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ASYMPTOTIC EXPECTED NUMBER OF PASSAGES
OF A RANDOM WALK THROUGH AN INTERVAL
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Abstract

In this note we find a new result concerning the asymptotic expected number of passages
of a finite or infinite interval (x, x + h] as x → ∞ for a random walk with increments
having a positive expected value. If the increments are distributed like X then the limit
for 0 < h < ∞ turns out to have the form E min(|X|, h)/EX, which unexpectedly is
independent of h for the special case where |X| ≤ b < ∞ almost surely and h > b.
When h = ∞, the limit is E max(X, 0)/EX. For the case of a simple random walk, a
more pedestrian derivation of the limit is given.
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1. The result

In this note we prove an asymptotic formula for the expected number of passages of a random
walk with positive drift through (x, x +h] for 0 < h ≤ ∞ as x → ∞. In general, a passage of
a stochastic sequence (Yn)n≥0 through a subset A of its state space is defined to consist of an
entry to, followed by a sojourn in, and then an exit from A. It is given by a sequence of epochs
n + 1, . . . , n + i (i ≥ 1) such that Yn /∈ A, Yn+1 ∈ A, . . ., Yn+i ∈ A, Yn+i+1 /∈ A. It is natural
to call i the length of the passage.

Now, let Sn = X1 + · · · + Xn (S0 = 0) be a real-valued random walk with independent
and identically distributed (i.i.d.) increments Xi distributed like X with E|X| < ∞ and having
expected value µ = EX > 0. We fix a constant 0 < h ≤ ∞ and denote by Nx, x ∈ R, the
number of passages of Sn through the interval (x, x +h] ((x, ∞) if h = ∞). The classical two-
sided renewal theorem (see, e.g. [2, p. 218] and [3, p. 172]) states that, when the distribution
of X is nonarithmetic, the expected number of visits of the interval (x, x + h], denoted by
R((x, x + h]), where

R(A) = E

∞∑
n=0

1{Sn∈A}, (1)

converges to h/µ as x → ∞ and to 0 as x → −∞ (with a slight adjustment in the case when
the underlying distribution is arithmetic). The following two results can be viewed as a neat
little supplement to this important theorem.
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Theorem 1. Let 0 < h < ∞.

(a) If X has a nonarithmetic distribution,

lim
x→∞ ENx = E min[|X|, h]

µ
. (2)

(b) If X has an arithmetic distribution then (2) holds for every h > 0 which is divisible by
the span.

Although it would have been nice if, for the case h = ∞, we could simply replace min[|X|, h]
or min[|X|, kα] by |X|, this turns out to be false. Instead, the following holds, where throughout
we use the notation a+ = max(a, 0) and a− = max(−a, 0).

Theorem 2. Let h = ∞. Then (nonarithmetic or arithmetic),

lim
x→∞ ENx = EX+

µ
. (3)

In Theorem 2 we count in Nx also the terminal entrance to and subsequent infinite sojourn in
(x, ∞). If we want to exclude this ‘passage’, the limit in (3) becomes EX+/µ− 1 = EX−/µ.

In Section 2 we consider a few special cases; the proofs are carried out in Section 3.

2. Some special cases

2.1. Simple random walk with 0 < h < ∞
We first consider the simple random walk with P(X = 1) = p and P(X = −1) = q = 1−p,

where p > q. Fix x, h ≥ 1 (integers). Note that the expected number of passages through
{x, . . . , x + h − 1} when starting at 0 is the same for every x > 0 since the random walk
is skip-free and converges to ∞ almost surely. Therefore, we set x = 1. Let ah and bh be
the expected numbers of passages through E = {1, . . . , h} when starting from 0 and h + 1,
respectively. Then ENx = ah and we now give a direct proof that

