules being optimal, as we do in this paper, we cannot
conclude that one rule is better than the other. Rather, the comparison provides us with a view
of the performance of the rules in question in some extreme cases, and hints to what extent we
should modify them in those cases.

1.3. History and previous results

A general comprehensive study of weighted majority rules is a very complicated task, since
the class of such rules becomes very large as the number of group members increases. For
example, for a committee of size n = 3 it includes two weighted majority rules; for n = 4,
three rules; for n = 5, seven rules; for n = 6, twenty-one rules; for n = 7, 135 rules; for n = 8,
2470 rules; and for n = 9, 172 958 rules (see [15] and [17]). Note that a weighted majority
rule can be represented by many systems of weights. For instance, for n = 3, both systems of
weights (1, 1, 1) and (4, 3, 2) define the simple majority rule, since in each of them any sum
of two of the weights is larger than the remaining weight. Similarly, both (1, 0, 0) and (6, 3, 2)

define the expert rule, since the weight of the most qualified expert is larger than the sum of
weights of the other two.

Table 1 provides the probabilities of weighted majority rules to be optimal under the
assumption of the uniform distribution on [ 1

2 , 1] of the correctness probabilities, as found
by Nitzan and Paroush [20] (using standard Monte Carlo simulation). Each cell corresponds
to the rule shown, and contains its probability of being optimal.

The comparison of these probabilities hints that the expert rule is more likely to be optimal
than the majority rule even for quite small values of n.

The first explicit expression for Pe(n) was due to Nitzan and Paroush [20], who studied the
case of the log-normal distribution for the individual correctness probabilities. Below we list
most of the results regarding the behaviour of Pe(n) and Pm(n) subsequently obtained. Recall
that n = 2s + 1 in the majority rule.
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20 D. BEREND AND L. SAPIR

1. pi ∼ uniform[ 1
2 , 1].

Expert rule. nB1(n) ≤ Pe(n) ≤ 2nIn−1
1 , where

In−1
1 = (2 log 2 − 1)n−1 and B1(n) = 2In−1

1 − 2(3 − 4 log 2)n−1.

Majority rule. Pm(n) ≤ n

3s(s!)2 ≤ 4n

nn
.

2. pi is supported on [ 1
2 , 1] with density ρp(x) = 2α(2x − 1)α−1, where α > 0.

Expert rule. (i) If 0 < α < 1
2 then nB1(α, n) ≤ Pe(n) ≤ nB2(α, n), where

B1(α, n) = 2α�n−1
1 − 2α2�n−1

2 , B2(α, n) = B1(α, n) + �n−1
3 ,

�k = 2α

∫ 1

0

(1 − t)α−1tk

(1 + t)α+1 dt, k = 1, 2, 3.

(ii) If α ≥ 1
2 then nB1(α, n) ≤ Pe(n) ≤ 2αn�n−1

1 .

Majority rule. (i) If 0 < α ≤ 1 then Pm(n) ≤ αs/(s!)2.
(ii) If α > 1 then Pm(n) ≤ (n/(s!)2)( 1

2α)s .

3. logit(pi) ∼ Exp(λ), where λ > 0.

Expert rule. Pe(n) = n/2n−1.

Majority rule. Pm(n) =
(
n−1

s

)
(n2 − 1)s

≈
√

n

2π

(
2

n

)n

.

4. Ti = (1−pi)/pi is supported on [0, 1], with distribution function GT (x) = ∑∞
k=1 ckx

k .

Expert rule. If
∑∞

k=1 ck = 1 or
∑∞

k=1 |ck| En−1(T k) < ∞, where the powers of E(T k)

are the moments of the distribution, then

Pe(n) = n

∞∑
k=1

ck En−1(T k).

Thus,
Pe(n) = nck0 En−1(T k0)(1 + o(1)),

where ck0 > 0 is the first nonzero term in (ck)
∞
k=1.

Majority rule. None available.

5. logit(pi) ∼ uniform[0, a], where a > 0.

Expert rule. Pe(n) = 1/(n − 1)!.
Majority rule. None available.

