ASYMPTOTIC EXPECTED NUMBER OF PASSAGES OF A RANDOM WALK THROUGH AN INTERVAL

OFFER KELLA,* The Hebrew University of Jerusalem
WOLFGANG STADJE,** University of Osnabrück

Abstract

In this note we find a new result concerning the asymptotic expected number of passages of a finite or infinite interval $(x, x+h]$ as $x \rightarrow \infty$ for a random walk with increments having a positive expected value. If the increments are distributed like X then the limit for $0<h<\infty$ turns out to have the form $\mathbb{E} \min (|X|, h) / \mathbb{E} X$, which unexpectedly is independent of h for the special case where $|X| \leq b<\infty$ almost surely and $h>b$. When $h=\infty$, the limit is $\mathbb{E} \max (X, 0) / \mathbb{E} X$. For the case of a simple random walk, a more pedestrian derivation of the limit is given.

Keywords: Random walk; passage; generalized renewal theorem; two-sided renewal theorem
2010 Mathematics Subject Classification: Primary 60G50
Secondary 60K05

1. The result

In this note we prove an asymptotic formula for the expected number of passages of a random walk with positive drift through $(x, x+h]$ for $0<h \leq \infty$ as $x \rightarrow \infty$. In general, a passage of a stochastic sequence $\left(Y_{n}\right)_{n \geq 0}$ through a subset A of its state space is defined to consist of an entry to, followed by a sojourn in, and then an exit from A. It is given by a sequence of epochs $n+1, \ldots, n+i(i \geq 1)$ such that $Y_{n} \notin A, Y_{n+1} \in A, \ldots, Y_{n+i} \in A, Y_{n+i+1} \notin A$. It is natural to call i the length of the passage.

Now, let $S_{n}=X_{1}+\cdots+X_{n}\left(S_{0}=0\right)$ be a real-valued random walk with independent and identically distributed (i.i.d.) increments X_{i} distributed like X with $\mathbb{E}|X|<\infty$ and having expected value $\mu=\mathbb{E} X>0$. We fix a constant $0<h \leq \infty$ and denote by $N^{x}, x \in \mathbb{R}$, the number of passages of S_{n} through the interval $(x, x+h]((x, \infty)$ if $h=\infty)$. The classical twosided renewal theorem (see, e.g. [2, p. 218] and [3, p. 172]) states that, when the distribution of X is nonarithmetic, the expected number of visits of the interval $(x, x+h]$, denoted by $R((x, x+h])$, where

$$
\begin{equation*}
R(A)=\mathbb{E} \sum_{n=0}^{\infty} \mathbf{1}_{\left\{S_{n} \in A\right\}}, \tag{1}
\end{equation*}
$$

converges to h / μ as $x \rightarrow \infty$ and to 0 as $x \rightarrow-\infty$ (with a slight adjustment in the case when the underlying distribution is arithmetic). The following two results can be viewed as a neat little supplement to this important theorem.

[^0]Theorem 1. Let $0<h<\infty$.
(a) If X has a nonarithmetic distribution,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \mathbb{E} N^{x}=\frac{\mathbb{E} \min [|X|, h]}{\mu} . \tag{2}
\end{equation*}
$$

(b) If X has an arithmetic distribution then (2) holds for every $h>0$ which is divisible by the span.

Although it would have been nice if, for the case $h=\infty$, we could simply replace $\min [|X|, h]$ or $\min [|X|, k \alpha]$ by $|X|$, this turns out to be false. Instead, the following holds, where throughout we use the notation $a^{+}=\max (a, 0)$ and $a^{-}=\max (-a, 0)$.

Theorem 2. Let $h=\infty$. Then (nonarithmetic or arithmetic),

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \mathbb{E} N^{x}=\frac{\mathbb{E} X^{+}}{\mu} \tag{3}
\end{equation*}
$$

In Theorem 2 we count in N^{x} also the terminal entrance to and subsequent infinite sojourn in (x, ∞). If we want to exclude this 'passage', the limit in (3) becomes $\mathbb{E} X^{+} / \mu-1=\mathbb{E} X^{-} / \mu$. In Section 2 we consider a few special cases; the proofs are carried out in Section 3.

