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Abstract

Autoregressive processes are intensively studied in statistics and other fields of applied
stochastics. For many applications, the overshoot and the threshold time are of special
interest. When the upward innovations are in the class of phase-type distributions, we
determine the joint distribution of these two quantities and apply this result to problems
of optimal stopping. Using a principle of continuous fit, this leads to explicit solutions.
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1. Introduction

Autoregressive processes play an important role in many areas of applied probability and
statistics. They can be seen as one of the building blocks for many models in time series analysis
and estimation, and testing techniques are well developed. In this article we study the following
setting. Let 0 < λ ≤ 1, let (Zn)n∈N be a sequence of independent and identically distributed
random variables on a probability space (�,A,P), and let (Fn)n∈N be the filtration generated
by (Zn)n∈N. Define the autoregressive process of order 1 (AR(1) process) (Xn)n∈N0 by

Xn = λXn−1 + Zn for all n ∈ N,

i.e.

Xn = λnX0 +
n−1∑
k=0

λkZn−k.

The random variables (Zn)n∈N are called the innovations of (Xn)n∈N0 . Using the difference
notation, the identity Xn = λXn−1 + Zn can be written as

�Xn = −(1 − λ)Xn−1�n+�Ln,

where �Xn = Xn − Xn−1, �n = n − (n − 1) = 1, and �Ln = ∑n
k=1 Zk − ∑n−1

k=1 Zk =
Zn. This shows that AR(1) processes are the discrete-time analog to (Lévy-driven) Ornstein–
Uhlenbeck processes. Many arguments in the following can be carried over to Ornstein–
Uhlenbeck processes as well.

Autoregressive processes were studied in detail in the last decades. The joint distribution of
the threshold time

τb = inf{n ∈ N0 : Xn ≥ b}
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and, under the assumption that τb < ∞ Px-almost surely (Px-a.s.) for all x, the overshoot

Xτb − b over a fixed level b

was of special interest. If λ = 1, the process (Xn)n∈N0 is a random walk and many results about
this distribution are well known. Most of them are based on techniques using the Wiener–Hopf
factorization; see [4, Chapter VII] for an overview. Unfortunately, no analog to the Wiener–
Hopf factorization is known for AR(1) processes, so other ideas are necessary. To get rid of
well-studied cases, we assume that λ < 1 in the following.

This first passage problem forAR(1) processes was considered in different applications, such
as signal detection and surveillance analysis; cf. [6]. In applications the distribution of the first
passage time is approximated using Monte Carlo simulations or Markov chain approximations;
cf., e.g. [17]. But, e.g. for questions of optimization, analytic solutions are necessary.

Using martingale techniques, exponential bounds for the expectation of τb can be found.
Most of these results are based on martingales defined using integrals of the form∫ ∞

0
euy−φ(u)uv−1 du, (1.1)

where φ is the logarithm of the Laplace transform of the stationary distribution discussed
in Section 3. For the integral to be well defined, it is necessary that E(euZ1) < ∞ for all
u ∈ [0,∞); cf. [12] and the references therein. If however we want to obtain explicit results
for the joint distribution of τb and the overshoot, it is useful to assume that Z1 is exponentially
distributed. In this case explicit results are given in [3, Section 3] by setting up and solving
differential equations. Unfortunately, in this case not all exponential moments of Z1 exist and
the integral described above cannot be used.

The contribution of this article is twofold.

1. We find the joint distribution of τb and the overshoot for a wide class of innovations.
We assume that Z1 = S1 − T1, where S1 and T1 are independent, S1 has a phase-type
distribution and T1 ≥ 0 is arbitrary. This generalizes the assumption of exponentially
distributed innovations to a much wider class. In Section 2 we establish that τb and the
overshoot are, conditioned on certain events, independent, and we find the distribution
of the overshoot. In Section 3 we use a series inspired by integral (1.1) to construct
martingales with the objective of finding the distribution of τb. This leads to explicit
expressions for expectations of the form Ex(ρτbg(Xτb)) for general functions g and
ρ ∈ (0, 1). For corresponding results in a continuous-time setting for g = exp, using
complex contour integrals, we refer the reader to [9].

2. As an application, we consider the (Markovian) problem of optimal stopping for (Xn)n∈N0

with discounted nonnegative continuous gain function g, i.e. we study the optimization
problem

v(x) = sup
τ∈T

Ex(ρ
τ g(Xτ )) = sup

τ∈T
E(ρτ g(λτ x +Xτ )), x ∈ R, 0 < ρ < 1,

where T denotes the set of stopping times with respect to (Fn)n∈N0 ; to simplify the
notation here and in the following, we set the payoff equal to 0 on {τ = ∞}. Only very
few results are known for this problem. In [3] and [11] the innovations are assumed to
be exponentially distributed, and in [5] asymptotic results were given for g(x) = x.
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24 S. CHRISTENSEN

Following the approach described in [3], the problem can be reduced to determining
an optimal threshold. This is summarized in Section 4. In a second step we use the joint
distribution of τb and the overshoot to find the optimal threshold. To this end, we use
the principle of continuous fit, which is established and illustrated with an example in
Section 5.