We consider these results part by part. Berend and Harmse [4] (part 1) obtained an explicit
formula for Pe(n) and an upper bound for Pm(n) for the uniform distribution on [ 1

2 , 1]. The
combination of these results implies that the latter probability decays to 0 much faster than
the former. The same conclusion holds for the generalized uniform distribution, considered by
Berend and Sapir [7] (part 2). Sapir [22] explored the situation of logit transforms distributed
exponentially (part 3). A comparison of Pe(n) and Pm(n) shows that, again, the expert rule has
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a much better chance of being optimal than the majority rule. Berend and Sapir [6] calculated
Pe(n) for a general family of distributions, defined in part 4. This family contains as special
cases a wide variety of distribution families, for example the family of distributions in which
the density function of the correctness probability is a polynomial (on the interval [ 1

2 , 1]), and,
thus, as a very particular instance, the uniform distribution. Their main point was that Pe(n),

considered as a function of the group size, decreases to 0 exponentially fast for a very wide
family of distributions. The only example with different behaviour is the distribution in part 5;
there Pe(n) decays faster than exponentially.

1.4. Main question

The results above suggest that Pe(n) and Pm(n) have typical asymptotic behaviours. Namely,
Pe(n) decreases as cn for some 0 < c < 1, while Pm(n) does so (faster) as (c′/n)n for some
c′ > 0. This raises the following questions. Are the above asymptotic behaviours valid in
general? If not, what are the ranges of possible asymptotic behaviours of the probabilities of
the two extreme rules being optimal?

In fact, as mentioned earlier, the results of part 5 show a somewhat different pattern: Pe(n)

decreases faster than exponentially. However, this case is special in the sense that pi assumes
values only in some subinterval [ 1

2 , h] of [ 1
2 , 1]. When the distribution of pi is supported on the

whole interval [ 1
2 , 1], one may ask whether or not the probability Pe(n) decays exponentially.

2. Main results

2.1. Quick summary of main results

It turns out that, for Pe(n), the answer to the first question is that essentially everything is
possible; on the one hand, it may converge to 0 arbitrarily fast, and on the other hand it may
converge to 1. For Pm(n) the range of possibilities is narrower, as Pm(n) cannot decay faster
than (c/n)n, for some c > 0. However, it may decay slower. More precisely, we always have
Pm(n) ≤ cn for some c, 0 < c < 1; if, in addition, the logit(pi) are selected from a continuous
distribution, then Pm(n) decreases faster than εn for any ε > 0. The list below summarizes our
results, showing the extremes of possible behaviour of the expert and majority rules. Note that,
under each line containing one of our positive results (each part (i)), we formulate a converse
(each corresponding part (ii)), showing that the result is essentially the best possible. For the
majority rule, it is convenient to consider continuous and discontinuous (but not necessarily
discrete) distributions separately. We emphasize that, throughout the paper, the distribution in
question is assumed to be nontrivial (i.e. it does not take a single value with probability 1).

(I) Expert rule.

Lower bound. None: Pe(n) may decrease arbitrarily fast.

Upper bound. None: we may have Pe(n) → 1 as n → ∞.

(II) Majority rule for a continuous distribution.

Lower bound. (i) Pm(n) ≥ (c/n)n for some c > 0.

(ii) For any ε > 0, there exists a distribution such that Pm(n) ≤ (ε/n)n.

Upper bound. (i) Pm(n) = o(1)n.

(ii) For any (hn)
∞
n=3 with 0 < hn < 1 and hn → 0 as n → ∞, there exists a

distribution such that Pm(n) ≥ hn
n.

https://doi.org/10.1239/jap/1143936240 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936240


22 D. BEREND AND L. SAPIR

(III) Majority rule for a discontinuous distribution.

Lower bound. (i) Pm(n) ≥ cn for some 0 < c < 1.

(ii) For any ε > 0, there exists a distribution such that Pm(n) ≤ εn.

Upper bound. (i) Pm(n) ≤ cn for some 0 < c < 1.

(ii) For any ε < 1, there exists a distribution such that Pm(n) ≥ εn.

2.2. Expert rule

The nonexistence of a nontrivial lower bound for Pe(n) is the result of the following theorem.

