
J. Appl. Prob. 51, 1–18 (2014)
Printed in England

© Applied Probability Trust 2014

A WAVELET-BASED ALMOST-SURE UNIFORM
APPROXIMATION OF FRACTIONAL BROWNIAN
MOTION WITH A PARALLEL ALGORITHM

DAWEI HONG,∗ ∗∗ Rutgers University

SHUSHUANG MAN,∗∗∗ Southwest Minnesota State University

JEAN-CAMILLE BIRGET ∗ and

DESMOND S. LUN,∗ Rutgers University

Abstract

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian
motion (FBM) (B

(H)
t )t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar

wavelets which merely have one vanishing moment, an almost-sure uniform expansion
of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation
is derived. We also describe a parallel algorithm that generates sample paths of an FBM
efficiently.
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1. Introduction

A fractional Brownian motion (FBM) (B
(H)
t )t∈[0,T ] of Hurst index H ∈ (0, 1) is a centered

Gaussian process with covariance E[B(H)
t1

B
(H)
t2

] = 1
2 (t2H

1 + t2H
2 − |t1 − t2|2H ) for all t1, t2 ∈

[0, T ]. A standard Brownian motion (BM) (Bt )t∈[0,T ] is the special case H = 1
2 . There are a

great number of applications of FBM in engineering and the sciences; see [4] and the references
therein. The study of approximations of FBM has been active since the 1970s. A major focus
is to find approximations of FBM that converge in law; see, for example, [3], [6], [7], [14],
and [17], and references therein. However, practical implementations often require almost-
sure uniform, also termed strong uniform, approximations of FBM, which work as follows.
Let (B

(H)
t )t∈[0,1] be an FBM of some H ∈ (0, 1). Then, with respect to the probability space

where (B
(H)
t )t∈[0,1] is defined, the following event occurs with probability 1. For a sample path

of (B
(H)
t )t∈[0,1], there is a sequence of functions of t ∈ [0, 1] produced by the approximation

which uniformly converges to the sample path; conversely, a sequence of functions of t ∈ [0, 1]
produced by the approximation uniformly converges to a sample path of (B

(H)
t )t∈[0,1].

Meyer et al. [16] obtained several wavelet series expansions of FBM for H ∈ (0, 1) that
almost surely and uniformly converge. Their results brought deep insights into the spectral
properties of FBM. For instance, the wavelet series expansion of FBM in [16, Section 7]
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yielded a very, if not the most, efficient mathematical representation of the spectral properties
of FBM—a subject that has attracted much research for decades—see [16, Section 8].

Kühn and Linde [12] showed that the optimal convergence rate that a series expansion of
FBM may reach is O(N−H

√
log N) if the expansion converges almost surely and uniformly.

Ayache and Taqqu [2] proved that, under certain conditions, the wavelet series expansions of
FBM in [16] converge at the optimal rate. Dzhaparidze and van Zanten [9] constructed a series
expansion of FBM for H ∈ (0, 1) (in the frequency domain) which almost surely and uniformly
converges at the optimal rate [10].

The above results will have a long-lasting impact on the study of FBM; in the meantime they
stimulate further studies. Theorem 2 of Meyer et al. [16] and their Remark 4 on the theorem
motivated our investigation. Haar wavelets are very convenient to compute. Moreover, the
simple form of the Mandelbrot–van Ness representation of FBM [15] is likely to yield a fast
algorithm. We ask whether we can construct an almost-sure uniform approximation of FBM for
all H ∈ (0, 1) using the Mandelbrot–van Ness representation and Haar wavelets. In this paper
we establish such an approximation of FBM for H ∈ (0, 1). Our approach is to apply Lévy’s
equivalence theorem (see, e.g. Theorem 9.7.1 of [8]) to a Haar wavelet-based approximation
of FBM obtained from the Mandelbrot–van Ness representation, and then to carefully evaluate
the wavelet coefficients.

As shown in [16], wavelet approximation of FBM is a powerful approach. A key idea of
this approach is to almost surely and uniformly approximate the sample paths in a process,
using independent and identically distributed (i.i.d.) Gaussian random variables with a finely
designed basis of L2 space such as Meyer’s or Daubechies’wavelets. The conditions for wavelet
approximations of FBM with the optimal convergence rate [2] need wavelets to have the first
six vanishing moments. It is a question of whether we can use Haar wavelets that merely have
the first vanishing moment to obtain an almost-sure uniform approximation of FBM for all H

∈ (0, 1). We show this is possible. The convergence rate of our almost-sure uniform approx-
imation of FBM by Haar wavelets reaches the optimal O(N−H

√
log N) for H ∈ (0, 1

2 ], but
the convergence slows down to rate O(N−(1−H)

√
log N) for H ∈ ( 1

2 , 1) (Theorem 6.2). Haar
wavelets (piecewise-constant functions) do not introduce computational errors by themselves,
and our approximation (based on the Mandelbrot–van Ness representation) is in a rather simple
form. These two advantages make our approximation of FBM suitable for practical applications
when H is not close to 1. We also describe a parallel algorithm that efficiently generates sample
paths of an FBM.

We give some preliminaries in Section 2. In Sections 3, 4, 5, and 6, we construct and prove
an almost-sure uniform approximation of FBM for H ∈ (0, 1). We describe a parallel algorithm
for the approximation of FBM in Section 7.

2. Preliminaries

Let CH = (�(H + 1
2 ))−1, the reciprocal of the gamma function at H + 1

2 . The Mandelbrot–
van Ness stochastic integral representation of FBM [15] is

B
(H)
t = CH

∫ t

−∞
((t − s)

H−1/2
+ − (−s)

H−1/2
+ ) dBs

for H ∈ (0, 1
2 ) ∪ ( 1

2 , 1); when H = 1
2 , FBM becomes BM. In what follows, we denote the

underlying probability space for the above representation of FBM by (�, F , P), where F is
a standard Brownian filtration. Our construction of an almost-sure uniform approximation of
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A wavelet-based approximation of fractional Brownian motion 3

FBM is based on a rewriting of the Mandelbrot–van Ness stochastic integral representation:

B
(H)
t = I1(t, H) + I2(t, H) + I3(t, H), t ∈ [0, 1]. (2.1)

Here

I1(t, H) = CH

∫ t

0
(t − s)H−1/2 dBs,

I2(t, H) = CH

∫ 0

−1
((t − s)H−1/2 − (−s)H−1/2) dBs,

I3(t, H) = CH

∫ −1

−∞
((t − s)H−1/2 − (−s)H−1/2) dBs.