2. Innovations of phase type

In this section we recall some basic properties of phase-type distributions and identify the
connection to AR(1) processes. In Subsection 2.1 we establish the terminology and state some
well-known results that are of interest for our purpose. All results can be found in [1], discussed
from the perspective of queueing theory.

In Subsection 2.2 we concentrate on the threshold time distribution for autoregressive
processes when the positive part of the innovations is of phase type. The key result for the
next sections is that, conditioned to certain events, the threshold time is independent of the
overshoot, and the overshoot is phase-type distributed as well.

2.1. Definition and some properties

Letm ∈ N,E = {1, . . . , m},� = m+1, andE� = E∪{�}. In this subsection we consider a
Markov chain (Jt )t≥0 in continuous time with state spaceE�. The states 1, . . . , m are assumed
to be transient and � is absorbing. Denote the generator of (Jt )t≥0 by Q̂ = (qij )i,j∈E� , i.e.

q̂ij (h) := P(Jt+h = j | Jt = i) = qijh+ o(h) for all i �= j ∈ E�
and

q̂ii (h) := P(Jt+h = i | Jt = i) = 1 + qiih+ o(h) for all i ∈ E�, h → 0, and t ≥ 0.

If we write Q̂(h) = (q̂ij (h))i,j∈E� for all h ≥ 0 then (Q̂(h))h≥0 is a semigroup and the general
theory yields

Q̂(h) = eQ̂h for all h ≥ 0.

Since � is assumed to be absorbing, Q̂ has the form

Q̂ =
(

Q −Q1
0, . . . , 0 0

)

for an m×m matrix Q, where 1 denotes the column vector with entries 1.
We consider the survival time of (Jt )t≥0, i.e. the random variable

η = inf{t ≥ 0 : Jt = �}.
Let α̂ = (α, 0) be an initial distribution of (Jt )t≥0. Here and in the following, α = (α1, . . . , αm)

is assumed to be a row vector.

Definition 2.1. We call Pη
α̂

a distribution of phase type (PH) with parameters (Q, α) and write
Pη
α̂

= PH(Q, α) for short.

Let m = 1 and Q = (−β) for a parameter β > 0. In this case it is well known that η
is exponentially distributed with parameter β. This special case will be the key example we
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often refer to. Furthermore, note that the class of phase-type distributions is stable under con-
volutions and mixtures. This shows that the important classes of Erlang and hyperexponential
distributions are of phase type.

Exponential distributions have a very special structure, but phase-type distributions are
flexible.

Proposition 2.1. The distributions of phase type are dense in the space of all probability
measures on (0,∞) with respect to convergence in distribution.

Proof. See [1, Section III, Theorem 4.2].

The definition of phase-type distributions makes calculations with these distributions dif-
ficult, but the theory of semigroups leads to simple formulae for the density and the Laplace
transform, as the next lemma shows. All the formulae contain matrix exponentials. The explicit
calculation of such exponentials can be complex in higher dimensions, but many algorithms
are available for a numerical approximation.

Proposition 2.2. (a) The eigenvalues of Q have negative real part.

(b) The distribution function of PH(Q, α) is given by

Hα(s) := Pα(η ≤ s) = 1 − αeQs1, s ≥ 0.

(c) The density is given by
hα(s) = αeQsq, s ≥ 0,

where q = −Q1.

(d) For all s ∈ C with Eα̂(e
Re(s)η) < ∞, it holds that

Ĥα(s) := Eα̂(e
sη) = α(−sI −Q)−1q,

where I is the m×m identity matrix. In particular, Ĥα is a rational function.

Proof. See [1, Corollary 4.9, Section II, and Theorem 4.1, Section III].

An essential property for the applicability of the exponential distribution in modeling and
examples is the memoryless property, which even characterizes the exponential distribution.
A generalization of this property to distributions of phase type is well known and is the basis
of the following lemma.

Lemma 2.1. Let S, T ≥ 0 be stochastically independent random variables, where S is
PH(Q, α)-distributed. Furthermore, let r ≥ 0 and Z = S − T . Then

Pα̂(r ≤ Z ≤ r + s) =
∑
i∈E

λi(r)Hei (s), s ≥ 0,

where λi(r) = ∫
Pα̂(Jr+t = i)PT

α̂
(dt).

Proof. The well-known generalization of the memoryless property to phase-type distribu-
tions in our case reads as

Pα̂(η ≤ s + t | η ≥ t) =
∑
i∈E

Pα̂(Jt = i | η ≥ t)Pei (η ≤ s).
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26 S. CHRISTENSEN

Using Fubini’s theorem, this leads to

Pα̂(r ≤ Z ≤ r + s) =
∫

Pα̂(r + t ≤ S ≤ r + s + t)PT
α̂
(dt)

=
∑
i∈E

∫
Hei (s)Pα̂(Jt+r = i)PT

α̂
(dt).