Theorem 1. For any positive sequence (hn)
∞
n=3, there exists a continuous distribution function

Glogit(p)(x), strictly increasing on [0, ∞), such that

Pe(n) ≤ hn, n ≥ 3.

The requirement (here and in some of the following theorems) that Glogit(p)(x) be strictly
increasing on [0, ∞) strengthens the theorem. In fact, it explains that the one example
encountered earlier in which Pe(n) decreases faster than exponentially (part 5 of the first list of
results) is not to be attributed to the fact that Glogit(p)(x) is there supported on a finite interval.

The next theorem shows that there exists no nontrivial upper bound either.

Theorem 2. There exists a continuous distribution function Glogit(p)(x), strictly increasing on
[0, ∞), for which

Pe(n) → 1 as n → ∞.

Remark 1. The constructions we provide in the proofs of Theorem 1 and 2 are of continu-
ous distribution functions. Minor modifications provide discrete distributions with the same
properties.

2.3. Simple majority rule

In view of previous results, we might guess that Pm(n) is always asymptotically smaller than
Pe(n). Thus, taking into account Theorem 1, the following theorem may come as something of
a surprise. Throughout this section n is odd, with n = 2s + 1.

Theorem 3. For any distribution function Glogit(p)(x) and any positive constant

c < sup
x≥0

(
x lim

δ→0

Glogit(p)(x + δ) − Glogit(p)(x)

δ

)
,

we have

Pm(n) ≥
(

c

s

)n

(4)

for all sufficiently large n.

For certain distributions, the constant c in (4) may be arbitrarily large.

Remark 2. We may have

sup
x≥0

(
x lim

δ→0

Glogit(p)(x + δ) − Glogit(p)(x)

δ

)
= ∞.
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In this case, for all sufficiently large n, the theorem gives

Pm(n) ≥
(

c

s

)n

for any positive constant c.

Corollary 1. For any differentiable distribution function Glogit(p)(x) with density

glogit(p)(x) = G′
logit(p)(x),

and any positive constant c < supx≥0 xglogit(p)(x), we have

Pm(n) ≥
(

c

s

)n

for all sufficiently large n.

Example 1. For pi ∼ uniform[ 1
2 , 1], Corollary 1 combined with the upper bound found by

Berend and Harmse [4] yields

(
0.89

n

)n

≤ Pm(n) ≤
(

4

n

)n

, n ≥ n0,

where n0 is some positive odd number. Indeed,

Glogit(p)(x) = ex − 1

ex + 1
and glogit(p)(x) = 2ex

(ex + 1)2 for x ≥ 0.

Hence, supx≥0 xglogit(p)(x) ≈ 1.5435 · glogit(p)(1.5435) > 0.447.

Example 2. For logit(pi) ∼ Exp(λ), discussed in [22], we have

sup
x≥0

xglogit(p)(x) = sup
x≥0

xe−x = glogit(p)(1) > 0.367

and, therefore,

Pm(n) ≥
(

0.734

n

)n

, n ≥ n0,

where n0 is some positive odd number. Note that, in this case (see part 3 of our first list) we
actually know the exact value of Pm(n):

Pm(n) =
(

n − 1

s

)
(n2 − 1)−s =

√
n

2π

(
2

n

)n(
1 + O

(
1

n

))
.

The following theorem shows that the lower bound obtained in Theorem 3 cannot be
qualitatively improved when we have a continuous distribution function Glogit(p).

Theorem 4. For any ε > 0, there exists a continuous distribution function Glogit(p)(x), strictly
increasing on [0, ∞), such that Pm(n) ≤ (ε/s)n for all n.

The next theorem gives an upper bound for Pm(n) for any continuous distribution function.
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24 D. BEREND AND L. SAPIR

Theorem 5. For any continuous distribution function Glogit(p)(x) and any ε > 0, Pm(n) ≤ εn

for sufficiently large n.

The next theorem shows that the upper bound obtained in Theorem 5 cannot be qualitatively
improved.