2. Some special cases

2.1. Simple random walk with $0<h<\infty$

We first consider the simple random walk with $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=-1)=q=1-p$, where $p>q$. Fix $x, h \geq 1$ (integers). Note that the expected number of passages through $\{x, \ldots, x+h-1\}$ when starting at 0 is the same for every $x>0$ since the random walk is skip-free and converges to ∞ almost surely. Therefore, we set $x=1$. Let a_{h} and b_{h} be the expected numbers of passages through $E=\{1, \ldots, h\}$ when starting from 0 and $h+1$, respectively. Then $\mathbb{E} N^{x}=a_{h}$ and we now give a direct proof that

$$
\mathbb{E} N^{x}=a_{h}=\frac{\mathbb{E} \min [|X|, h]}{\mathbb{E} X}=\frac{\mathbb{E}|X|}{\mathbb{E} X}=\frac{1}{p-q} \quad \text { for all } h \geq 1
$$

(note that $|X| \equiv 1$). It is remarkable that $\mathbb{E} N^{x}$ does not depend on h.
As $p>q$, we have

$$
\begin{equation*}
a_{h}=1+\pi_{h} a_{h}+\left(1-\pi_{h}\right) b_{h} \tag{4}
\end{equation*}
$$

where π_{h} is the probability that 0 is reached before $h+1$ when starting from 1 . Indeed, when starting from a state to the left of E, the random walk enters E at 1 with probability 1 and thereafter the next passage comes from the left with probability π_{h} or, with probability $1-\pi_{h}$, state $h+1$ is reached before 0 . On the other hand, when starting from $h+1$, the set E (actually, the state h) is reached with probability q / p and then the next attained state outside E is 0 or $h+1$. Therefore, we obtain

$$
\begin{equation*}
b_{h}=\frac{q}{p}\left(1+\rho_{h} a_{h}+\left(1-\rho_{h}\right) b_{h}\right) \tag{5}
\end{equation*}
$$

where ρ_{h} is the probability that 0 is reached before $h+1$ when starting from h. The probabilities π_{h} and ρ_{h} are of course well known from the standard gambler's ruin problem:

$$
\begin{equation*}
\pi_{h}=\frac{(q / p)-(q / p)^{h+1}}{1-(q / p)^{h+1}}, \quad \rho_{h}=\frac{(q / p)^{h}-(q / p)^{h+1}}{1-(q / p)^{h+1}} \tag{6}
\end{equation*}
$$

Equation (4) yields

$$
\begin{equation*}
a_{h}=\frac{1}{1-\pi_{h}}+b_{h} \tag{7}
\end{equation*}
$$

Setting $r=q / p$, we get, from (5)-(7),

$$
b_{h}=\frac{r}{1-r}\left(1+\frac{\rho_{h}}{1-\pi_{h}}\right) .
$$

Next check that $\rho_{h} /\left(1-\pi_{h}\right)=r^{h}$. A little calculation now shows that

$$
\begin{aligned}
a_{h} & =\frac{1}{1-\pi_{h}}+\frac{r}{1-r}\left(1+\frac{\rho_{h}}{1-\pi_{h}}\right) \\
& =\frac{1-r^{h+1}}{1-r}+\frac{r}{1-r}\left(1+r^{h}\right) \\
& =\frac{1+r}{1-r} \\
& =\frac{1}{p-q},
\end{aligned}
$$

as was to be proved. Moreover, for $k \geq 1$, the expected number of passages through E starting from $h+k$ is equal to $[1-r]^{-1}\left[1+r^{h}\right] r^{k}$.

The case of random walks having increments $-1,0,1$ with probabilities p_{-1}, p_{0}, p_{1}, reduces to the case above with $p=p_{1} /\left(p_{-1}+p_{1}\right)$ because here the number of passages is the same as that of the random walk which is embedded at state change epochs.

2.2. Simple random walk with $\boldsymbol{h}=\boldsymbol{\infty}$

In the setting of Subsection 2.1, when $h=\infty$, we are interested in the asymptotic expected number of passages through (x, ∞). Since x is hit with probability 1 , then, for every $x>0$, it is the same as the expected number of passages through $\{1,2, \ldots\}$, which we denote by a_{∞}. We want to verify that

$$
a_{\infty}=\frac{\mathbb{E} X^{+}}{\mathbb{E} X}=\frac{p}{p-q}
$$

Indeed, since the probability to ever reach 1 starting from 0 is 1 and the probability to ever reach 0 from 1 is q / p, we have

$$
a_{\infty}=1+\frac{q}{p} a_{\infty}
$$

so

$$
a_{\infty}=\frac{1}{1-q / p}=\frac{p}{p-q}
$$

Of course, the last paragraph of Subsection 2.1 applies to this case as well.