2.2. Phase-type distributions and overshoot of AR(1) processes

We again consider the situation of Section 1. In addition, we assume that the innovations
have the structure

Zn = Sn − Tn for all n ∈ N,

where Sn and Tn are nonnegative and independent, and Sn is PH(Q, α)-distributed. In this
context we remark that each probability measureQ on R withQ({0}) = 0 can be written asQ =
Q+∗Q−, whereQ+ andQ− are probability measures withQ+((−∞, 0)) = Q−((0,∞)) = 0,
and ‘∗’ denotes the convolution operator (cf. [4, p. 383]).

As a motivation, we consider the case of exponentially distributed innovations. If Zn is
exponentially distributed then it holds that, for all ρ ∈ (0, 1] and measurable g : R → [0,∞),

Ex(ρ
τ g(Xτ )) = Ex(ρ

τ )E(g(R + b)), (2.1)

where τ = τb is a threshold time, x < b, and R is exponentially distributed with the same
parameter as the innovations (cf. [3, Theorem 3.1]). This fact is well known for random walks;
cf. [4, Chapter XII]. The representation of the joint distribution of the overshoot and τ reduces
to finding an explicit expression for the Laplace transform of τ . In this subsection we prove
that a generalization of this phenomenon holds in our more general situation.

To this end, we use an embedding of (Xn)n∈N0 into a stochastic process in continuous time
as follows. For all n ∈ N, denote the Markov chain which generates the phase-type distribution
of Sn by (J (n)t )t≥0, and write

Jt = J
(nt+1)
t−∑nt

k=1 Sk
, where nt = max

{
n ∈ N0 :

n∑
k=1

Sk ≤ t

}
for all t ≥ 0.

Hence, the process (Jt )t≥0 is constructed by compounding the processes J (n) restricted to their
lifetime. Obviously, (Jt )t≥0 is a continuous-time Markov chain with state space E; cf. [1,
Section III, Proposition 5.1]. Furthermore, we define a process (Yt )t≥0 by

Yt = λXnt − Tnt+1 + t −
nt∑
k=1

Sk.

See Figure 1 for an illustration. It holds that

Xn = Y(S1+···+Sn)− for all n ∈ N,

so we can find (Xn)n∈N0 in (Yt )t≥0. Now let τ̂ be the threshold time of the process (Yt )t≥0 over
the threshold b, i.e.

τ̂ = inf{t ≥ 0 : Yt ≥ b}.
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Figure 1: A path of (Yt )t≥0.

By the definition of (Yt )t≥0, it holds that

Yt = b ⇐⇒ t = −λXnt + Tnt+1 +
nt∑
k=1

Sk + b for all t ≥ 0. (2.2)

For the following result, we need the event that the associated Markov chain is in state i when
(Yt )t≥0 crosses b ≥ 0, i.e. the eventGi = {Jτ̂ = i} for i ∈ E. For the following considerations,
we fix the threshold b ≥ 0.

In generalization of the result for exponentially distributed innovations the following theorem
states that, conditioned on Gi , the threshold time and the overshoot are independent and the
overshoot is phase-type distributed as well.

Theorem 2.1. Let x < b, n ∈ N, and y ≥ 0, and write

τ = τb = inf{n ∈ N0 : Xn ≥ b}.
Then

Px(Xτ − b ≤ y, τ = n) =
∑
i∈E

Hei (y)Px(τ = n,Gi).

Proof. Using Lemma 2.1 and identity (2.2), we obtain

Px(Xτ − b ≤ y, τ = n) = Ex(1{τ≥n} Px(Xn ≥ b, Xn − b ≤ y | Fn−1))

= Ex(1{τ≥n} Px(b ≤ Xn ≤ b + y | Fn−1))

= Ex(1{τ≥n} Px(b − λXn−1 ≤ Zn ≤ b + y − λXn−1 | Fn−1))

= Ex

(
1{τ≥n}

∑
i∈E

Hei (y)Px(J
(n)
b−λXn−1+Tn = i | Fn−1)

)

=
∑
i∈E

Hei (y)Px(τ = n, Jτ̂ = i),

where 1{·} denotes the indicator function.
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This immediately implies a generalization of (2.1) to the case of general phase-type distri-
butions.

Corollary 2.1. It holds that

Ex(ρ
τ g(Xτ )) =

∑
i∈E

Ex(ρ
τ1Gi )E(g(b + Ri)),

where Ri is a PH(Q, ei)-distributed random variable (under P).

3. Explicit representations of the joint distribution of the threshold time and overshoot

Corollary 2.1 reduces the problem of finding expectations of the form Ex(ρτ g(Xτ )) to
finding 
bi (x) = 
i(x) = Ex(ρτ1Gi ) for τ = τb and b > x. The aim of this section is to
construct martingales of the form (ρn∧τ h(Xn∧τ ))n∈N as a tool for the explicit representation
of 
bi (x). To this end, some definitions are necessary.