Theorem 6. For any sequence (hn)
∞
n=3 with 0 < hn < 1 and hn → 0 as n → ∞, there

exists a continuous distribution function Glogit(p)(x), strictly increasing on [0, ∞), such that
Pm(n) ≥ hn

n for every n.

We now turn to discontinuous distributions. It turns out that the extreme possible asymptotic
behaviour of Pm(n) is quite different in the discontinuous case than in the continuous one. Both
bounds in the discontinuous case are larger than their continuous counterparts.

Theorem 7. Let Glogit(p)(x) be any (discontinuous) distribution function, and let

c = max
x≥0

P(logit(p) = x).

Then Pm(n) ≥ cn for each n.

Again, Theorem 7 cannot be qualitatively improved.

Theorem 8. For any ε > 0, there exists a discrete distribution function Glogit(p)(x) such that

Pm(n) ≤ εn, n ≥ 3.

Remark 3. Theorem 8 follows easily from the next theorem if we consider n to be sufficiently
large. We must provide a separate proof to demonstrate that it holds for all n ≥ 3.

Theorem 9 gives an upper bound for Pm(n).

Theorem 9. Let Glogit(p)(x) be any distribution function, and let

c = max
x≥0

P(logit(p) = x).

Then, for any ε > 0,
Pm(n) ≤ (c + ε)n

for all sufficiently large n.

Remark 4. If Glogit(p)(x) is continuous then Theorem 9 reduces to Theorem 5.

As in the case of continuous distributions, the next theorem shows that the upper bound
obtained in Theorem 9 cannot be qualitatively improved for a discontinuous distribution function
Glogit(p).

Theorem 10. There exists a discontinuous distribution function Glogit(p)(x) such that, for any
positive ε < 1, Pm(n) ≥ εn for all n.

3. Proofs

Throughout this section, let Yi, i = 1, 2, . . . , n, be the order statistics of logit(pi), such that
Y1 ≤ Y2 ≤ · · · ≤ Yn.
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3.1. Expert rule

Proof of Theorem 1. If the theorem is valid for a certain sequence (hn)
∞
n=3, then it is certainly

valid for any sequence (h′
n)

∞
n=3 satisfying h′

n ≥ hn for each n. Hence, we may assume that
(hn)

∞
n=3 is strictly decreasing to 0 and that h3 ≤ 1. Also, it will be convenient to let the sequence

(hn) start at n = 1, setting h1 to be any value larger than 2 and h2 = 2.
We construct a positive function l(x) on [1, ∞), as follows. For any positive integer x = n,

let l(n) = hn and extend l linearly to each interval [n, n + 1], n = 1, 2, . . . . Define a function
Glogit(p) by

Glogit(p)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ 0,

l(1 + 1/x2)x2

2(x2 + 1)
, 0 < x ≤ 1,

1 − l(x2 + 1)

2(x2 + 1)
, 1 < x < ∞.

Since l(x) is continuous, positive, and strictly decreases to 0 as x → ∞, with l(2) = 2, it is
easy to see that Glogit(p)(x) is a continuous distribution function supported on [0, ∞). Suppose
that logit(pi), i = 1, 2, . . . , n, are random variables distributed according to Glogit(p), and
recall that Yi are the order statistics of logit(pi). Consider the events

A =
{
Yn ≥

n−1∑
i=1

Yi

}
, B = {Yn ≥ (n − 1)Y1},

C =
{
Y1 ≤ 1√

n − 1

}
∪ {Yn ≥ √

n − 1}.

Clearly A ⊆ B ⊆ C. Thus,

Pe(n) = P(A) ≤ P(C) ≤ P(Yn ≥ √
n − 1) + P

(
Y1 ≤ 1√

n − 1

)

≤ n P(logit(p) ≥ √
n − 1) + n P

(
logit(p) ≤ 1√

n − 1

)

= n

(
1 − Glogit(p)(

√
n − 1) + Glogit(p)

(
1√

n − 1

))

= n

(
l(n)

2n
+ l(n)

2n

)
= l(n) = hn, n ≥ 3.

