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SOME PROPERTIES OF THE HAUSDORFF DISTANCE
IN METRIC SPACES

J6ZEF BANA£ AND ANTONIO MARTIN6N

Some properties of the Hausdorff distance in complete metric spaces are discussed.
Results obtained in this paper explain ideas used in the theory of measures of
noncompact ness.

1. INTRODUCTION

The aim of this paper is to present some properties of the Hausdorff distance
in complete metric spaces which are especially useful in the theory of measures of
noncompactness.

Our considerations are closely related to measures of noncompactness defined in
an axiomatic way (see [1, 2, 3, 4, 6, 7], for example). More precisely, we are interested
in the following problem: Let Z be a subfamily of the family M of all nonempty and
bounded subsets of a metric space. For X € M define the number Hz(X) as the
Hausdorff distance of X from Z. What can we say about properties of the function
Hz if we assume that the family Z satisfies some ordered or topological conditions?

Our results obtained here explain some ideas used in axiomatic definitions of mea-
sures of noncompactness proposed up to now. Particularly, we provide short proofs of
a few theorems from the book [2] which are formulated here in a more general setting.

2. NOTATION

Let (M, p) be a complete metric space.
By M.M (or» briefly M.) we shall denote the family of all nonempty and bounded

subsets of M. Moreover, the family of all nonempty and relatively compact subsets of
M will be denoted by Af.

If x € M and r > 0 then K(x, r) will denote the open ball centred at x and with
radius r. Similarly, if X € M. then K(X, r) denotes the ball having centre at X and
radius r :

K(X, r) = |J K(x, r).
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The symbol X denotes the closure of a subset X of M. Apart from this if U is an
arbitrary family of subsets X of M then we define Uc as

Uc = {X eU :X = X~}.

Now, let X, Y e M. Denote

d(X, Y) = inf{r : X C K(Y, r)},

D(X, Y) = max{d(X, Y), d(Y, X)}.

The function D(X, Y) is called the Hausdorff distance between sets X and Y. It
is well known that D is a pseudometric on M and it is a complete metric on Mc.

Moreover, Afc forms a closed subspace of Mc with respect to the topology generated
by D [5].

If Z is a nonempty subfamily of M. then we will use the following notation:

D{X, Z) = i n f { £ ( X , Z):Ze Z } ,

d(X, Z) = ini{d{X, Z):Ze Z } .

In what follows we shall consider the function Hz • M. —* [0, oo) denned in the
following way

HZ(X) = D(X, Z),

where Z is the same as above. For brevity, we write H(X) instead of Hz(X).

3. MAIN RESULTS

We start with the following simple but useful lemma.

LEMMA i . Let A, B e M and r > 0. If B C K(A, r) then A n K(B, r) ^ 0

and B CK(AnK(B,r),r).

PROOF: Take an arbitrary b £ B. By the assumption there exists a G A such
that p(a, b) < r. This implies that a £ K(b, r) and consequently a G K(B, r). Hence
a € AHK(B, r). On the one hand this gives that AnK(B, r) ^ 0. On the other hand
we showed that for any b 6 B there is a E An K(B, r) such that p(a, b) < r which
means that b G K(A D K(B, r), r) and ends the proof. D

In the sequel we show that the order structure of a family Z generated by the

relation of inclusion implies some properties of the function Hz •

THEOREM 1 . Let Z be a nonempty subfamily of M. satisfying the condition

(i) x ez, <DjtYcx =• Y ez.
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TJien for any X £ M. the following equality holds

d(X, Z) = D(X, Z).

REMARK. Let the family M be ordered by the inclusion

X ^Y <^X CY.

Then the condition (1) means that Z is an initial segment of M. with respect to this
order.

PROOF: It is obvious that d(X, Z) < D(X, Z). In order to show the converse
inequality let us take an arbitrary e > 0 and let r = d(X, Z). Then there exists Z £ Z

such that

d(X, Z)<r + e.

Hence X C K{Z, r + e)

which in view of Lemma 1 implies that Z fl K(X, r + e) ^ 0 and
X C K(Z D K(X, T + e), r + e). Consequently

(2) d(X, Z n K(X, r + e)) < r + e.

On the other hand Z D K(X, r + e) C K(X, r + e)

which allows us to infer that

(3) d(ZnK{X,r + e),X)^r + e.

Combining (2) and (3) we get

D(X, Z D K(X, r + e))^r + e.

But in virtue of the assumption (1) we have that Z D K(X, r + e) €E Z so the last
inequality implies

D(X, Z)^r + e.

Taking into account the arbitrariness of e we complete the proof. D

REMARK. It is easy to show a dual proposition of Theorem 1: if Z is a nonempty

subfamily of M satisfying the condition

X eZ, X CY=>Y £Z

then D{X, Z) = d{Z, X)

where d(Z, X) = inf{d(Z, X) : Z e Z}.
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COROLLARY 1 . Let Z satisfy the condition (1). If X C Y then H{X) ^ H[Y).