We assume the setting of the previous section, i.e. we assume that the innovations can be
written in the form

Zn = Sn − Tn for all n ∈ N,

where Sn and Tn are nonnegative and independent, and Sn is PH(Q, α)-distributed.
Let exp(ψ) be the Laplace transform of Z1, i.e. ψ(u) = log E(euZ1) for all u ∈ C+ :=

{z ∈ C : Re(z) ≥ 0} with real part Re(u) so small that the expectation exists. Since E(euZ1) =
E(euS1)E(e−uT1) and T1 ≥ 0, Proposition 2.2 yields the existence of ψ(u) for all u with
Re(u) smaller then the smallest eigenvalue of −Q. On this strip ψ is analytic and, because of
independence, it holds that

ψ(u) = ψ1(u)+ ψ2(u),

where exp(ψ1) denotes the Laplace transform of S1 and exp(ψ2) is the Laplace transform
of −T1. On C+, ψ2 is analytic, and ψ1 can be analytically extended to C+ \ Sp(−Q) by
Proposition 2.2. Here Sp(·) denotes the spectrum, i.e. the set of all eigenvalues. Hence, ψ can
be extended to C+ \ Sp(−Q) as well and this extension is again denoted by ψ . Note that this
extension cannot be interpreted from a probabilistic point of view because E(euZ1) does not
exist for u ∈ C+ when Re(z) is large.

To guarantee the convergence of (Xn)n∈N0 , we assume a weak integrability condition—the
well-known Vervaat condition:

E(log(1 + |Z1|)) < ∞;
see [8, Theorem 2.1] for a characterization of such conditions in the theory of perpetuities. We
do not go into details here, but we do use the fact that (Xn)n∈N0 converges to a (finite) random
variable θ in distribution that fulfills the stochastic fixed point equation

Pθ = Pλθ ∗ PZ1 .

Since the AR(1) process has the representation

Xn = λnX0 +
n−1∑
k=0

λkZn−k
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and convergence in distribution is equivalent to the pointwise convergence of the Laplace
transforms, the Laplace transform exp(φ) of θ fulfills

φ(u) =
∞∑
k=0

ψ(λku) (3.1)

for all u ∈ C+ such that the Laplace transform of S1 exists. The right-hand side defines a holo-
morphic function on C+ \ P̂ that is also denoted by φ, where we write P̂ = ⋃

n∈N0
Sp(−λ−nQ).

For the convergence of the series, note that, as described above, it converges for all u ∈ C+
such that E(euZ1) < ∞. For all other u ∈ C+, the series also converges since there exists a k0

such that E(eλ
kuZ1) < ∞ for all k ≥ k0.

Furthermore, the identity
φ(u) = φ(λu)+ ψ(u) (3.2)

holds whenever u and λu are in the domain ofφ. To avoid problems concerning the applicability
of (3.2), we assume that

Sp(λnQ) ∩ Sp(Q) = ∅ for all n ∈ N. (3.3)

Note that the function φ was also used and studied in [12].
The next two lemmas are helpful in the construction of the martingales.

Lemma 3.1. Let δ ∈ C+ such that E(eδS1) exists. Then, for all x < b, it holds that

ρ E(eδ(λx+Z1)1{λx+Z1≥b}) = αδe
−λxQq,

where αδ = ρα(−δI −Q)−1e(δI+Q)b+ψ2(−Q).

Proof. In the following calculation we use the facts that all matrices are commutative and
all eigenvalues of δI +Q have negative real part. It holds that

E(eδ(λx+Z1)1{λx+S1≥b}) = eδλx
∫ ∞

0
E(eδ(S−t)1{λx+S1−t≥b})PT (dt)

= eδλx
∫ ∞

0

∫ ∞

b+t−λx
eδ(s−t)αeQsq ds PT (dt)

= eδλx
∫ ∞

0
e−δtα

∫ ∞

b+t−λx
e(δI+Q)s dsq PT (dt)

= −eδλx
∫ ∞

0
e−δtα(δI +Q)−1e(δI+Q)(b+t−λx)q PT (dt).

We obtain

ρ E(eδ(λx+Z1)1{λx+Z1≥b}) = −ρeδλxα
∫ ∞

0
eQt PT (dt)(δI +Q)−1e(δI+Q)(b−λx)q

= −ρα
∫ ∞

0
e−Qs P−T (ds)(δI +Q)−1e−Qλxe(δI+Q)bq

= αδe
−Qλxq.
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We write Qγ = −γQ for short. For all γ ∈ C+ fulfilling

Sp(λnQγ ) ∩ P̂ = ∅ for all n ∈ N, (3.4)

we define the function

fγ : R → C
m×m, x 
→

∑
n∈N

exλ
nQγ−φ(λnQγ )ρn−1.

This series converges because exλ
nQγ−φ(λnQγ ) is bounded in n. Note that the summand of this

series is similar to the integrand in (1.1).

Lemma 3.2. There exists a δ > 0 such that, for all x ∈ R and γ ∈ C+ with |γ | < δ, it holds
that

ρ E(fγ (λx + Z1)) = fγ (x)− eλxQγ−φ(λQγ ).

