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HOW DID WE GET HERE?

BY KAIS HAMZA AND FIMA C. KLEBANER

Abstract

Looking at a large branching population we determine along which path the population
that started at 1 at time 0 ended up inB at timeN . The result describes the density process,
that is, population numbers divided by the initial number K (where K is assumed to be
large). The model considered is that of a Galton–Watson process. It is found that in some
cases population paths exhibit the strange feature that population numbers go down and
then increase. This phenomenon requires further investigation. The technique uses large
deviations, and the rate function based on Cramer’s theorem is given. It also involves
analysis of existence of solutions of a certain algebraic equation.

Keywords: Branching process; large deviations; most likely path
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1. Introduction

Consider a branching population started with a large numberK at time 0, and let Zn denote
its size at time n = 0, 1, 2, . . . . Since K is large, the branching property implies that the law
of large numbers holds. Consequently, the density process at time n, Zn/K , is approximated
by a deterministic function. Suppose that we observe ZN/K = B at time N . Then there is
a function ending in B such that its small neighbourhood contains the most likely path of the
process Zn/K, 0 ≤ n ≤ N . We find such paths. While many paths exhibit monotonicity,
in some cases monotonicity is lost, leading to a strange phenomenon in which the population
numbers drop significantly below B before they increase to B.

The method of obtaining the most likely path uses the theory of large deviations, and the
main result of this paper is stated in Theorem 1. Every path that is not in the vicinity of
the mean behaviour predicted by the law of large numbers represents a large deviation in the
stochastic process. Large deviations theory asymptotically gives the probability that the path
of the process is in a neighbourhood of a function u on [0, N ]. While we continue to think of
u as a function on [0, N ], it is worth noting that, because of the finiteness of the time index
set [0, N ], u is in fact an (N + 1)-dimensional vector. Denoting by ρ(u,w) a metric on the
functions u andw, the probability that the random pathW is in a δ-neighbourhood of u is given
approximately by

P{ρ(W, u) ≤ δ} ≈ e−KI (u),

where I (u) (the rate function) depends only on u, and a precise meaning of the approximation,
denoted be ‘≈’, is given by the limit relation

lim
δ→0

lim
K→∞

1

K
ln P{ρ(W, u) ≤ δ} = −I (u).
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64 K. HAMZA AND F. KLEBANER

If we consider paths u that originate at A and end in B at time N , the path that minimizes
the rate function I (u), say u∗, will be called the most likely path from A to B. Since we are
concerned with the density process Zn/Z0, the initial state A is in fact 1.

Actually, the following more general statement holds. The path u∗ maximizes the probability
amongst a much larger set of paths F that start at A and end in B, and not just for those paths
being in a δ-neighbourhood:

lim
K→∞

1

K
ln P{W ∈ F } = − inf

u∈F I (u) = −I (u∗).

While the general theory of large deviations is well known, explicit minimization results
are seldom obtained. In our applications we find such paths explicitly, and this allows us to
study their interesting features. The branching property allows us to obtain the large deviations
rate function for the Galton–Watson process by using the elementary Cramér theorem on large
deviations for random vectors.

Large deviations for branching processes have been considered in the literature; see, e.g. [1,
3, 8, 10]. However, with the exception of [8], these papers are concerned with the behaviour of
the sequence Zn/Zn−1 as n approaches ∞, whereas we focus on large deviations for density
processes on a finite interval and indexed by the initial size K .

2. Results

Recall the definition of the Galton–Watson process, which serves as a basic stochastic model
for growth in discrete time; see, e.g. [2, 5]. Let Z0 be a positive integer, and let

Zn+1 =
Zn∑
i=1

ηi,n,

where the random variables ηi,n are independent and identically distributed (i.i.d.). By conven-
tion,

∑0
i=1 = 0.

Let (pl)l≥0 denote the probability sequence of the offspring distribution P{ηi,n = �} = p�,
and let f be its probability generating function (PGF)

f (s) = E[sηi,n ] =
∞∑
�=0

p�s
�.

Let R denote the radius of convergence of f ; assume throughout the paper that R > 1.
This ensures the existence of exponential moments E[etηi,n ] for some positive t , a necessary
requirement for Cramér’s large deviations result to hold (see Theorem 3 below).

Often the initial number of particles is taken to be 1. To distinguish such processes, we
denote them by X, i.e. X denotes a Galton–Watson process with X0 = 1. In this case, the
well-known basic result on Galton–Watson processes states that the distribution ofXn has PGF
fn, the nth iterate of f , fn(s) = f (fn−1(s)), f0(s) = s.