ENx = ah = E min[|X|, h]
EX

= E|X|
EX

= 1

p − q
for all h ≥ 1

(note that |X| ≡ 1). It is remarkable that ENx does not depend on h.
As p > q, we have

ah = 1 + πhah + (1 − πh)bh, (4)

where πh is the probability that 0 is reached before h + 1 when starting from 1. Indeed, when
starting from a state to the left of E, the random walk enters E at 1 with probability 1 and
thereafter the next passage comes from the left with probability πh or, with probability 1 − πh,
state h+1 is reached before 0. On the other hand, when starting from h+1, the set E (actually,
the state h) is reached with probability q/p and then the next attained state outside E is 0 or
h + 1. Therefore, we obtain

bh = q

p
(1 + ρhah + (1 − ρh)bh), (5)

where ρh is the probability that 0 is reached before h+1 when starting from h. The probabilities
πh and ρh are of course well known from the standard gambler’s ruin problem:

πh = (q/p) − (q/p)h+1

1 − (q/p)h+1 , ρh = (q/p)h − (q/p)h+1

1 − (q/p)h+1 . (6)
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Equation (4) yields

ah = 1

1 − πh

+ bh. (7)

Setting r = q/p, we get, from (5)–(7),

bh = r

1 − r

(
1 + ρh

1 − πh

)
.

Next check that ρh/(1 − πh) = rh. A little calculation now shows that

ah = 1

1 − πh

+ r

1 − r

(
1 + ρh

1 − πh

)

= 1 − rh+1

1 − r
+ r

1 − r
(1 + rh)

= 1 + r

1 − r

= 1

p − q
,

as was to be proved. Moreover, for k ≥ 1, the expected number of passages through E starting
from h + k is equal to [1 − r]−1[1 + rh]rk .

The case of random walks having increments −1, 0, 1 with probabilities p−1, p0, p1, reduces
to the case above with p = p1/(p−1 + p1) because here the number of passages is the same
as that of the random walk which is embedded at state change epochs.

2.2. Simple random walk with h = ∞
In the setting of Subsection 2.1, when h = ∞, we are interested in the asymptotic expected

number of passages through (x, ∞). Since x is hit with probability 1, then, for every x > 0,
it is the same as the expected number of passages through {1, 2, . . .}, which we denote by a∞.
We want to verify that

a∞ = EX+

EX
= p

p − q
.

Indeed, since the probability to ever reach 1 starting from 0 is 1 and the probability to ever
reach 0 from 1 is q/p, we have

a∞ = 1 + q

p
a∞,

so

a∞ = 1

1 − q/p
= p

p − q
.

Of course, the last paragraph of Subsection 2.1 applies to this case as well.

2.3. Random walks with inequality constraints

In general, if |X| ≤ b < ∞ almost surely, we have, for b ≤ h < ∞,

ENx → E|X|
EX

= 1 + (EX−/EX+)

1 − (EX−/EX+)
,
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so the limit depends only on the ratio EX−/EX+. This is also the case when h = ∞ as the
limit may be written as follows:

EX+

EX
= 1

1 − (EX−/EX+)
.

If X takes only nonnegative values, there is at most one passage through (x, x + h] and

P(Nx = 1) → E min(X, h)

µ
=

∫ h

0

P(X > s)

µ
ds = Feq(h), (8)

where Feq is the equilibrium distribution associated with X. In this case it is interesting to note
that (8) is valid regardless of whether h is finite or not.

If |X| > h then ENx → h/µ. Every passage through (x, x +h] corresponds to exactly one
visit of this interval (since every entrance to (x, x + h] is immediately followed by an exit).
Therefore, ENx = R((x, x +h]) in this case and we are back to the classical two-sided renewal
theorem.

Finally, consider the case when X takes only values in [−h, 0] ∪ (h, ∞). Then it follows
that

ENx → EX− + hP(X > h)

EX
= EX−

EX
+ hfeq(h),

where feq denotes the equilibrium density of X.

3. Proofs

We only treat the nonarithmetic case. The proof of the arithmetic case follows along the
same lines. The following lemma will prove useful.