Proof. For all γ ∈ C+ with sufficiently small |γ |, the expected value E(eQγ λ
nZ1) exists for

all n ∈ N since Q has (finitely many) negative eigenvalues. This leads to

E(fγ (λx + Z1)) = E

(∑
n∈N

e(λx+Z1)λ
nQγ−φ(λnQγ )ρn−1

)

=
∑
n∈N

e(λx)λ
nQγ−φ(λnQγ ) E(eλ

nQγ Z1)ρn−1

=
∑
n∈N

exλ
n+1Qγ−φ(λnQγ )+ψ(λnQγ )ρn−1

(3.2)= 1

ρ

∑
n∈N

exλ
n+1Qγ−φ(λn+1Qγ )ρn

= 1

ρ
(fγ (x)− eλQγ x−φ(λQγ )).

The next step is to find a family of equations characterizing


(x) = (
1(x), . . . , 
m(x)) = (Ex(ρ
τ1G1), . . . ,Ex(ρ

τ1Gm))

using martingale techniques, where τ = τb and x < b. To this end, we consider

hγ,δ : R → C, x 
→ eδx1{x≥b} + βγ,δfγ (x)q,

for all δ ∈ C+ \ Sp(−Q) and γ fulfilling (3.4), where βγ,δ = αδeφ(λQγ ). For the special value
γ = 1, we write hδ = hγ,δ and this function is well defined by (3.3).

Putting together the results of Lemma 3.1 and Lemma 3.2 we obtain the equation

ρ Ex(hγ,δ(X1))− hγ,δ(x) = αδe
−λxQq − αδe

−λγ xQq for all x < b (3.5)

for all γ, δ ∈ C+ with sufficiently small modulus.
Before stating the equations we need one more technical result.

Lemma 3.3. Let Ri be a PH(Q, ei)-distributed random variable, and denote by ψi(·) =
log(ei(− · I − Q)−1q) the holomorphic extension of the logarithmized Laplace transform
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of Ri . Here ei denotes the ith unit vector. Let |γ | and |δ| be so small that E(hγ,δ(b + Ri))

exists. Then it holds that

E(hγ,δ(b + Ri)) = eδbαγ,i(−δI −Q)−1q =: ηγ,δ,i ,
where

αγ,i = ei + αeQb+ψ2(−Q)+φ(λQγ ) ∑
n∈N

ebλ
nQγ−φ(λnQγ )+ψi(λnQγ )ρn.

Proof. Simple calculus similar to the above yields the result.

Theorem 3.1. For all x < b and δ ∈ C+ \ Sp(−Q), it holds that

m∑
i=1

ηδ,i
i(x) = hδ(x),

where ηδ,i = η1,δ,i is given in Lemma 3.3.

Proof. Write h := hγ,δ for δ, γ ∈ C+ with |δ| and |γ | so small that E(h(Z1)) < ∞.
The discrete version of Itô’s formula yields

ρnh(Xn)−
n−1∑
i=0

ρi(ρ Ex(h(Xi+1) | Xi)− h(Xi))

= h(X0)+
n−1∑
i=0

ρi+1(h(Xi+1)− Ex(h(Xi+1) | Xi))

=: Mn,

and (Mn)n∈N is a martingale. The optional sampling theorem applied to τ = τb yields

h(x) = Ex(Mτ∧n)

= Ex(ρ
n∧τ h(Xn∧τ ))− Ex

(n∧τ−1∑
i=0

ρi(ρ Ex(h(Xi+1) | Xi)− h(Xi))

)

= Ex(ρ
n∧τ h(Xn∧τ ))− Ex

(n∧τ−1∑
i=0

ρi(αδe
−λXiQq − αδe

−λγXiQq)
)

using equality (3.5). The dominated convergence theorem shows that

hδ,γ (x) = Ex(ρ
τhδ,γ (Xτ ))− Ex

(τ−1∑
i=0

ρi(αδe
−λXiQq − αδe

−λγXiQq)
)

;

note that the dominated convergence theorem is applicable to both summands since Q has
negative eigenvalues and so e−sQ is bounded in s for s with Re(s) being bounded above.
Corollary 2.1 leads to

hγ,δ(x) =
m∑
i=1

Ex(ρ
τ1Gi )E(hγ,δ(Ri + b))− Ex

(τ−1∑
i=0

ρi(αδe
−λXiQq − αδe

−λγXiQq)
)
,
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where Ri is PH(Q, ei)-distributed and Lemma 3.3 implies that

E(hγ,δ(Ri + b)) = eδbαγ,i(−δI −Q)−1q.

Since
∑τ−1
i=0 ρ

i(αδe−λXiQq − αδe−λγXiQq) is bounded, both sides of the equation

hδ,γ (x) =
m∑
i=1

ηγ,δ,i
i(x)− Ex

(τ−1∑
i=0

ρi(αδe
−λXiQq − αδe

−λγXiQq)
)

are holomorphic in {γ ∈ C+ : P̂ ∩ Sp(−γ λnQ) = ∅ for all n ∈ N} and it follows from
the identity theorem for holomorphic functions that these extensions agree on their domains.
Keeping (3.3) in mind we obtain, for γ = 1,

hδ(x) =
m∑
i=1

ηδ,i
i(x).