An immediate corollary is that P{Xn = 0} = fn(0), and since f ′
n(s) = ∏n−1

i=0 f
′(fi(s)), it

follows that when the mean exists it is given by

E[Xn] = f ′
n(1) = (f ′(1))n = mn,

where m = f ′(1) is the offspring mean.
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Theorem 1. Let Zn be a Galton–Watson process started with a large number Z0 = K of
particles. Suppose that the equation

B = y
f ′
N(y)

fN(y)
(1)

has at least one nonnegative solution, yN . Then the most likely path of the process Zn/K, 0 ≤
n ≤ N , to go from 1 at time 0 to B at time N is given by

u∗
n = fN−n(yN)

fN(yN)

f ′
N(yN)

f ′
N−n(yN)

, n = 0, 1, . . . , N. (2)

Recall that the best (in the mean-squared error sense) predictor of a random variable is its
mean. It turns out that the most likely path is the mean of the process, but under a new measure
P̃ (tilted distribution) which makes the mean of ZN equal to B. In it, �B is known as the
Esscher transform of XN .

Theorem 2. Let yN solve (1), and let P̃ be defined by

dP̃ = �B dP, �B = y
XN
N

E[yXNN ] .

Then, for all 0 ≤ n ≤ N ,
u∗
n = Ẽ[Xn].

The special case B = 0 gives the most likely path to extinction. This result was obtained
in [9] and is given here for completeness. Note that, in the case p0 = 0, yf ′

N(y)/fN(y) is
extended by continuity to 1 at y = 0.

Corollary 1. If p0p1 > 0, the most likely path to extinction (2) can be written as

u∗
n = P{XN−n = 0}

P{XN = 0}
P{XN = 1}

P{XN−n = 1} ,

or, more simply, u∗
n = E[Xn | XN = 0].

Proof. If B = 0 then y = 0 is a solution of (1); furthermore, fn(0) = P{Xn = 0} and
f ′
n(0) = P{Xn = 1}. The second representation is a direct consequence of Theorem 2, where

in this case

�B = 1

P{XN = 0} 1{XN=0} .

Owing to the branching property, large deviations for Galton–Watson processes follow
directly from Cramér’s theorem for random vectors. Let Z be a Galton–Watson process started
with Z0 = K particles; then

Zn =
K∑
i=1

X(i)n ,

where the X(i) are independent copies of the Galton–Watson process started with a single
particle X(i)0 = 1. As observed above, these processes on [0, N ] are vectors and Cramér’s
theorem applies.

Recall Cramér’s theorem in R
N (see, e.g. [4]). It states that the rate function is given by the

transform of the logarithm of the moment generating function.
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Theorem 3. (Cramér.) Let (Xi)∞i=1 be i.i.d. random vectors in R
N with log-moment generating

function G. Then, for any u = (u1, . . . , uN) in R
N ,

lim
δ→0

lim
K→∞

1

K
ln P{ρ(W, u) ≤ δ} = −G∗(u),

where W is the average random vector (1/K)
∑K
i=1X

i and G∗ is the Legendre–Fenchel
transform of the log-moment generating function of the vector Xi = (Xi1, . . . , X

i
N),

G∗(u) := sup
λ1,...,λN

{ N∑
n=1

λnun −G(λ1, . . . , λN)

}
.

The next result explicitly gives the Legendre–Fenchel transform of the Galton–Watson
process X.

Theorem 4. The Legendre–Fenchel transform of the Galton–Watson process X = (X0, X1,

. . . , XN), with X0 = 1, is given by

G∗(u) =
N−1∑
n=0

ung
∗
(
un+1

un

)
, (3)

where
g∗(v) = sup

t
{tv − g(t)}

is the Legendre–Fenchel transform of g, the log-moment generating function of the offspring
distribution.

Remark 1. The rate function was derived in [7] for density-dependent branching processes
and in [6], using different techniques, for Markov chains.

3. Example: the linear-fractional branching process

In this section we detail the case of the linear-fractional branching process. We exhibit a
variety of situations and behaviours of the most likely path. The attraction of this example
lies in the fact that there are available explicit analytic expressions for the iterates of the
probability generating function, f . Recall (see, e.g. [5, Chapter I.7.1]) that, for the linear-
fractional branching process, pk = cpk−1, k ≥ 1, and p0 = (1 − c−p)/(1 −p), 0 < p < 1,
0 < c < 1, and c+ p ≤ 1. Furthermore, as mentioned, an expression for the iterates of f , the
generating function, is available, thus allowing the exact computation of u∗

n and even yN .