Proof of Theorem 2. The function Glogit(p)(x) defined by

Glogit(p)(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

1 − 1

log(x + e)
, 0 ≤ x < ∞,

is clearly continuous and supported on [0, ∞). Let logit(pi) be independent random variables
distributed according to Glogit(p)(x), and let

Yn = max(logit(p1), . . . , logit(pn)).
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Let X1, X2, . . . , Xn−1 respectively be the variables logit(p1), logit(p2), . . . , logit(pn), with
the maximal logit(pi) excluded. Clearly

Pe(n) =
∫ ∞

0
ρYn(t) P

(n−1∑
i=1

Xi ≤ t

∣∣∣∣ Yn = t

)
dt, (5)

where ρYn is the density function of Yn. We need to estimate P(
∑n−1

i=1 Xi ≤ t | Yn = t). The
conditional distribution function of each Xi under the condition Yn = t is

GXi | Yn(x | t) = P(logit(p) ≤ x | logit(p) ≤ t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < 0,

1 − 1/ log(x + e)

1 − 1/ log(t + e)
, 0 ≤ x < t,

1, x ≥ t.

Therefore,

E(Xi | Yn = t) = 1

1 − 1/ log(t + e)

∫ t

0

x dx

(x + e) log2(x + e)

= 1

1 − 1/ log(t + e)

∫ t+e

e

1

log2 x
dx − e.

For t ≥ 31, we have log2(t + e) − t/e ≤ 1 and

E(Xi | Yn = t) ≤ 1

1 − 1/ log(t + e)

(∫ (t+e)/ log2(t+e)

e

dx

log2 x
+

∫ t+e

(t+e)/ log2(t+e)

dx

log2 x

)

≤ 1

1 − 1/ log(t + e)

(
t + e

log2(t + e)
+ t + e

log2[(t + e)/ log(t + e)]
)

≤ 1

1 − 1/ log(t + e)

(2 + c1)(t + e)

log2(t + e)
,

for some positive constant c1. Thus,

E

(n−1∑
i=1

Xi

∣∣∣∣ Yn = t

)
≤ n − 1

1 − 1/ log(t + e)

(2 + c1)(t + e)

log2(t + e)
.

By Markov’s inequality, we obtain

P

(n−1∑
i=1

Xi > t

∣∣∣∣ Yn = t

)
≤ n

(
1 + e

t

)
c1 + 2

log(t + e)(log(t + e) − 1)
. (6)

Now we claim that

lim
n→∞ P(en/ log n − e ≤ Yn ≤ en log n − e) = 1. (7)

Indeed, since GYn(x) = (1 − 1/ log(x + e))n for x > 0, we have

lim
n→∞ P(en/ log n − e ≤ Yn ≤ en log n − e)

= lim
n→∞

((
1 − 1

n log n

)n log n)1/ log n

− lim
n→∞

((
1 − log n

n

)n/ log n)log n

= 1.
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From (6) and (5), it follows that

Pe(n) ≥
∫ en log n−e

en/ log n−e
ρYn(t)

(
1 − n

(
1 + e

t

)
c1 + 2

log(t + e)(log(t + e) − 1)

)
dt

≥
(

1 − (c1 + 2)n(1 + e/[en/ log n − e])
(n/ log n)(n/ log n − 1)

) ∫ en log n−e

en/ log n−e
ρYn(t) dt

≥
(

1 − c2

(1/ log n)(n/ log n − 1)

) ∫ en log n−e

en/ log n−e
ρYn(t) dt

for some constant c2. Hence, (7) implies that Pe(n) → 1 as n → ∞.

3.2. Simple majority rule

Proof of Theorem 3. Consider an arbitrary interval I (x, δ) = [x, x + δ). For any s, let
l ≡ l(s) ≥ 1 be the integer determined by

x

(
1 + 1

s

)l−1

≤ x + δ < x

(
1 + 1

s

)l

. (8)

Thus, I (x, δ) ⊆ ⋃l
j=1 Ij (x, δ), where Ij (x, δ) = [x(1 + 1/s)j−1, x(1 + 1/s)j ). Clearly, for

1 ≤ j ≤ l we have

Pm(n) ≥ P(logit(pi) ∈ Ij (x, δ), i = 1, . . . , n) = Pn(logit(p) ∈ Ij (x, δ)).