Furthermore, both sides of the equations are again holomorphic functions in δ on C+\Sp(−Q).
Another application of the identity theorem proves the assertion.

The equation in Theorem 3.1 appears useful and flexible enough for the explicit solution, as
shown in the next subsections.

3.1. The case of exponential positive innovations

As described above, the case of Exp(µ)-distributed positive innovations is of special interest.
In this case we obtain the solution directly from the results above. Hence, let m = 1, α = 1,
Q = −µ, and q = µ. It is not relevant which δ we take, but we choose δ = 0 as this choice
leads to simpler expressions. Then we obtain

η0,1 = 1 + eψ2(µ)−µb+φ(λµ) ∑
n∈N

eλ
nµb−φ(λnµ)+ψ1(λ

nµ)ρn

(3.2)= 1 + eψ2(µ)−µb+φ(λµ) ∑
n∈N

eλ
nµb−φ(λn+1µ)−ψ2(λ

nµ)ρn

= eψ2(µ)−µb+φ(λµ) ∑
n∈N0

eλ
nµb−φ(λn+1µ)−ψ2(λ

nµ)ρn

and
h0(x) = eψ2(µ)−µb+φ(λµ) ∑

n∈N

eλ
nµx−φ(λnµ)ρn

for x < b. Theorem 3.1 yields the following result.

Theorem 3.2. It holds that

Ex(ρ
τ ) = h0(x)

η0,1
=

∑
n∈N

eλ
nµx−φ(λnµ)ρn∑

n∈N0
eλnµb−φ(λn+1µ)−ψ2(λnµ)ρn

for all x < b.

In [3] the special case of positive, exponentially distributed innovations was treated by
finding and solving ordinary differential equations for Ex(ρτ ). For this case, i.e. T1 = 0, we
obtain

Ex(ρ
τ ) =

∑
n∈N

eλ
nµx−φ(λnµ)ρn∑

n∈N0
eλnµb−φ(λn+1µ)ρn

.
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To obtain more explicit results, we need a simple expression for φ(λnµ). Using identity (3.1),
we find such an expression as

eφ(λ
nµ) =

∞∏
k=0

eψ1(λ
n+kµ)

=
∞∏
k=0

µ

µ− λn+kµ

=
∞∏
k=0

1

1 − λn+k

=
∏n−1
k=1(1 − λk)∏∞
k=1(1 − λk)

= (λ, λ)n−1

φE(λ)
,

where (a, q)n = ∏n−1
k=1(1 − aqk−1) denotes the q-Pochhammer symbol and φE(q) = (q, q)∞

denotes the Euler function. This leads to

Ex(ρ
τ ) =

∑
n∈N

ρneλ
nµx/(λ, λ)n−1∑

n∈N0
ρneλnµb/(λ, λ)n

and the numerator is given by

∑
n∈N

ρn

(λ, λ)n−1
eλ

nµx =
∑
k∈N0

(µx)k

k!
∑
n∈N

(ρλk)n

(λ, λ)n−1

= ρ
∑
k∈N0

(µxλ)k

k!
∑
n∈N

(ρλk)n−1

(λ, λ)n−1

= ρ
∑
k∈N0

(µxλ)k

k!
1

(ρλk, λ)∞

= ρ

(ρ, λ)∞

∑
k∈N0

(ρ, λ)k(µλx)
k

k! .

Note that we used the q-binomial theorem in the third step (see [7, Equation (1.3.15)] for a
proof). An analogous calculation for the denominator yields

∑
n∈N0

ρn

(λ, λ)n
eλ

nµb = 1

(ρ, λ)∞

∑
k∈N0

(ρ, λ)k(µb)
k

k! ,

leading to the following result.

Theorem 3.3. If S1 is Exp(µ)-distributed and T1 = 0, it holds that

Ex(ρ
τb ) = ρ

∑
k∈N0

(ρ, λ)k(µxλ)
k/k!∑

k∈N0
(ρ, λ)k(µb)k/k! for all x < b.
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For the special case µ = 1, this formula was obtained using differential equations based on
the generator in [11, Theorem 3].

Noting that

Eb(ρ
τb+) = ρ

∑
k∈N0

(ρ, λ)k(µbλ)
k/k!∑

k∈N0
(ρ, λ)k(µb)k/k! ,

by direct calculation we find that

d

db
Ex(ρ

τb ) = Ex(ρ
τb )µ(Eb(ρ

τb+)− 1).

This reproduces Theorem 3.3 of [3]. Note that in that article the stopping time τ̃b = inf{n ∈
N0 : Xt > b} was considered. But this leads to analogous results since

τb+ = τ̃b under Pb

and
τb = τ̃b Px-a.s. for all x �= b.