Let (φn)n≥0 be a complete orthonormal basis for L2[a, b]. For f ∈ L2[a, b], we have
f = ∑∞

n=0〈f, φn〉φn in L2[a, b]. We take the Wiener integral on both sides of f =∑∞
n=0〈f, φn〉φn. Then we informally interchange the order of integration and summation

on the right-hand side, with
∫ b

a
f (s) dBs = ∑∞

n=0〈f, φn〉
∫ b

a
φn(s) dBs . By Lévy’s equivalence

theorem we have the following result.

Theorem 2.1. It holds that limN→∞
∑N

n=0〈f, φn〉
∫ b

a
φn(s) dBs = ∫ b

a
f (s) dBs almost surely.

The Haar wavelet on [0, 1] is defined as follows. Let H(s) = 1 if s ∈ [0, 1
2 ), H(s) = −1

if s ∈ [ 1
2 , 1], and H(s) = 0 otherwise. For n = 2j + k with j ≥ 0 and 0 ≤ k < 2j , define

Hn(s) = 2j/2H(2j s −k) and H0(s) = 1. The sequence (Hn)n≥0 is the Haar wavelet on [0, 1],
which constitutes a complete orthonormal basis for L2[0, 1]. In a similar way, we can define
the Haar wavelet on any given interval [a, b] ⊂ R to constitute a complete orthonormal basis
for L2[a, b] (see [5]).

3. Approximation of I1(t, H)

We construct and prove an almost-sure uniform approximation of I1(t, H). Consider a
family of functions f

(1)
t ∈ L2[0, 1] with a parameter t ∈ (0, 1] ∩ Q:

f
(1)
t (s) =

{
(t − s)H−1/2 if s ∈ [0, t),

0 otherwise.

By Theorem 2.1 we have

P

{(∫ 1

0
f

(1)
t (s) dBs

)
(ω) =

( ∞∑
n=0

〈f (1)
t , Hn〉

∫ 1

0
Hn(s) dBs

)
(ω)

}
= 1 (3.1)

for each t ∈ (0, 1] ∩ Q, and, as a consequence,

P
⋂

t∈(0,1]∩Q

{(∫ 1

0
f

(1)
t (s) dBs

)
(ω) =

( ∞∑
n=0

〈f (1)
t , Hn〉

∫ 1

0
Hn(s) dBs

)
(ω)

}
= 1.

We define, for all N ≥ 1,

W1(t, H, N) =

⎧⎪⎪⎨⎪⎪⎩
CH

N∑
n=0

〈f (1)
t , Hn〉L(1)

n for t ∈ (0, 1] ∩ Q,

0 for t = 0.

(3.2)
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Here L(1)
n = ∫ 1

0 Hn(s) dBs, n = 0, 1, . . . , N , are i.i.d. Gaussian random variables with mean 0
and variance 1.

In what follows, n ∈ Z+ is said to be at level j if n = 2j + k with j ≥ 0 and 0 ≤ k < 2j ,
and the interval [k/2j , (k + 1)/2j ) is meant to be [k/2j , (k + 1)/2j ] when (k + 1)/2j = 1.

Lemma 3.1. There is an absolute constant D1 > 0 such that, for every t ∈ (0, 1] ∩ Q and all
N > 1,

∑∞
n=N+1〈f (1)

t , Hn〉2 ≤ D1(H(1 − H)N2H )−1.

Proof. For t ∈ (0, 1] ∩ Q, at each level j = 0, 1, . . . , we partition the set

{n = 2j + k : k = 0, 1, . . . , 2j − 1}
into three subsets: G1(j, t) consisting of all n (= 2j + k) such that [k/2j , (k + 1)/2j ) ⊆ [0, t);
G2(j, t) consisting of the one n such that t ∈ [k/2j , (k + 1)/2j ); and G3(j, t) consisting of all

n such that t /∈ ⋃2j −1
k∗=k[k∗/2j , (k∗ + 1)/2j ).

Consider a fixed j . By the definition of f
(1)
t we have

〈f (1)
t , Hn〉 = 0 for every n ∈ G3(j, t). (3.3)

For the only n ∈ G2(j, t), we denote by k̂t,j the k that appears in n = 2j + k. We have

〈f (1)
t , Hn〉 = 2j/2

[∫ (2k̂t,j +1)/2j+1

2k̂t,j /2j+1
f

(1)
t (s) ds −

∫ (2k̂t,j +2)/2j+1

(2k̂t,j +1)/2j+1
f

(1)
t (s) ds

]
which implies that

|〈f (1)
t , Hn〉| ≤ 2j/2 max

{∫ (2k̂t,j +1)/2j+1

2k̂t,j /2j+1

(
2k̂t,j + 1

2j+1 − s

)H−1/2

ds,

∫ (2k̂t,j +2)/2j+1

(2k̂t,j +1)/2j+1

(
2k̂t,j + 2

2j+1 − s

)H−1/2

ds

}
.

Using this inequality, by calculation we have, for n ∈ G2(j, t),

〈f (1)
t , Hn〉2 ≤ 2−2jH

(
2−(2H+1)

(
H + 1

2

)−2)
. (3.4)

For each n (= 2j + k) ∈ G1(j, t), we have

〈f (1)
t , Hn〉 = 2j/2

[∫ (2k+1)/2j+1

2k/2j+1
(t − s)H−1/2 ds −

∫ (2k+2)/2j+1

(2k+1)/2j+1
(t − s)H−1/2 ds

]
= 2j/2

H + 1/2

[((
t − 2k

2j+1

)H+1/2

−
(

t − 2k + 1

2j+1

)H+1/2)
−

((
t − 2k + 1

2j+1

)H+1/2

−
(

t − 2k + 2

2j+1

)H+1/2)]
. (3.5)

To facilitate our argument, we introduce a function w of h: w(h) = g(x0 + h) + g(x0 − h) −
2g(x0) where g(·) = (·)H+1/2 and x0 = t − (2k + 1)/2j+1. We let h = 1/2j+1 and rewrite
(3.5) as

〈f (1)
t , Hn〉 = 2j/2

H + 1/2
w(h). (3.6)
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By Taylor’s expansion,

w(h) = w(0) + w′(0)

1! h + w′′(θh)

2! h2 (for some 0 < θ < 1)

= w′′(θh)

2! h2 (since w(0) = w′(0) = 0).