Example 1. (Nondecreasing linear-fractional branching process.) If c = 1 − p then p0 = 0,
m = 1/(1 − p) > 1, the process is supercritical, and fn(s) = s/[mn − (mn − 1)s]. The
equation B = y f ′

N(y)/fN(y) has the unique nonzero solution

yN = (B − 1)mN

B(mN − 1)
.

For B > 1, this solution is positive and the most likely path is given by

u∗
n = mN − B

mN − 1
+ (B − 1)

mN − 1
mn.

The graphs in Figure 1 depict typical behaviour for the most likely path in two particular cases.
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N = 10, c = 0.9, p = 0.1, m = 1.11111,
2,B = y = 0.76767

N = 10, c = 0.1, p = 0.9, m = 10,
2,B = y = 0.5

Figure 1: From 1 to 2 in ten steps for two nondecreasing linear-fractional branching processes.
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N = 10, c = 0.25, p = 0.5, m = 1,
0.5,B = y = 0.959434

N = 10, c = 0.25, p = 0.5, m = 1,
2,B = y = 1.02972

Figure 2: From 1 to 0.5 and 2 in ten steps for a critical linear-fractional branching process.

While in some cases the most likely path is, as may be expected, close to a straight line,
in other cases, and possibly unexpectedly, it can display distinctly different behaviour. In this
case, the process is nondecreasing and if started from 1, Zn/K cannot reach any level below 1.
Furthermore, for B < 1,

B = yf ′
N(y)

fN(y)

has a negative solution.

Example 2. (Critical linear-fractional branching process.) If c = (1 − p)2 then m = 1, the
process is critical, and

fn(s) = np − (np + p − 1)s

1 − p + np − nps
.

In this case, B = y f ′
N(y)/fN(y) has a unique solution y f ′

N(y)/fN(y) increases from 0 to
+∞), and the most likely path can be computed numerically (see Figure 2).

Example 3. (General linear-fractional branching process.) Possibly the most interesting situ-
ation is obtained for a supercritical, nonmonotone linear-fractional branching process (p0 
= 0).
For careful choices of c and p, the most likely path can display nonmonotone behaviour (see
Figure 3).
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N = 10, c = 0.49, p = 0.5, m = 1.96,
0.5,B = y= 0.801453

N = 10, c = 0.49, p = 0.5, m = 1.96,
2,B = y = 0.901301
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Figure 3: From 1 to 0.5 and 2 in ten steps for a supercritical linear-fractional branching process.

4. Proofs
4.1. Proof of Theorem 1

We break the proof of Theorem 1 into several lemmas. We obtain u∗
n by minimizing the

function G∗ given in Theorem 3 with two points fixed: u0 = 1, uN = B,

G∗(u1, . . . , uN−1) =
N−1∑
n=0

uig
∗
(
un+1

un

)
.

As a convex function, any critical point of G∗ (i.e. a sequence (u1, . . . , uN−1)) is a global
minimum. To identify such critical points, we need the properties of g∗ and its derivative given
in Lemma 3 below. It turns out that this analysis is not trivial.

For x, y ≥ 0, write x ≺ y to mean x ≤ y if y is finite, and x < ∞ if y is infinite.
While we apply the following lemmas to the offspring random variables ηi,n, the statements

are general and refer to a generic random variable, ξ , with generating function f , and are given
here for completeness.

Let R be the radius of convergence of the generating function f , define

ω = lim
z↑R f (z),

and let g be the corresponding log-moment generating function, g(t) := ln f (et ). Then g is
convex and increasing, and since the offspring distribution has exponential moments, R > 1. It
also follows that, unlessp0+p1 = 1, limz↑R f (z)/z > 1 (and is possibly infinite). Furthermore,
g′(t) = et f ′(et )/f (et ) is defined on (−∞, lnR) with values in (0, θ), where

θ = lim
z↑R

zf ′(z)
f (z)

.

There are four cases to consider depending on whether R and θ are finite or infinite. Lemmas 1
and 2 below describe what happens when θ < +∞. Note that ω = +∞ whenever R = +∞.

Lemma 1. If R = +∞ then ξ ≺ θ almost surely (a.s.), i.e. if R = +∞ then either θ = +∞,
or θ < +∞ and ξ ≤ θ .

Proof. Suppose that R = +∞ and θ < +∞; consider the function gθ (t) := θt − g(t).
Now g′

θ (t) decreases from θ = g′
θ (−∞) to 0 = g′

θ (+∞), so g′
θ (t) ≥ 0 for all t ; hence, gθ (t)
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is strictly increasing on R. Write

θt − g(t) = − ln(e−θt
E[etξ ]) = − ln(E[et (ξ−θ), ξ ≤ θ ] + E[et (ξ−θ), ξ > θ ]).