3.2. The general case

In this subsection we show that Theorem 3.1 is a powerful tool for the explicit calculation of

 in many cases of interest. By Lemma 3.3 we see that ηδ,i is a rational function of δ with poles
in Sp(−Q) for all i = 1, . . . , m. We assume for simplicity that all eigenvalues are pairwise
different (for the general case, see Remark 3.1 below). Then partial fraction decomposition
yields the representation

ηδ,i =
m∑
j=1

ai,j

µj − δ
for some ai,1, . . . , ai,m,

and since hδ(x) is rational in δ with the same poles, we may write

hδ(x) =
m∑
j=1

cj (x)

µj − δ
for some c1(x), . . . , cm(x).

Theorem 3.1 reads
m∑
j=1

∑m
i=1 aij
i(x)

µj − δ
=

m∑
j=1

cj (x)

µj − δ

and the uniqueness of the partial fraction decomposition yields
m∑
i=1

aij
i(x) = cj (x),

i.e.
A
(x) = c(x),

where A = (aij )
m
i,j=1 and c(x) = (cj (x))

m
j=1. This leads to the following result.

Theorem 3.4. If A is invertible then 
(x) is given by


(x) = A−1c(x) for all x < b.

Remark 3.1. Note that the assumption of distinct eigenvalues was made for simplicity only.
When it is not fulfilled, we can use the general partial fraction decomposition formula and
obtain the analogous result.
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4. Applications to optimal stopping

To tackle the optimal stopping problem

v(x) = sup
τ∈T

Ex(ρ
τ g(Xτ )),

it is useful to reduce the (infinite-dimensional) set of stopping times to a finite-dimensional
subclass. A class often used for this kind of problem is the class of threshold times. This
reduction can be carried out in two different ways.

(i) We use elementary arguments to reduce the set of potential optimal stopping times to the
subclass of threshold times, i.e. to stopping times of the form

τb = inf{t ≥ 0 : Xt ≥ b}
for some b ∈ R. Then we find the optimal threshold. A summary of examples where
this approach can be applied is given below.

(ii) We make the ansatz that the optimal stopping time is of threshold type, identify the
optimal threshold, and use a verification theorem to prove that this stopping time is
indeed optimal.

(i) In [3, Section 2] the idea of an elementary reduction of optimal stopping problems to
threshold problems was studied in detail. For arbitrary innovations, this approach can be applied
to the power-gain function, i.e. g(x) = xn, n ∈ N. This problem is known as the Novikov–
Shiryaev problem and was completely solved for random walks in [13] and [14]. Furthermore,
the approach applies to gain functions of call type, i.e. g(x) = (x − K)+. For the special
case of nonnegative innovations, a much wider class of gain functions can be handled, such as
exponential functions.

(ii) To use this approach, the following easy verification theorem is useful.

Lemma 4.1. Let b∗ ∈ R, write v∗(x) = Ex(ρτb∗g(Xτb∗ )), and assume that

(a) v∗(x) ≥ g(x) for all x < b∗,

(b) E(ρv∗(λx + Z1)) ≤ v∗(x) for all x ∈ R.

Then v = v∗ and τb∗ is optimal.

Proof. By the independence of (Zn)n∈N, property (b) implies that (ρnv∗(Xn))n∈N is a
supermartingale under each measure Px . Since it is positive, the optional sampling theorem
leads to

v∗(x) ≥ sup
τ∈T

Ex(ρ
τ v∗(Xτ )) ≥ sup

τ∈T
Ex(ρ

τ g(Xτ )) for all x ∈ R,

where the second inequality holds by (a) since v∗(x) = g(x) for all x ≥ b. On the other hand,
v∗(x) ≤ v(x), i.e. v∗(x) = v(x) and τb∗ is optimal.

Now we are prepared to solve the optimal stopping problem

v(x) = sup
τ

Ex(ρ
τ g(Xτ )), x ∈ R.

Section 4 gives conditions for the optimality of threshold times. In this case we can simplify
the problem to

v(x) = sup
b

Ex(ρ
τbg(Xτb)), x ∈ R.
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Now take an arbitrary starting point x. Then we have to maximize the real function

�x : (x,∞) → R, b 
→ Ex(ρ
τbg(Xτb)) =

m∑
i=1


bi (x)E(g(b + Ri)),

where Ri is PH(ei,Q)-distributed and b ≥ 0. The results of the previous section give rise to
explicit calculations of
bi (x) and�x . Hence, we are faced with the well-studied maximization
problem for real functions that can, e.g. be solved using the standard tools from differential
calculus. If we have a maximum point b∗ of �x and �x(b∗) > g(x) then

τ ∗ = inf{n ∈ N0 : Xn ≥ b∗}
is an optimal stopping time when (Xn)n∈N0 is started in x. A more elegant approach for finding
the optimal threshold b∗ is the principle of continuous fit.

5. The principle of continuous fit

The principles of smooth and continuous fit play an important role in the study of many
optimal stopping problems. The principle of smooth fit was introduced in [10] and has been
applied to a variety of problems, ranging from sequential analysis to mathematical finance.
The principle of continuous pasting is more recent and was introduced in [15] as a variational
principle to solve sequential testing and disorder problems for the Poisson process. For a
discussion in the case of Lévy processes and further references, we refer the reader to [2].
Another overview is given in [16, Chapter IV.9], from where we draw the following summary
(see page 49):

If X enters the interior of the stopping region S immediately after starting on ∂S, then the
optimal stopping point x∗ is selected so that the value function v is smooth in x∗. IfX does
not enter the interior of the stopping region immediately, then x∗ is selected so that v is
continuous in x∗.