Hence, we have

w(h) = h2 w′′(θh)

2!
= 2−2(j+1) (H + 1/2)(H − 1/2)

2

×
[(

t − 2k + 1 + θ

2j+1

)H−3/2

+
(

t − 2k + 1 − θ

2j+1

)H−3/2]
.

This equality leads us to consider the case where n (= 2j + k) ∈ G1(j, t) with k + 2 ≤ k̂t,j . In
this case, by (3.6), we have

|〈f (1)
t , Hn〉| ≤ 2j/22−2(j+1)

∣∣∣∣H − 1

2

∣∣∣∣(t − 2k + 1 + θ

2j+1

)H−3/2

(since 0 < θ < 1 and 0 < H < 1), which yields

|〈f (1)
t , Hn〉| ≤ 2j/22−2(j+1)

∣∣∣∣H − 1

2

∣∣∣∣(2k̂t,j

2j+1 − 2k + 2

2j+1

)H−3/2

= |H − 1/2|
4

2−jH (k̂t,j − (k + 1))H−3/2.

Thus, for n (= 2j + k) ∈ G1(j, t) with k + 2 ≤ k̂t,j , we have

|〈f (1)
t , Hn〉|2 ≤ 2−2jH (k̂t,j − (k + 1))2H−3 |H − 1/2|2

16
. (3.7)

There is one and only one 〈f (1)
t , Hn〉 with n ∈ G1(j, t) which is not included in (3.7), namely,

n = 2j + k̂t,j − 1. However, in this case we have

〈f (1)
t , Hn〉 = 2j/2

[∫ (2k̂t,j −1)/2j+1

(2k̂t,j −2)/2j+1
(t − s)H−1/2 ds −

∫ 2k̂t,j /2j+1

(2k̂t,j −1)/2j+1
(t − s)H−1/2 ds

]
and, hence,

〈f (1)
t , Hn〉2 ≤ 2j

(H + 1/2)2 2−(2H+1)j = 2−2jH

(
H + 1

2

)−2

. (3.8)
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Now, putting (3.3), (3.4), (3.7), and (3.8) together, there is an absolute constant D∗
1 > 0 such

that, at any level j , ∑
{n at level j}

|〈f (1)
t , Hn〉|2 ≤ D∗

12−2jH
∞∑

�=1

(
1

�

)3−2H

= D∗
12−2jH

(
1 +

∞∑
�=2

(
1

�

)3−2H )
≤ D∗

12−2jH

(
1 +

∫ ∞

1

dv

v3−2H

)
.

This inequality can be written as

∑
{n at level j}

|〈f (1)
t , Hn〉|2 ≤ D∗∗

1

1 − H
2−2jH ,

where D∗∗
1 > 0 is an absolute constant. Therefore, we have

∞∑
n=N+1

〈f (1)
t , Hn〉2 ≤

∞∑
j=�log2 N�

∑
{n at level j}

|〈f (1)
t , Hn〉|2

≤
∞∑

j=�log2 N�

D∗∗
1

1 − H
2−2jH

= D∗∗
1

1 − H
2−2�log2 N�H

∞∑
j=0

2−2jH

= D∗∗
1

1 − H
2−2�log2 N�H 1

1 − 2−2H
.

Lemma 3.1 now follows from this inequality and the fact that there is an absolute constant G > 0
such that 1/(1−2−2H ) ≤ G/H for all H ∈ (0, 1) (because limH→0+(1−2−2H )/H = 2 log 2).

Lemma 3.2. For any given H ∈ (0, 1) and q ≥ 2, we have, for all N > 1,

P

{
sup

t∈[0,1]∩Q

|I1(t, H) − W1(t, H, N)| ≥ CH

√
2D1q√

H(1 − H)

√
log N

NH

}
≤ 1√

πNq
,

where D1 is the absolute constant used in Lemma 3.1.

Proof. By definition, I1(0, H) = 0 = W1(0, H, N). So, we focus on the case in which t ∈
(0, 1] ∩ Q. By (3.2) and the consequence of (3.1), we have

P
⋂

t∈(0,1]∩Q

{
(I1(t, H) − W1(t, H, N))(ω) = CH

∞∑
n=N+1

〈f (1)
t , Hn〉

∫ 1

0
Hn(s) dBs(ω)

}
= 1.

(3.9)
Here

∑∞
n=N+1〈f (1)

t , Hn〉
∫ 1

0 Hn(s) dBs is a Gaussian random variable with mean 0 and vari-

ance
∑∞

n=N+1〈f (1)
t , Hn〉2. By σ 2

1 (t, H, N) we denote
∑∞

n=N+1〈f (1)
t , Hn〉2 . For any given
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H ∈ (0, 1) and q ≥ 2, we have

P

{∣∣∣∣ ∞∑
n=N+1

∫ 1

0
〈f (1)

t , Hn〉Hn(s) dBs

∣∣∣∣ ≥
√

2D1q log N

NH
√

H(1 − H)

}

=
√

2

σ1(t, H, N)
√

π

∫ ∞
√

2D1q log N/NH
√

H(1−H)

exp

(
− u2

2σ 2
1 (t, H, N)

)
du

= 2√
π

∫ ∞
√

2D1q log N/
√

2σ1(t,H,N)NH
√

H(1−H)

e−v2
dv

≤ 2√
π

∫ ∞
√

q log N

e−v2
dv (by Lemma 3.1)

≤ 1√
π

∫ ∞
√

q log N

2ve−v2
dv (since

√
q log N > 1 for q ≥ 2 and N > 1).

Putting this and (3.9) together completes the proof.

4. Approximation of I2(t, H)

Our construction and proof for an almost-sure uniform approximation of I2(t, H) are similar
to those for I1(t, H) presented in the previous section. Consider the Haar wavelet (H̃n)n≥0 on
[−1, 0]. We consider a family of functions f

(2)
t ∈ L2[−1, 0] with a parameter t ∈ [0, 1] ∩ Q:

f
(2)
t (s) =

{
(t − s)H−1/2 − (−s)H−1/2 if s ∈ [−1, 0),

0 otherwise.

By Theorem 2.1 we have

P

{(∫ 0

−1
f

(2)
t (s) dBs

)
(ω) =

( ∞∑
n=0

〈f (2)
t , H̃n〉

∫ 0

−1
H̃n(s) dBs

)
(ω)

}
= 1 (4.1)

for each t ∈ [0, 1] ∩ Q, and, as a consequence,

P
⋂

t∈[0,1]∩Q

{(∫ 0

−1
f

(2)
t (s) dBs

)
(ω) =

( ∞∑
n=0

〈f (2)
t , H̃n〉

∫ 0

−1
H̃n(s) dBs

)
(ω)

}
= 1.