Thus,

Pm(n) ≥
(

max
1≤j≤l

P(logit(p) ∈ Ij (x, δ))
)n ≥

(
Glogit(p)(x + δ) − Glogit(p)(x)

l

)n

. (9)

Now let

c < sup
x

(
x lim

δ→0+
Glogit(p)(x + δ) − Glogit(p)(x)

δ

)
. (10)

Take an interval I (x0, δ0) such that x0(Glogit(p)(x0 + δ0) − Glogit(p)(x0))/δ0 > c. Using (9)

with the chosen interval, we obtain

Pm(n) ≥
(

Glogit(p)(x0 + δ) − Glogit(p)(x0)

l

)n

>

(
cδ0

lx0

)n

. (11)

By (8), we obtain (1 + 1/s)l−1 ≤ 1 + δ0/x0 ≤ (1 + 1/s)l . This implies that, as s → ∞,

(1 + 1/s)l → 1 + δ0/x0

and, therefore, l/s → log(1 + δ0/x0). It follows that

el/s → 1 + δ0/x0 < eδ0/x0

as s → ∞, so that for sufficiently large s we have l/s < δ0/x0. Consequently, (11) in Theorem 3
yields the inequality required for values of c satisfying (10). The inequality can be proved
similarly for

c < sup
x

(
x lim

δ→0−
Glogit(p)(x + δ) − Glogit(p)(x)

δ

)
.
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Proof of Theorem 4. Consider the generalized uniform distribution

Gp(x) = (2x − 1)α, 0.5 ≤ x ≤ 1, 0 < α ≤ 1,

discussed in [7]. From part 2 of our first list, we have Pm(n) ≤ αs/(s!)2. By a version of
Stirling’s formula, s! ≥ √

2π(s + 1)s+1/2e−s−1 and, consequently, Pm(n) ≤ (e
√

α/s)n/2
√

α.
For each n ≥ 2, we have

(
√

α)n

2
√

α
≤ (

√
α)n−1 = (α1/4)nα(n−2)/4 ≤ (α1/4)n.

Given an ε > 0, taking α < (ε/e)4 yields the required result.

Proof of Theorem 5. As hinted at in Remark 4, Theorem 5 corresponds to a special case of
Theorem 9 with c = 0.

Proof of Theorem 6. Without loss of generality, we may assume the sequence (hn) to be
nonincreasing. Construct Glogit(p) as follows. First, we define it at some ‘special’ points:

Glogit(p)(0) = 0, Glogit(p)(1) = 1 − h3

2
,

Glogit(p)

(
1 + 1

s

)
= 1 − h3

2
+ h2s+1, s = 1, 2, 3, . . . .

(Note that 1 + 1/s increases as s decreases.) Complete Glogit(p) to an increasing function in
some way. Clearly, if all the logit(pi) are in the range [1, 1 + 1/s], then the sum of any s + 1
of them does not exceed the sum of the others. Hence,

Pm(n) ≥ P(1 ≤ logit(pi) ≤ 1 + 1/s, i = 1, 2, . . . , n)

= (Glogit(p)(1 + 1/s) − Glogit(p)(1))n

= hn
2s+1 = hn

n,

which gives the desired estimate.

Proof of Theorem 7. Let logit(pi), i = 1, 2, . . . , n, be independent random variables dis-
tributed according to Glogit(p)(x). Let x0 be a point such that P(f (x) = x0) = c, and again let
Yi, i = 1, 2, . . . , n, be the order statistics of logit(pi). Obviously,

Pm(n) = P

(s+1∑
i=1

Yi ≥
n∑

i=s+2

Yi

)
≥ P(logit(pi) = x0, i = 1, 2, . . . , n) = cn.