Most applications of this principle involve processes in continuous time. In discrete time
an immediate entrance is of course not possible, so we cannot expect the smooth-fit principle
to hold. In this section we prove that the continuous-fit principle holds in our setting and we
illustrate how it can be used for an easy determination of the optimal threshold.

We keep the notation and assumptions of the previous sections, and, as before, we assume
that the optimal stopping set is an interval of the form [b∗,∞) and consider the optimal stopping
time τb∗ = τ = inf{n ∈ N0 : Xn ≥ b∗}.

Furthermore, we assume that

lim
ε↘0


b
∗
i (b

∗ − ε) = lim
ε↘0


b
∗+ε
i (b∗) for all i = 1, . . . , m. (5.1)

Note that this condition is obviously fulfilled in the cases discussed above. If g is continuous
under an appropriate integrability condition, it furthermore holds that

E(g(Ri + ε + b∗)) → E(g(Ri + b∗)) as ε → 0, i = 1, . . . , m. (5.2)

Proposition 5.1. Assume that (5.1) and (5.2) hold. Then

lim
b↗b∗ v(b) = g(b∗).
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Figure 2: Some candidate solutions for different thresholds in the case g(x) = x.

Proof. Let ε > 0. First note that v(b) > g(b) for all b < b∗, so

lim inf
b↗b∗ v(b) ≥ lim inf

b↗b∗ g(b) = g(b∗).

Furthermore, using Corollary 2.1,

v(b∗ − ε)− g(b∗) = Eb∗−ε(ρτ g(Xτ ))− v(b∗)
≤ Eb∗−ε(ρτ g(Xτ ))− Eb∗(ρτb∗+εg(Xτb∗+ε ))

=
m∑
i=1

(
b
∗
i (b

∗ − ε)E(g(Ri + b∗))−
b
∗+ε
i (b∗)E(g(Ri + ε + b∗)))

→ 0

as ε ↘ 0. This proves that lim supb↗b∗ v(b) ≥ g(b∗).

In Figure 2 we illustrate how the continuous-fit principle can be used. We consider the
candidate solutions

v(b, x) =
{
�x(b), x < b,

g(x), x ≥ b,

and solve the equation �b−(b) = g(b), where �· is defined as in the previous section. If the
equation has a unique solution, we can conclude that this solution must be the optimal threshold,
as illustrated in the following example.

Example 5.1. We consider the gain function g(x) = x and Exp(µ)-distributed innovations; in
this setting we always assume that (Xn)n∈N0 has values in [0,∞). The discussion in Section 4
guarantees that the optimal stopping time is of threshold type. The optimal threshold can be
found by the continuous-fit principle described in the previous section.

The problem is solved if we find a unique b∗ ∈ [0,∞) that solves the equation

b = �b−(b) = 
b−(b)
(
b + 1

µ

)
= ρ

∑
k∈N0

(ρ, λ)k(µbλ)
k/k!∑

k∈N0
(ρ, λ)k(µb)k/k!

(
b + 1

µ

)
,
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where we have used Theorem 3.3 in the last step. This equation is equivalent to

∞∑
k=0

(ρ, λ)k
µk

k! b
k+1 =

∞∑
k=0

ρ(ρ, λ)k
µkλk

k! bk+1 +
∞∑
k=0

ρ

µ
(ρ, λ)k

µkλk

k! bk,

i.e.
ρ

µ
−

∞∑
k=0

(ρ, λ)k
µk

k!
(

1 − ρλk − ρ

µ
(1 − ρλk)

µλk+1

k + 1

)
bk+1 = 0,

i.e.
f (b) = 0,

where

f (b) = ρ

µ
−

∞∑
k=0

(ρ, λ)k+1
µk

k!
(

1 − ρλk+1

k + 1

)
bk+1.

Note that f (0) = ρ/µ > 0 and

f ′(b) = −
∞∑
k=0

(ρ, λ)k+1
µk

k!
(

1 − ρλk+1

k + 1

)
(k + 1)bk < 0 for all b ∈ [0,∞).

Since f (b) ≤ ρ/µ − (1 − ρ)(1 − ρλ)b, we furthermore obtain f (b) → −∞ for b → ∞.
Hence, there exists a unique solution b∗ of the transcendental equation f (b) = 0.

The optimal stopping time is

τ ∗ = inf{n ∈ N : Xn ≥ b∗}
and the value function is given by

v(x) =

⎧⎪⎨
⎪⎩

(
b + 1

µ

)
ρ

∑
k∈N0

(ρ, λ)k(µxλ)
k/k!∑

k∈N0
(ρ, λ)k(µb∗)k/k! , x < b∗,

x, x ≥ b∗.

In Figure 2 v is plotted for the parameters µ = 1 and ρ = λ = 1
2 .
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