We define, for all N ≥ 1,

W2(t, H, N) =

⎧⎪⎪⎨⎪⎪⎩
CH

N∑
n=0

〈f (2)
t , H̃n〉L(2)

n for t ∈ [0, 1] ∩ Q,

0 for t = 0.

(4.2)

Here L(2)
n = ∫ 0

−1 H̃n(s) dBs, n = 0, 1, . . . , N , are i.i.d. Gaussian random variables with
mean 0 and variance 1. Note that the sequence (L(2)

n )n≥0 is independent of the sequence
(L(1)

n )n≥0 used in the definition of W1(t, H, N).

Lemma 4.1. There is an absolute constant D2 > 0 such that, for every t ∈ [0, 1] ∩ Q and all
N > 1,

∑∞
n=N+1〈f (2)

t , H̃n〉2 ≤ D2(H(1 − H)N2H )−1.
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Proof. For each t ∈ [0, 1] ∩ Q,

∞∑
n=N+1

〈f (2)
t , H̃n〉2 ≤ 2

( ∞∑
n=N+1

〈(t − s)H−1/2, H̃n〉2 +
∞∑

n=N+1

〈(−s)H−1/2, H̃n〉2
)

. (4.3)

By changing variables, the terms on the right-hand side of (4.3) become

〈(t − s)H−1/2, H̃n〉 = 〈(t + s)H−1/2, Hn〉 and 〈(−s)H−1/2, H̃n〉 = 〈sH−1/2, Hn〉.
Below we estimate

∑∞
n=N+1〈(t + s)H−1/2, Hn〉2 and

∑∞
n=N+1〈sH−1/2, Hn〉2.

For t ∈ (0, 1] ∩ Q, at each level j , we have, for each n = 2j + k, k = 0, . . . , 2j − 1,

〈(t + s)H−1/2, Hn〉

= 2j/2
[∫ (2k+1)/2j+1

2k/2j+1
(t + s)H−1/2 ds −

∫ (2k+2)/2j+1

(2k+1)/2j+1
(t + s)H−1/2 ds

]
= 2j/2

H + 1/2

[((
t + 2k + 1

2j+1

)H+1/2

−
(

t + 2k

2j+1

)H+1/2)
−

((
t + 2k + 2

2j+1

)H+1/2

−
(

t + 2k + 1

2j+1

)H+1/2)]
. (4.4)

To facilitate our argument, we introduce a revised version of the function w of h used in the
proof of Lemma 3.1. Since there will be no confusion, we denote this revised version by w as
w(h) = 2g(x0) − g(x0 + h) − g(x0 − h), where g(·) = (·)H+1/2 and x0 = t + (2k + 1)/2j+1.
We let h = 1/2j+1 and rewrite (4.4) as

〈(t + s)H−1/2, Hn〉 = 2j/2

H + 1/2
w(h).

Then, by Taylor’s expansion,

w(h) = w(0) + w′(0)

1! h + w′′(θh)

2! h2 (for some 0 < θ < 1)

= w′′(θh)

2! h2 (since w(0) = w′(0) = 0).

Hence, we have

w(h) = h2 w′′(θh)

2!
= −2−2(j+1) (H + 1/2)(H − 1/2)

2

×
[(

t + 2k + 1 + θ

2j+1

)H−3/2

+
(

t + 2k + 1 − θ

2j+1

)H−3/2]
.

Using this equality, rewriting (4.4), and using the fact that 0 < θ < 1 and 0 < H < 1, we have

|〈(t + s)H−1/2, Hn〉| ≤ 2j/22−2(j+1)

∣∣∣∣H − 1

2

∣∣∣∣(t + 2k + 1 − θ

2j+1

)H−3/2

. (4.5)
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Now, as in the proof of Lemma 3.1, we denote by 2j + k̂t,j the unique n such that t ∈
[k̂t,j /2j , (k̂t,j + 1)/2j ). Then, there are two and only two cases to consider.

Case 1: k̂t,j ≥ 1. By (4.5) we have

|〈(t + s)H−1/2, Hn〉| ≤ 2j/22−2(j+1)

∣∣∣∣H − 1

2

∣∣∣∣( 2̂kt,j

2j+1 + 2k + 1 − θ

2j+1

)H−3/2

≤ 2−2jH

∣∣∣∣H − 1

2

∣∣∣∣2−(H+1/2)(k + 1)H−3/2.

Thus, there is an absolute constant D2,1 > 0 such that

∑
{n at level j}

〈(t + s)H−1/2, Hn〉2 ≤ D2,12−2jH
∞∑

�=1

(
1

�

)3−2H

. (4.6)

Case 2: k̂t,j = 0. Using (4.4), we have

〈(t + s)H−1/2, H2j 〉 = 2j/2
[∫ 1/2j+1

0
(t + s)H−1/2 ds −

∫ 2/2j+1

1/2j+1
(t + s)H−1/2 ds

]
= 2j/2

H + 1/2

[((
t + 1

2j+1

)H+1/2

− tH+1/2
)

−
((

t + 2

2j+1

)H+1/2

−
(

t + 1

2j+1

)H+1/2)]
,

and, hence,

|〈(t + s)H−1/2, H2j 〉| ≤ 2j/2

H + 1/2

(
2

2j

)H+1/2

. (4.7)

For n = 2j + k with k = 1, . . . , 2j − 1, by (4.5) we have

|〈(t + s)H−1/2, Hn〉| ≤ 2j/22−2(j+1)

∣∣∣∣H − 1

2

∣∣∣∣(2k + 1 − θ

2j+1

)H−3/2

<
2j/2

H + 1/2
2−2(j+1)

(
k

2j

)H−3/2

(4.8)

since |H 2 − 1
4 | < 1 for H ∈ (0, 1). Putting (4.7) and (4.8) together, we have

∑
{n at level j}

〈(t + s)H−1/2, Hn〉2 ≤ D2,12−2jH
∞∑

�=1

(
1

�

)3−2H

. (4.9)

Without loss of generality, we can let D2,1 be the same absolute constant as in (4.6).
Using an argument similar to that used for 〈(t + s)H−1/2, Hn〉 presented above, there is an

absolute constant D2,2 > 0 such that

∑
{n at level j}

〈sH−1/2, Hn〉2 ≤ D2,22−2jH
∞∑

�=1

(
1

�

)3−2H

. (4.10)

Lemma 4.1 follows from putting (4.3), (4.9), and (4.10) together.
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Lemma 4.2. For any given H ∈ (0, 1) and q ≥ 2, we have, for all N > 1,

P

{
sup

t∈[0,1]∩Q

|I2(t, H) − W2(t, H, N)| ≥ CH

√
2D2q√

H(1 − H)

√
log N

NH

}
≤ 2√

πNq
,

where D2 is the absolute constant used in Lemma 4.1.