If P{ξ > θ} > 0 then, by monotone convergence, the right-hand side term tends to −∞ as
t → +∞, which contradicts the earlier observation that gθ (t) is strictly increasing on R. It
follows immediately that ξ ≤ θ a.s.

Note that if K := ess sup ξ < ∞ then θ = K . Thus, stronger than Lemma 1, if R = +∞
then θ < +∞ if and only if K := ess sup ξ < ∞, and then θ = K .

Lemma 2. If R < +∞ and θ < +∞, then ω < +∞.

Proof. Suppose that R < +∞ and θ < +∞. Consider again the function gθ (t). Since
g′
θ (t) ≥ 0 as in the proof of Lemma 1, gθ (t) is strictly increasing on (−∞, lnR) with a

supremum at lnR equal to θ lnR − lnω, which automatically requires that ω be finite.

When R < +∞ and θ = +∞, ω can either be finite or infinite.

Lemma 3. For unbounded ξ , g∗(v) = supt≺lnR{vt − g(t)} is finite for v ≥ 0 (or for v > 0 if
p0 = 0) and

g∗(v) =

⎧⎪⎨⎪⎩
− lnp0 for v = 0,

v(g′)−1(v)− g((g′)−1(v)) for 0 < v < θ,

v lnR − lnω for v ≥ θ and θ < +∞.

However, if R = +∞ and θ < +∞ so that ξ is bounded by θ , then g∗ is finite on [0, θ ] (or on
(0, θ ] if p0 = 0) and

g∗(v) =

⎧⎪⎨⎪⎩
− lnp0 for v = 0,

v(g′)−1(v)− g((g′)−1(v)) for 0 < v < θ,

− ln P(ξ = θ) for v = θ.

Furthermore, in all cases,

(g∗)′(v) =
{
(g′)−1(v) for 0 < v < θ,

lnR for v > θ, R < +∞, and θ < +∞.

Next we discuss the existence of a critical point of G∗ and proceed to identify it, when it
exists. To this end, define γ = (g∗)′, and recall that all paths considered here satisfy u0 = 1
and uN = B.

Lemma 4. For each n = 1, . . . , N − 1,G∗, as a function of un alone, has exactly one critical
point. It satisfies the equation

g

(
γ

(
un+1

un

))
= γ

(
un

un−1

)
. (4)

Proof. We have
∂

∂un
G∗(u1, . . . , uN−1) = ∂

∂un

(
ung

∗
(
un+1

un

)
+ un−1g

∗
(
un

un−1

))
= g∗

(
un+1

un

)
− un+1

un
(g∗)′

(
un+1

un

)
+ (g∗)′

(
un

un−1

)
,

= −g
(
γ

(
un+1

un

))
+ γ

(
un

un−1

)
(using Lemma 3).
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When θ = +∞,

∂

∂un
G∗(u1, . . . , uN−1) = −g

(
γ

(
un+1

un

))
+ γ

(
un

un−1

)
= − ln(e−γ (un/un−1)f (eγ (un+1/un))).

The right-hand side tends to −∞ as un → 0, and tends to ln(R/p0) (or +∞) as un → +∞.
In particular, there exists a unique un such that ∂G∗(u1, . . . , uN−1)/∂un = 0.

When θ < +∞, then −g(γ (un+1/un)) + γ (un/un−1) approaches a quantity that is less
than (or possibly equal to) − ln(f (R)/R) which itself is negative (since f (R)/R > 1). On the
other hand, it approaches ln(R/p0) (or +∞) as un approaches +∞. In particular, there exists
a unique un such that ∂G∗(u1, . . . , uN−1)/∂un = 0.

The existence of a unique critical point forG∗, as a function of un (alone), is now guaranteed.

It is important to note at this point that the existence of a ‘global’critical point (u∗
1, . . . , u

∗
N−1)

is not yet settled: the one-dimensional critical points need not be realised as a single global
critical point.

Proposition 1. If G∗ has a critical point (u∗
1, . . . , u

∗
N−1) then it must satisfy (2) and yN must

satisfy (1). Conversely, if (1) has a solution then G∗ has a critical point of the form (2).