Proof of Theorem 8. Let ε > 0 and choose an integer m > (1/ε)3. Define the distribution
Glogit(p) so as to assign equal probabilities 1/m to the points 1, 3, 9, . . . , 3m−1. We claim
that this distribution satisfies the inequality required in the theorem. Let logit(pi) be selected
randomly and independently of Glogit(p). Consider the events

A =
{s+1∑

i=1

Yi ≥
n∑

i=s+2

Yi

}
, D =

m−1⋃
j=0

{logit(pi) = 3j , i = 1, . . . , n},

E =
m−2⋃
j=0

{Y1 = 3j , Y2 = · · · = Yn > 3j }.
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We can easily check that, for this distribution, A = D ∪ E. Thus,

Pm(n) = m
1

mn
+

m−1∑
j=0

1

m

m − 1 − j

mn−1 =
(

1

m

(
m(m + 1)

2

)1/n)n

and, for each n ≥ 3,

Pm(n) ≤
(

1

m

(
m(m + 1)

2

)1/3)n

=
((

(m + 1)

2m2

)1/3)n

≤
((

1

m

)1/3)n

< εn.

Proof of Theorem 9. Let δ > 0. Choose points a0, a1, . . . , am, 0 = a0 < a1 < · · · < am =
∞, such that Glogit(p)(aj+1) − Glogit(p)(aj ) < c + δ, j = 0, 1, . . . , m − 1. By adding more
points between consecutive aj s, we may further assume that

Glogit(p)(aj+3) − Glogit(p)(aj ) < c + δ, j = 0, 1, . . . , m − 3.

Let logit(pi), i = 1, 2, . . . , n, be independent random variables distributed according to some
distribution function and let Yi be the order statistics of logit(pi). Determine the integer k

satisfying

k ≥ max
0≤j≤m−1

aj

aj+1 − aj

> k − 1.

Consider the events

A =
{s+1∑

i=1

Yi ≥
n∑

i=s+2

Yi

}
, Dj = {logit(pi) ≤ aj for at most k indices i},

Ej = {logit(pi) ≥ aj+1 for at most k − 1 indices i}, Bj = Dj ∪ Ej .

Clearly, A ⊆ Bj for each j and all n > 2k + 1. Let I = [aj0 , aj0+1) be the interval containing
the maximal number of logit(pi). For a j0 with 1 ≤ j0 ≤ m − 2, we have

A ⊆ Bj0−1 ∩ Bj0+1. (12)

Let Hj0 = Dj0−1 ∩ Ej0+1. We claim that

Bj0−1 ∩ Bj0+1 ⊆ Hj0 (13)

for n > mk. Indeed, since the interval I contains at least n/m of the logit(pi), the event Ej0−1
is impossible for n > m(k − 1), and, hence, Bj0−1 = Dj0−1. Similarly, Dj0+1 is impossible
for n > mk, and, hence, Bj0+1 = Ej0+1. Thus, we obtain (13). If j0 = 0 we have

A ⊆ H0, (14)

where H0 = E1. If j0 = m − 1 we have

A ⊆ Hm−1, (15)
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where Hm−1 = Dm−2. By (12), (13), (14), and (15), we obtain

Pm(n) ≤
m−1∑
j=0

P(Hj )

=
k−1∑
i=0

(
n

i

)
(1 − G(a2))

iGn−i (a2)

+
k∑

i=0

(
n

i

)
Gi(am−2)(1 − G(am−2))

n−i

+
m−2∑
j=1

k∑
i=0

k−1∑
t=0

(
n

i

)(
n − i

t

)
Gi(aj )(1 − G(aj+3))

t (G(aj+3) − G(aj ))
n−i−t

≤ 2
k∑

i=0

(
n

i

)
(m − 2)i(c + δ)i(c + δ)n−i

+
m−2∑
j=1

k∑
i=0

k−1∑
t=0

(
n

i

)(
n − i

t

)
j i(m − j − 3)t (c + δ)n

≤ Q(m, k)n2k−1(c + δ)n

for all sufficiently large n and some constant Q(m, k). Given an ε > 0, by taking δ < ε we
obtain the required result.

Proof of Theorem 10. For any ε, 0 < ε < 1, construct a distribution function Glogit(p)(x)

that assigns mass ε to some point x0 > 0. Obviously,

Pm(n) ≥ P(logit(pi) = x0, i = 1, . . . , n) = εn,

which implies the result.
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