Proof. By (4.2) and the consequence of (4.1), we have

P
⋂

t∈[0,1]∩Q

{
(I2(t, H) − W2(t, H, N))(ω) = CH

∞∑
n=N+1

〈f (2)
t , H̃n〉

∫ 0

−1
H̃n(s) dBs(ω)

}
= 1.

Here
∑∞

n=N+1〈f (2)
t , H̃n〉

∫ 0
−1 Hn(s) dBs is a Gaussian random variable with mean 0 and

variance
∑∞

n=N+1〈f (2)
t , H̃n〉2. The rest of this proof follows the same lines as the proof

of Lemma 3.2.

5. Approximation of I3(t, H)

By the time inversion of BM, we define a BM (B̃s)s∈[−1,0] : B̃s = sB1/s for s ∈ [−1, 0) and
B̃0 = 0. Consider a family of functions f

(3)
u (v) ∈ L2[−1, 0] with a parameter u ∈ [−1, 0]:

f
(3)
u (v) = 1 if v ∈ (u, 0); f

(3)
u (v) = 0 otherwise. Let

gn(t, H) =
∫ 0

−1
((−u−1)H−3/2 − (t − u−1)H−3/2)u−3〈f (3)

u , H̃n〉 du.

Let (L(3)
n )n≥0 be the sequence with L(3)

n = ∫ 0
−1 H̃n(s) dB̃s , and let L∗ = B−1. We define, for

all N ≥ 1,

W3(t, H, N) = CH ((t + 1)H−1/2 − 1)L∗ − CH

(
H − 1

2

) N∑
n=0

gn(t, H)L(3)
n . (5.1)

Applying Lemma 3.2 to the case in which H = 1
2 and the Haar wavelet (Hn)n≥0 on [0, 1]

is replaced by its counterpart (H̃n)n≥0 on [−1, 0], we have

B̃u =
∞∑

n=0

〈f (3)
u , H̃n〉

∫ 0

−1
H̃n(v) dB̃v (5.2)

almost surely for every u ∈ [−1, 0]∩Q. Part of Theorem 6.2 below for the case H = 1
2 claims

that Lemma 3.2 can be extended from discrete time to continuous time. The proof for that part
of Theorem 6.2 does not involve I3(t, H) and I2(t, H) (see Remark 6.1). We can in this section
use the same part, i.e. (5.2) can also be extended for every u ∈ [−1, 0].
Lemma 5.1. There is an absolute constant D3 > 0 such that, for any given H ∈ (0, 1) and
q ≥ 2, we have, for all N > 1,

P

{
sup

t∈[0,1]∩Q

|I3(t, H) − W3(t, H, N)| ≥ CH D3
√

q log N√
HN1−H

}
≤ 1√

πNq
.
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Proof. Using stochastic integration by parts and the inversion law of BM, Garzón et al. [11]
showed a technical lemma (see Lemma 3.1 therein). By this technical lemma, we almost surely
have, for any fixed t ∈ [0, 1],

I3(t, H) = CH ((t + 1)H−1/2 − 1)B−1

− CH

(
H − 1

2

) ∫ 0

−1
((−u−1)H−3/2 − (t − u−1)H−3/2)u−3B̃u du. (5.3)

Using the extension of (5.2), we have, for any fixed t ∈ [0, 1] ∩ Q, almost surely,∫ 0

−1
((−u−1)H−3/2 − (t − u−1)H−3/2)u−3B̃u du

=
∫ 0

−1

∞∑
n=0

((−u−1)H−3/2 − (t − u−1)H−3/2)u−3〈f (3)
u , H̃n〉

∫ 0

−1
H̃n(v) dB̃v du. (5.4)

For any fixed t ∈ [0, 1] ∩ Q, on the right-hand side of (5.4), the summation over n and the
integration with respect to du are interchangeable. To see this, we regard the summation as a
discrete version of integration. By Lévy’s equivalence theorem we have, almost surely,

∞∑
n=0

〈f (3)
u , H̃n〉2

[∫ 0

−1
H̃n(v) dB̃v

]2

=
∫ 0

−1
(f (3)

u (v))2 dv

[∫ 0

−1
dB̃v

]2

= |u|(B̃−1)
2. (5.5)

Furthermore, we have, for H ∈ (0, 1), u ∈ [−1, 0), and t ∈ [0, 1],

|(−u−1)H−3/2 − (t − u−1)H−3/2| =
∣∣∣∣H − 3

2

∣∣∣∣ ∫ t

0
(s − u−1)H−5/2 ds

≤
∣∣∣∣H − 3

2

∣∣∣∣(−u)−H+5/2
∫ t

0
ds

≤ 3
2 (−u)−H+5/2. (5.6)

By (5.5) and (5.6), we have, for H ∈ (0, 1),∫ 0

−1

{ ∞∑
n=0

((−u−1)H−3/2 − (t − u−1)H−3/2)2u−6〈f (3)
u , H̃n〉2

[∫ 0

−1
H̃n(v) dB̃v

]2}1/2

du

≤ 3|B̃−1|
2

∫ 0

−1
(−u)−H du

= 3|B̃−1|
2(1 − H)

< ∞ with probability 1,

which implies that the stochastic Fubini theorem is applicable (see, e.g. Condition (1.5) of [18]).
Then it follows from (5.4) that, for any fixed t ∈ [0, 1] ∩ Q, almost surely,∫ 0

−1
((−u−1)H−3/2 − (t − u−1)H−3/2)u−3B̃u du =

∞∑
n=0

gn(t, H)

∫ 0

−1
H̃n(v) dB̃v. (5.7)
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Throughout the rest of this proof, we suppose that H ∈ (0, 1) \ { 1
2 }. Consider a family of

functions f
(4)
x (s) ∈ L2[0, 1] with a parameter x ∈ [0, 1]: f

(4)
x (s) = 1 if s ∈ (0, x); f

(4)
x (s) = 0

otherwise. Replacing x by −u and (H̃n)n≥0 by (Hn)n≥0, we have

gn(t, H) =
∫ 1

0
((t + x−1)H−3/2 − (x−1)H−3/2)x−3〈f (4)

x , Hn〉 dx. (5.8)

Recall the two conventions: n ∈ Z+ is said to be at level j if n = 2j + k with j ≥ 0 and
0 ≤ k < 2j , and the interval [k/2j , (k + 1)/2j ) is meant to be [k/2j , (k + 1)/2j ] when
(k + 1)/2j = 1. For n = 2j + k, let

gj,k(t, H) =
∫ (k+1)/2j

k/2j

((t + x−1)H−3/2 − (x−1)H−3/2)x−3〈f (4)
x , Hn〉 dx.