PROOF: By virtue of Theorem 1 it is enough to show that

d(X, Z) ^ d(Y, Z).

Denote r = d[Y, Z). Then for an arbitrary e > 0 there is Z £ Z such that d(Y, Z) <
T + e which gives Y C K{Z, r + e). Consequently X C K(Z, r + e) which implies
d(X, Z) < r + t and ends the proof. D

COROLLARY 2 .

(a) mzx{H(X), H(Y)} < H(X UY) for all X,Y e M;

(b) if X, Y 6 M and X n Y ± 0 then H(X n Y) ^ min{H(X), H{Y)}.

The proof is a simple consequence of Corollary 1. Moreover, we have

THEOREM 2 . IS a family Z fulfils the condition (1) and the following one also:

A,BeZ=>A\jBeZ

then H(X UY)= max{H{X), H(Y)}.

Indeed, denote r = max.{H(X), H(Y)} and take an arbitrary e > 0. Then there
exist Zx , Z2 € Z such that X C K(ZX, r + e) and Y C K(Z2, r + e). Hence

X U Y C K(ZU r + e) U K[Z2, r + e) = K{ZX U Z2, r + e).

This implies that d(X UY, Z) ^ r + e which in view of Theorem 1 and Corollary 2
completes the proof.

Further, for an arbitrary family Z C M we will denote

Z° = {Z e Z : Z is finite}.

We have

THEOREM 3 . If Z is a family satisfying the condition (1) and Z C M then

HZ(X) = Hz0{X) = d(X, Z°).

PROOF: Keeping in mind Theorem 1 and the inequality d(X, Z°) < D(X, Z°) we
see that it suffices to prove that d(X, Z°) = d(X, Z). Obviously d(X, Z) < d(X, Z°) .

Further, let r = d(X, Z). Then, taking an arbitrary e > 0 we can find Z £ Z such
that d{X, Z) < r + e. Because the set Z is relatively compact, for any 77 > 0 there
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exists an 77-net F of Z. Without loss of generality we may assume that F € Z° and
even F C Z. Hence Z C K{F, 77) and consequently

X C K{Z, r + e) C K(K(F, v), r + e)c K{F, r + e + V)

which gives d{X, F) ^ r + e + 77.

Taking into account that e and 77 were chosen arbitrarily we infer

d(X, Z°) < r,

which completes the proof. D

The next property of the function Hz is contained in the following

THEOREM 4 . Ha family Z satisfies the condition (1) then H(X) = H(X) for

XeM.

PROOF: According to Theorem 1 we should prove that d(X, Z) = d(~X, Z). In

view of d(X, Y) = d(X, Y), for every X, Y 6 M, we obtain d(X, Z) = d(X, Z). D

In order to provide further characterisation of the functions Hz notice that if Z

is a nonempty subfamily of Ai, for X, Y € M. and Z £ Z we have

HZ(X) = D{X, Z) ^ D{X, Z) < D(X, Y) + D{Y, Z);

hence HZ(X) ^ D{X, Y) + HZ(Y),

and consequently HZ(X) - HZ(Y) ^ D(X, Y).

Analogously BZ{Y) - HZ{X) ^ D(X, Y)

which implies \BZ{X) - HZ{Y)\ < D(X, Y).

This means that the function Hz is continuous with respect to the Hausdorff
distance. Thus we obtain

THEOREM 5 . HZ(X) = 0 « I e Z (the closure of Z in Mc with respect to
the topology generated by D ) .

Another property of the function H is given in

THEOREM 6 . Assume that Z satisfies the condition (1) and Z C M. Further,

let Xn € Me, Xn D Xn+l for n = 1,2, ... and lim H(Xn) = 0 . Then the set
n—*oo

00

Xoo = p| Xn is nonempty and X^ 6 Z.
n=l

PROOF: Notice that H(Xn) ^ D(Xn, M) which implies that

Urn D{Xn, AT) = 0.
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Thus the thesis is a simple consequence of the properties of Hausdorff measure of non-
compactness (see Example 1 below) and Theorem 5. D

Finally let us observe that the results contained in Theorems 1-5 show that the
function Hz is a kind of measure of noncompactness denned in an axiomatic way (see
[1, 2, 3 , 6]).

We illustrate our investigations by two examples.

EXAMPLE 1: Let Z = M. Then the function H is called the Hausdorff measure
of noncompactness in the space M. For its properties we refer to [2].

EXAMPLE 2: Let Z be the family of all one-point sets in a metric space M.
Obviously Z satisfies the condition (1) and Z C M. It is easy to show that in such a
case the function Hz may be expressed in the following way:

HZ(X) = r(X),

where r(X) = inf{sup{/j(x, y ) : y £ X} : x G M}.

The number r(X) is called the radius of a set X.
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