Proof. Assume now that a (single) global critical point exists, and introduce the function
h = γ−1 ◦ g ◦ γ. Note that, for v ∈ (0,+∞), γ (v) ∈ (−∞, lnR), g[γ (v)] ∈ (0, lnω), and
γ−1(g[γ (v)]) is well defined. Lemma 3 gives a precise relationship between γ = (g∗)′, its
inverse, and g′. Observe that (4) yields a nonlinear recursion for vn = u∗

n/u
∗
n−1: vn = h(vn+1).

Write hn for the nth iterate of h and gn for the nth iterate of g. Then, for any n = 1, . . . , N −1,

vn = hN−n(vN) = (γ−1 ◦ gN−n ◦ γ )(vN).
Let yN = eγ (vN ). Then

hN−n(vN) = γ−1(ln[fN−n(yN)]) = fN−n(yN)
f ′(fN−n(yN))
fN−n+1(yN)

and

u∗
n =

n∏
i=1

vi

=
n∏
i=1

hN−i (vN)

=
n∏
i=1

fN−i (yN)
f ′(fN−i (yN))
fN−i+1(yN)

= fN−n(yN)
fN(yN)

n∏
i=1

f ′(fN−i (yN))

= fN−n(yN)
fN(yN)

f ′
N(yN)

f ′
N−n(yN)

.

In particular,

B = u∗
N = yN

f ′
N(yN)

fN(yN)
.

Therefore, it follows that if a global critical point exists, it must be of the form stated in
Theorem 1, and (1) has at least one solution.
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Conversely, if (1) has a solution then the above shows that

u∗
n = fN−n(yN)

fN(yN)

f ′
N(yN)

f ′
N−n(yN)

minimises G∗. The proof is complete.

4.2. Proof Theorem 2

From the definition of yN in (1),B = yNf
′
N(yN)/fN(yN) = E[XNyXNN ]/E[yXNN ].Consider

the change of measure dP̃ = �B dP with Radon–Nikodym derivative �B as stated in the
theorem. The PGF of Zn under the new measure is

f̃Xn(s) := Ẽ[sXn ] = E[�BsXn ] = E[sXnyXNN ]
fN(yN)

.

Appealing to the branching property under P,

XN =
Xn∑
i=1

X
(i)
N−n for n < N, (5)

where the branching processes X(i) are independent copies started at 1 with PGF f and are
also independent of Xn. It follows that

f̃Xn(s) = E[E(sXny
∑Xn
i=1 X

(i)
N−n

N ) | Xn]
fN(yN)

= fn(sfN−n(yN))
fN(yN)

.

It is now easy to see that the mean of the process under the new measure is u∗
n:

Ẽ[Xn] = f̃ ′
Xn
(1) = fN−n(y)

fN(y)
f ′
n(fN−n(y)) = u∗

n,

where, by the chain rule, f ′
n(fN−n(y)) = f ′

N(y)/f
′
N−n(y).

4.3. Proof of Theorem 4

The result is proved in [9] under more stringent conditions; it is included here for complete-
ness. First note that the log-moment generating function of a Galton–Watson vector satisfies
ψ1(λ) = g(λ), and, for N > 1,

ψN(λ1, . . . , λN) = g(λ1 + ψN−1(λ2, . . . , λN)). (6)

Equation (6) is derived by applying the branching property (5) and routine conditioning onX1.
Then (3) is proved by induction.

To emphasise the dependence on N , write ψN for G and ψ∗
N for G∗. Then

ψ∗
N(u1, u2, . . . , uN) = sup

λ1,λ2,...,λN

{ N∑
j=1

λjuj − ψN(λ1, . . . , λN)

}

= sup
λ1,λ2,...,λN

{ N∑
j=1

λjuj − g(λ1 + ψN−1(λ2, . . . , λN))

}

= sup
λ2,...,λN

{ N∑
j=2

λjuj + sup
λ1

{λ1u1 − g(λ1 + ψN−1(λ2, . . . , λN))}
}
.
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Changing variables in the inner supremum (λ = λ1 + ψN−1(λ2, . . . , λN)) yields

ψ∗
N(u1, u2, . . . , uN) = sup

λ2,...,λN

{ N∑
j=2

λjuj + sup
λ

{λu1 − ψN−1(λ2, . . . , λN)u1 − g(λ)}
}

= sup
λ2,...,λN

{ N∑
j=2

λjuj − ψN−1(λ2, . . . , λN)u1 + g∗(u1)

}

= u0g
∗
(
u1

u0

)
+ u1ψ

∗
N−1

(
u2

u1
, . . . ,

uN

u1

)
,

using u0 = 1. Proceeding by recursion, it follows that

ψ∗
N(u1, . . . , uN) =

N∑
j=0

ujg
∗
(
uj+1

uj

)
.
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