For simplicity, let Gt,H (x) = ((t + x−1)H−3/2 − (x−1)H−3/2)x−3. We have

gj,k(t, H) =
∫ (2k+1)/2j+1

2k/2j+1
Gt,H (x)

∫ x

0
Hn(y) dy dx

+
∫ (2k+2)/2j+1

(2k+1)/2j+1
Gt,H (x)

∫ x

0
Hn(y) dy dx

= 2j/2
∫ (2k+1)/2j+1

2k/2j+1
Gt,H (x)x dx − 2j/2

∫ (2k+2)/2j+1

(2k+1)/2j+1
Gt,H (x)x dx

− 2j/2
∫ (2k+1)/2j+1

2k/2j+1
Gt,H (x)

2k

2j+1 dx + 2j/2
∫ (2k+2)/2j+1

(2k+1)/2j+1
Gt,H (x)

2k + 2

2j+1 dx.

(5.9)

For the first two terms on the right-hand side of (5.9), we have∫ b

a

Gt,H (x)x dx = 1

H − 1/2
(yH−1/2 − (t + y)H−1/2)

∣∣∣y=1/b

y=1/a
for b, a > 0.

Let

h̃t,H,j,k = 2j/2
∫ (2k+1)/2j+1

2k/2j+1
Gt,H (x)x dx − 2j/2

∫ (2k+2)/2j+1

(2k+1)/2j+1
Gt,H (x)x dx.

In the k = 0 case we have

h̃t,H,j,0 = 2j/2

H − 1/2

[
(yH−1/2 − (t + y)H−1/2)

∣∣∣y=2j+1

y=∞ −(yH−1/2 − (t + y)H−1/2)

∣∣∣y=2j

y=2j+1

]
= 2j/2

H − 1/2

[
2(j+1)(H−1/2)+1

(
1 −

(
t

2j+1 + 1

)H−1/2)
− 2j (H−1/2)

(
1 −

(
t

2j
+ 1

)H−1/2)]
,

which implies that, for t ∈ [0.1],

|h̃t,H,j,0| ≤ D∗
3,1

2j (1−H)
(5.10)

https://doi.org/10.1239/jap/1395771410 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771410


A wavelet-based approximation of fractional Brownian motion 13

with an absolute constant D∗
3,1 > 0. In the k > 0 case we have

h̃t,H,j,k = 2j/2

H − 1/2

[
(yH−1/2 − (t + y)H−1/2)

∣∣∣y=2j+1/(2k+1)

y=2j+1/2k

− (yH−1/2 − (t + y)H−1/2)

∣∣∣y=2j+1/(2k+2)

y=2j+1/(2k+1)

]
= 2jH 2H−1/2

H − 1/2

[
2

(
1 −

(
t (2k + 1)

2j+1 + 1

)H−1/2)
−

(
1 −

(
t2k

2j+1 + 1

)H−1/2)
−

(
1 −

(
t (2k + 2)

2j+1 + 1

)H−1/2)]
. (5.11)

For the right-hand side of (5.11), we introduce a function w̃ of h: w̃(h) = 2g̃(x0) − g̃(x0 +
h) − g̃(x0 − h). Here g̃(x) = 1 − (1 + t (2k + 1 + x)/2j+1)H−1/2 and x0 = 0. We then have
h̃t,H,j,k = (2jH 2H−1/2/(H − 1

2 ))w̃(1). By Taylor’s expansion we have

w̃(h) = w̃(0) + w̃′(0)

1! h + w̃′′(θh)

2! h2 (for some 0 < θ < 1)

= w̃′′(θh)

2! h2 (since w̃(0) = w̃′(0) = 0),

where

w̃′′(x) = (H − 1/2)(H − 3/2)t2

22(j+1)

×
[(

1 + t (2k + 1 + x)

2j+1

)H−5/2

+
(

1 + t (2k + 1 − x)

2j+1

)H−5/2]
.

Hence, we have an absolute constant D∗
3,2 > 0 such that, for n = 2j + k with 0 < k < 2j ,

|h̃t,H,j,k| =
∣∣∣∣2jH 2H−1/2

H − 1/2
w̃(1)

∣∣∣∣ =
∣∣∣∣2jH 2H−1/2

H − 1/2

w̃′′(θ)

2!
∣∣∣∣ ≤ D∗

3,2

2j (2−H)|H − 1/2| . (5.12)

Using the same method, we estimate the last two terms on the right-hand side of (5.9). Let

ĥt,H,j,k = −2j/2
∫ (2k+1)/2j+1

2k/2j+1
Gt,H (x)

2k

2j+1 dx + 2j/2
∫ (2k+2)/2j+1

(2k+1)/2j+1
Gt,H (x)

2k + 2

2j+1 dx.

In the k = 0 case we have ĥt,H,j,0 = 2−j/2
∫ 2/2j+1

1/2j+1 Gt,H (x) dx. Then, using (5.6), we have an
absolute constant D∗

3,3 > 0 such that

|ĥt,H,j,0| ≤ 3 × 2−j/2

2

∫ 2/2j+1

1/2j+1
x−H−1/2 dx ≤ D∗

3,3

2j (1−H)
. (5.13)
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For the k > 0 case we have, for b > a > 0,∫ b

a

Gt,H (x) dx =
∫ 1/a

1/b

((t + u)H−3/2 − uH−3/2)u du

=
(

1

a

)H+1/2[
(at + 1)H−1/2

H − 1/2
− 1

H + 1/2
− (at + 1)H+1/2

(H − 1/2)(H + 1/2)

]
−

(
1

b

)H+1/2[
(bt + 1)H−1/2

H − 1/2
− 1

H + 1/2
− (bt + 1)H+1/2

(H − 1/2)(H + 1/2)

]
.