Lemma 1. Let (Xn)n≥0 be a stationary and ergodic sequence, and let A be a measurable subset
of its state space, satisfying P(X0 ∈ Ac, X1 ∈ A) > 0 (thus, P(X0 ∈ A) = P(X1 ∈ A) > 0).
Let V1, V2, . . . be the lengths of the successive passages through A. Then, as n → ∞,

n−1
n∑

i=1

Vi → (1 − P(X1 ∈ A | X0 ∈ A))−1 almost surely.

Proof. Let Ji = 1{Xi∈A} and Ki = 1{Xi∈Ac, Xi+1∈A}. Let Ln be the last time of the nth
passage. As P(X0 ∈ Ac, X1 ∈ A) > 0, then Ln → ∞ almost surely and, by the ergodic
theorem for stationary sequences,

lim
n→∞ n−1

n∑
i=1

Vi = lim
n→∞

∑Ln

i=1 Ji∑Ln

i=1 Ki

= limn→∞ L−1
n

∑Ln

i=1 Ji

limn→∞ L−1
n

∑Ln

i=1 Ki

= P(J0 = 1)

P(K0 = 1)

= P(X0 ∈ A)

P(X0 ∈ Ac, X1 ∈ A)
almost surely,

completing the proof.
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3.1. Proof of Theorem 1: 0 < h < ∞
We introduce the auxiliary regenerative process Xx

n that is identical to Sn until the level 2x is
exceeded (at which time the first cycle is completed), then restarts from 0 until 2x is exceeded
again, etc. (2x could be replaced by any f (x) such that f (x) − x → ∞ as x → ∞). Let
Ñx be the number of passages of Xx

n through (x, x + h] in the first cycle. Observe that, for
x > h, a passage cannot be interrupted by an end of a cycle. We recall from (1) that R(A) is
the expected number of epochs at which Sn is in A (the renewal measure) and denote by Rx(A)

the expected number of epochs at which Xx
n is in A during the first cycle. R(x + I ) tends to the

length of I divided by µ as x → ∞ and to 0 as x → −∞ for all bounded intervals I . Clearly,
Rx ≤ R and since R(A) and Rx(A) differ at most by the expected number of points of Sn that
return to [inf A, sup A] after Sn has crossed 2x, it follows that

|Rx(x + A) − R(x + A)| ≤ sup
y≥x

R((−y, −y + h]) for all A ⊂ (0, h].

Hence, recalling that R((−y, −y + h]) → 0 as y → ∞,

lim
x→∞ sup

A⊂[0,h]
|Rx(x + A) − R(x + A)| → 0. (9)

Since Nx − Ñx is bounded above by the overall number of visits to (x, x + h] after the first
cycle, it also follows that

0 ≤ ENx − EÑx ≤ R((x, x + h]) − Rx((x, x + h]),
so we also have

lim
x→∞(ENx − EÑx) = 0. (10)

Let us first fixx > 0. By the ergodic theorem for regenerative processes (see, e.g. [1, p. 170]), the
stationary distribution νx of Xx

n is of the form νx(A) = expected number of points in A in the
first cycle divided by the expected cycle length, i.e. νx(A) = Rx(A)/c(x), where c(x) is the
(finite) expected cycle length of Xx

n .
Now, make the (Markov) process (Xx

n)n≥0 a stationary and ergodic sequence by starting
it with νx . Then let V x

1 , V x
2 , . . . be the lengths of the consecutive passages of Xx

n through
(x, x + h]. From Lemma 1, as n → ∞,

n−1
n∑

i=1

V x
i → vx =: (1 − P(Xx

1 ∈ (x, x + h] | Xx
0 ∈ (x, x + h]))−1 almost surely. (11)

Let Y ∼ Rx(·)/c(x) be independent of X (X ∼ X1). Then, the conditional probability on the
right-hand side of (11) can be written as