(5.14)

We introduce the function ŵ(h) = ĝ(x0 + h) + ĝ(x0 − h) − 2ĝ(x0), where x0 = 0 and

ĝ(x) = 2k + 1 + x

2

(
2j+1

2k + 1 + x

)H+1/2

×
[
((2k + 1 + x)t/2j+1 + 1)H−1/2

H − 1/2
− 1

H + 1/2
− ((2k + 1 + x)t/2j+1 + 1)H+1/2

(H − 1/2)(H + 1/2)

]
.

We denote by f (x) the factor of ĝ(x) in square brackets. By Taylor’s expansion we have, for
some 0 < θ < 1,

ŵ(h) = ŵ(0) + ŵ′(0)

1! h + ŵ′′(θh)

2! h2 = ŵ′′(θh)

2! h2

and

ŵ′′(x) = 2j (H+1/2)+H−1/2

×
{[

(H − 1/2)(H + 1/2)f (x)

(2k + 1 + x)H+3/2 − (2H − 1)f ′(x)

(2k + 1 + x)H+1/2 + f ′′(x)

(2k + 1 + x)H−1/2

]
+

[
(H − 1/2)(H + 1/2)f (−x)

(2k + 1 − x)H+3/2 − (2H − 1)f ′(−x)

(2k + 1 − x)H+1/2

+ f ′′(−x)

(2k + 1 − x)H−1/2

]}
. (5.15)

By (5.14) and (5.15), we have ĥt,H,j,k = 2−j/2ŵ(1) = 2−j/2ŵ′′(θ)/(2!). Then, using calculus
we have an estimate as follows (specific details are available from the authors upon request).
There is an absolute constant D∗

3,4 > 0 such that, for n = 2j + k with 0 < k < 2j ,

|ĥt,H,j,k| =
∣∣∣∣2−j/2ŵ′′(θ)

2!
∣∣∣∣ ≤ D∗

3,4

2j (1−H)

(
1

k + 1

)H+1/2

. (5.16)

Now, putting (5.8), (5.9), (5.10), (5.12), (5.13), and (5.16) together, we have the following
estimate. There is an absolute constant D3,1 > 0 such that

∑
{n at level j}

[gn(t, H)]2 ≤ D3,1

22j (1−H)(H − 1/2)2

∞∑
�=1

(
1

�

)2H+1

. (5.17)

Then, by (5.3), (5.4), (5.7), and (5.17), we use arguments similar to those used in the proof of
Lemma 3.1 and then those used in the proof of Lemma 3.2 to complete the proof.
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Remark 5.1. In the above proof, the time inversion of BM adds a factor u−1 to the
integrand ((−u−1)H−3/2 − (t − u−1)H−3/2)u−3 in the second term on the right-hand side
of (5.3), where the factor u−2 in u−3 is from a change of variable. Denote the integrand by
Q. We have Q ∼ u−H−1/2 as u → 0. The exponent in u−H−1/2 causes the convergence rate
O(N−(1−H)

√
log N) of W3(t, H) to I3(t, H). For H ∈ (0, 1

2 ), it is faster than the convergence
rate O(N−H

√
log N) of W1(t, H) to I1(t, H) as well as W2(t, H) to I2(t, H). But, for

H ∈ ( 1
2 , 1), the convergence rate caused by the exponent becomes slow, which reflects an

impact of the long-range dependence of an FBM for H ∈ ( 1
2 , 1).

6. Approximation of FBM

In (�, F , P) we define, for t ∈ [0, 1] ∩ Q and q ≥ 2,

W(t, H, N) = W1(t, H, N) + W2(t, H, N) + W3(t, H, N).

By Lemma 3.2, Lemma 4.2, Lemma 5.1, and the fact that H > 1 − H for H ∈ (1/2, 1), we
have the following theorem.

Theorem 6.1. There are absolute constants C1,1, C1,2, C2,1, C2,2 > 0 such that, for any given
H ∈ (0, 1

2 ] and q ≥ 2, we have, for all N > 1,

P

{
sup

t∈[0,1]∩Q

|B(H)
t − W(t, H, N)| ≥ C1,1

√
q√

H(1 − H)

√
log N

NH

}
≤ C1,2

Nq
, (6.1)

and, for any given H ∈ ( 1
2 , 1) and q ≥ 2, we have, for all N > 1,

P

{
sup

t∈[0,1]∩Q

|B(H)
t − W(t, H, N)| ≥ C2,1

√
q√

H(1 − H)

√
log N

N1−H

}
≤ C2,2

Nq
. (6.2)

With respect to a Hölder continuous version of an FBM, Theorem 6.1 can be extended from
discrete time t ∈ [0, 1] ∩ Q to continuous time t ∈ [0, 1].
Theorem 6.2. An FBM (B

(H)
t )t∈[0,1] of H ∈ (0, 1) has a wavelet-based almost-sure uniform

expansion as follows. In (�, F , P) we have, for t ∈ [0, 1], with probability 1,

B
(H)
t = CH

∞∑
n=0

〈f (1)
t , Hn〉L(1)

n + CH

∞∑
n=0

〈f (2)
t , H̃n〉L(2)

n + CH ((t + 1)H−1/2 − 1)L∗

+ CH

(
H − 1

2

) ∞∑
n=1

gn(t, H)L(3)
n ,

where 〈f (1)
t , Hn〉 and (L(1)

n )n≥0, 〈f (2)
t , H̃n〉 and (L(2)

n )n≥0, and L∗, gn(t, H), and (L(3)
n )n≥0

are the same as in (3.2), (4.2), and (5.1), respectively. Regarding ‘
∑∞

n=0’as ‘limN→∞
∑N

n=0’,
the convergence rates are O(N−H

√
log N) for H ∈ (0, 1

2 ] and O(N−(1−H)
√

log N) for
H ∈ ( 1

2 , 1), as expressed by (6.1) and (6.2), respectively.

Recall that by (2.1) we write B
(H)
t as I1(t, H) + I2(t, H) + I3(t, H) and that these terms

are then approximated by W1(t, H), W2(t, H), and W3(t, H) separately. Below we provide a
proof for the extension of the approximation of I1(t, H) by W1(t, H) from t ∈ [0, 1]∩Q to t ∈
[0, 1] in the case H ∈ (0, 1

2 ]. Proofs for H ∈ ( 1
2 , 1) and all other cases, including the extension

of the approximation of I2(t, H) by W2(t, H) as well as I3(t, H) by W3(t, H), can be carried
out in a similar way.
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Proof of Theorem 6.2. Using α ∈ Z+ as a parameter, let [0, 1] = ⋃16α

i=1[(i − 1)/16α,

i/16α) ∪ {1}. We define

M1(N, α, i) := CH

N∑
n=0

〈f (1)
(i−1)/16α , Hn〉

∫ 1

0
Hn(s) dBs,

Q1(t
∗, N, α, i) := CH

N∑
n=0

〈f (1)
t∗ , Hn〉

∫ 1

0
Hn(s) dBs − M1(N, α, i)

for t∗ ∈ [(i − 1)/16α, i/16α)\Q. By Lemma 3.2 we have, for q ≥ 2 and all N > 1,

P

{
sup

α∈Z+, 1≤i≤16α

|M1(N, α, i) − B
(H)
(i−1)/16α | ≥ CH

√
2D1q√

H(1 − H)

√
log N

NH

}
≤ 1√

πNq
.