P(Xx
0 ∈ (x, x + h], Xx

1 ∈ (x, x + h])
P(Xx

0 ∈ (x, x + h])
= P(Y ∈ (x, x + h], Y + X ∈ (x, x + h])

P(Y ∈ (x, x + h])
= P(x + X− < Y ≤ x + h − X+)

P(Y ∈ (x, x + h])
= P(x + X− < Y ≤ x + h − X+, X− < h − X+)

P(Y ∈ (x, x + h])
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= P(Y ∈ (x + X−, x + h − X+], |X| < h)

P(Y ∈ (x, x + h])
= c(x)−1

ERx((x + X−, x + h − X+]) 1{|X|<h}
c(x)−1Rx((x, x + h])

= ERx((x + X−, x + h − X+]) 1{|X|<h}
Rx((x, x + h]) .

It is well known (and quite easy to show) that there are finite constants a and b such that
R((x, x + h]) ≤ ah + b for all (finite) x, h > 0 and, thus,

Rx((x + X−, x + h − X+]) 1{|X|<h} ≤ R((x + X−, x + h − X+]) 1{|X|<h}
≤ a(h − |X|)+ + b

≤ ah + b.

Thus, by dominated convergence, (9), and the generalized renewal theorem, it follows that, as
x → ∞,

ERx((x + X−, x + h − X+]) 1{|X|<h}
Rx((x, x + h]) → E(h − |X|)+/µ

h/µ

= E(h − |X|)+
h

= 1 − E min(|X|, h)

h
,

and so, recalling (11), we have, as x → ∞,

vx → h

E min(|X|, h)
.

Next let Ñx
j be the number of passages through (x, x + h] in the j th cycle, and let V x

i,j be the
length of the ith passage through (x, x + h] in the j th cycle. Then

vx = lim
k→∞

∑k
j=1

∑Ñx
i

i=1 V x
i,j∑k

j=1 Ñx
j

= limk→∞ k−1 ∑k
j=1

∑Ñx
i

i=1 V x
i,j

limk→∞ k−1
∑k

j=1 Ñx
j

= Rx((x, x + h])
EÑx

almost surely.

The last equality follows since we have the moment estimator from an i.i.d. sample of size k of
the expected number of points of Sn in (x, x + h] before exceeding 2x in the numerator, and
the corresponding moment estimator of EÑx in the denominator. Thus, we have, as x → ∞,

EÑx = R((x, x + h])v−1
x → h

µ

E min(|X|, h)

h
= E min(|X|, h)

µ
, (12)

and, finally, from (10), the desired limit is achieved.
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3.2. Proof of Theorem 2: h = ∞
We first note that clearly every passage above x can be matched with a passage below x and,

thus, for x > 0, the number of passages through (x, ∞) is the same as the number of passages
through (−∞, x], provided that the terminal passage that starts above x and never ends is also
counted as one passage and the same holds for the first passage under x that starts at 0. The
proof, therefore, follows the same procedure as before but with Nx denoting the number of
passages below (and, thus, above) x. The only difference is the following computation:

v−1
x = 1 − P(Xx

0 ≤ x, Xx
1 ≤ x)

P(Xx
0 ≤ x)

= 1 − P(Y ≤ x, Y + X ≤ x)

P(Y ≤ x)

= 1 − P(Y ≤ x − X+)

P(Y ≤ x)

= 1 − c(x)−1
ERx((−∞, x − X+])

c−1(x)Rx((−∞, x])
= 1 − ERx((−∞, x − X+])

Rx((−∞, x])
= ERx((x − X+, x])

Rx((−∞, x]) .

Since
Rx((x − X+, x]) ≤ R((x − X+, x]) ≤ aX+ + b,

and E|X| < ∞, we can conclude as in (12), using dominated convergence and applying the
same arguments as in the proof of Theorem 1, that

EÑx = Rx(−∞, x]v−1
x = ERx((x − X+, x]) → EX+

µ

as x → ∞ and, hence, also that

ENx → EX+

µ
,

as required.
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