Recall the Hölder continuity of FBM. Almost surely, a sample path B
(H)
t (ω) (t ∈ [0, 1]) is

Hölder continuous of order βH for β ∈ (0, 1) where β cannot be 1 by the law of the iterated
logarithm; see [1]. We choose β close to 1, having

P

{
sup

α∈Z+, 1≤i≤16α

{
|B(H)

(i−1)/16α − B
(H)
t∗ | : t∗ ∈

[
i − 1

16α
,

i

16α

)
\ Q

}
≤ M

16αβ

}
= 1, (6.3)

where M > 0 is a constant depending only on the chosen β.
Note that Q1(t

∗, N, α, i) is a Gaussian random variable with mean 0 and variance

C2
H

N∑
n=0

( ∫ 1

0
(f

(1)
t∗ (s) − f

(1)
(i−1)/16α (s))Hn(s) ds

)2

.

We estimate the variance. Without loss of generality, we suppose that α > log2 N . Then, for
all 1 ≤ n ≤ N and 0 ≤ k < 2j , one and only one of the following three cases occurs:[

i − 1

16α
,

i

16α

)
⊂

[
2k

2j+1 ,
2k + 1

2j+1

)
;

[
i − 1

16α
,

i

16α

)
⊂

[
2k + 1

2j+1 ,
2k + 2

2j+1

)
;[

i − 1

16α
,

i

16α

)
∩

[
k

2j
,
k + 1

2j

)
= ∅.

Then by calculus we have the following estimate (specific details are available from the authors
upon request). For any t∗ ∈ [(i − 1)/16α, i/16α) \ Q,

P

{
|Q1(t

∗, N, α, i)| >

√
2G1

(
√

2)α

}
≤ 1√

π
e−2α

(6.4)

with an absolute constant G1 > 0. Consider the Hölder continuous version described in (6.3)
over every time interval t ∈ [(i − 1)/16α, i/16α). Then by (6.4) we have an absolute constant
G > 0 such that

P

16α⋃
i=1

{
sup

t∗∈[(i−1)/16α,i/16α)\Q

|M∗(t∗, N, α, i) − B
(H)
t∗ |

>
G

(
√

2)α
+ CH

√
2D1q√

H(1 − H)

√
log N

NH
+ M

16αβ

}
≤ 3 × 16α

√
π

e−2α + 1√
πNq

. (6.5)
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Note that (6.5) holds for all α > log2 N . Given H ∈ (0, 1
2 ] and q ≥ 2, by (6.5) and (6.1), we

have, for all N > 1,

P

{
sup

t∈[0,1]

∣∣∣∣B(H)
t − CH

N∑
n=0

〈f (1)
t , Hn〉L(1)

n

∣∣∣∣ ≥
√

q(CH

√
2D1 + C1,1)√

H(1 − H)

√
log N

NH

}
≤ C1,2 + 1√

πNq
.

Remark 6.1. The above proof shows that I1(t, 1/2), which is a BM, has an almost sure and
uniform expansion

∑∞
n=0〈f (1)

t , Hn〉
∫ 1

0 Hn(s) dBs for t ∈ [0, 1]. The proof does not involve
I2 and I3, which justifies our use of this expansion in the previous section.

7. A parallel algorithm for the approximation

We give a mathematical description of an algorithm to demonstrate how a sample path of
FBM can be generated in parallel over time. Readers who are interested in parallel algorithms
are referred to [13]. Theorem 6.2 implies that a sample path B

(H)
t (ω) : t ∈ [0, 1] �→ R can

almost surely and uniformly be approximated by

B
(H)
t (ω) ≈ CH

N∑
n=0

〈f (1)
t , Hn〉L(1)

n (ω) + CH

N∑
n=0

〈f (2)
t , H̃n〉L(2)

n (ω)

+ CH ((t + 1)H−1/2 − 1)L∗(ω) + CH

(
H − 1

2

) N∑
n=1

gn(t, H)L(3)
n (ω). (7.1)

Hence, given any time instances t1, . . . , t� ∈ [0, 1], we can calculate approximations of
B

(H)
t1

(ω), . . . , B
(H)
t�

(ω) as follows. Make 3N + 4 independent observations of a normal
distribution N (0, 1). Denote the results from the first N + 1 observations by L(1)

n (ω), n =
0, . . . , N ; denote the results from the second N + 1 observations by L(2)

n (ω), n = 0, . . . , N ;
denote the results from the third N + 1 observations by L(3)

n (ω), n = 0, . . . , N ; and denote
the result from the last observation by L∗

n(ω). Then, using (7.1), we compute approximations
of B

(H)
t1

(ω), . . . , B
(H)
t�

(ω) separately in an arbitrarily chosen order of t1, . . . , t�. This means
that the � approximations can be carried out in parallel over time t1, . . . , t� ∈ [0, 1] on multiple
(e.g., � in the ideal case) processors available in today’s computer systems.

By (7.1) we can see that the number � of time instances is not related to N , the number of
approximation steps. Given N , we can decide at what time instances t1, . . . , t� ∈ [0, 1] we
want to find approximations of B

(H)
t1

(ω), . . . , B
(H)
t�

(ω). The accuracy of such approximations
is determined by N , as respectively shown by the deviation bounds (6.1) and (6.2) for the cases
H ∈ (0, 1

2 ] and H ∈ ( 1
2 , 1). Given time instances t1, . . . , t� ∈ [0, 1], we can choose the

number N of approximation steps to ensure the accuracy of the approximation by the above
two deviation bounds.

By using the Mandelbrot–van Ness representation and Haar wavelets, the coefficients on the
right-hand side of (7.1), i.e. 〈f (1)

t , Hn〉, 〈f (2)
t , Hn〉, and gn(t, H), are easy to compute.
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