2.3. Random walks with inequality constraints

In general, if $|X| \leq b<\infty$ almost surely, we have, for $b \leq h<\infty$,

$$
\mathbb{E} N^{x} \rightarrow \frac{\mathbb{E}|X|}{\mathbb{E} X}=\frac{1+\left(\mathbb{E} X^{-} / \mathbb{E} X^{+}\right)}{1-\left(\mathbb{E} X^{-} / \mathbb{E} X^{+}\right)}
$$

so the limit depends only on the ratio $\mathbb{E} X^{-} / \mathbb{E} X^{+}$. This is also the case when $h=\infty$ as the limit may be written as follows:

$$
\frac{\mathbb{E} X^{+}}{\mathbb{E} X}=\frac{1}{1-\left(\mathbb{E} X^{-} / \mathbb{E} X^{+}\right)}
$$

If X takes only nonnegative values, there is at most one passage through $(x, x+h]$ and

$$
\begin{equation*}
\mathbb{P}\left(N^{x}=1\right) \rightarrow \frac{\mathbb{E} \min (X, h)}{\mu}=\int_{0}^{h} \frac{\mathbb{P}(X>s)}{\mu} \mathrm{d} s=F_{\mathrm{eq}}(h) \tag{8}
\end{equation*}
$$

where $F_{\text {eq }}$ is the equilibrium distribution associated with X. In this case it is interesting to note that (8) is valid regardless of whether h is finite or not.

If $|X|>h$ then $\mathbb{E} N^{x} \rightarrow h / \mu$. Every passage through $(x, x+h]$ corresponds to exactly one visit of this interval (since every entrance to ($x, x+h$] is immediately followed by an exit). Therefore, $\mathbb{E} N^{x}=R((x, x+h])$ in this case and we are back to the classical two-sided renewal theorem.

Finally, consider the case when X takes only values in $[-h, 0] \cup(h, \infty)$. Then it follows that

$$
\mathbb{E} N^{x} \rightarrow \frac{\mathbb{E} X^{-}+h \mathbb{P}(X>h)}{\mathbb{E} X}=\frac{\mathbb{E} X^{-}}{\mathbb{E} X}+h f_{\mathrm{eq}}(h),
$$

where $f_{\text {eq }}$ denotes the equilibrium density of X.

3. Proofs

We only treat the nonarithmetic case. The proof of the arithmetic case follows along the same lines. The following lemma will prove useful.
Lemma 1. Let $\left(X_{n}\right)_{n \geq 0}$ be a stationary and ergodic sequence, and let A be a measurable subset of its state space, satisfying $\mathbb{P}\left(X_{0} \in A^{\mathfrak{c}}, X_{1} \in A\right)>0$ (thus, $\left.\mathbb{P}\left(X_{0} \in A\right)=\mathbb{P}\left(X_{1} \in A\right)>0\right)$. Let V_{1}, V_{2}, \ldots be the lengths of the successive passages through A. Then, as $n \rightarrow \infty$,

$$
n^{-1} \sum_{i=1}^{n} V_{i} \rightarrow\left(1-\mathbb{P}\left(X_{1} \in A \mid X_{0} \in A\right)\right)^{-1} \quad \text { almost surely. }
$$

Proof. Let $J_{i}=\mathbf{1}_{\left\{X_{i} \in A\right\}}$ and $K_{i}=\mathbf{1}_{\left\{X_{i} \in A^{\mathrm{c}}, X_{i+1} \in A\right\}}$. Let L_{n} be the last time of the nth passage. As $\mathbb{P}\left(X_{0} \in A^{\mathfrak{c}}, X_{1} \in A\right)>0$, then $L_{n} \rightarrow \infty$ almost surely and, by the ergodic theorem for stationary sequences,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} V_{i} & =\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{L_{n}} J_{i}}{\sum_{i=1}^{L_{n}} K_{i}} \\
& =\frac{\lim _{n \rightarrow \infty} L_{n}^{-1} \sum_{i=1}^{L_{n}} J_{i}}{\lim _{n \rightarrow \infty} L_{n}^{-1} \sum_{i=1}^{L_{n}} K_{i}} \\
& =\frac{\mathbb{P}\left(J_{0}=1\right)}{\mathbb{P}\left(K_{0}=1\right)} \\
& =\frac{\mathbb{P}\left(X_{0} \in A\right)}{\mathbb{P}\left(X_{0} \in A^{\mathrm{c}}, X_{1} \in A\right)} \quad \text { almost surely }
\end{aligned}
$$

completing the proof.

3.1. Proof of Theorem 1: $0<h<\infty$

We introduce the auxiliary regenerative process X_{n}^{x} that is identical to S_{n} until the level $2 x$ is exceeded (at which time the first cycle is completed), then restarts from 0 until $2 x$ is exceeded again, etc. ($2 x$ could be replaced by any $f(x)$ such that $f(x)-x \rightarrow \infty$ as $x \rightarrow \infty$). Let \tilde{N}^{x} be the number of passages of X_{n}^{x} through ($\left.x, x+h\right]$ in the first cycle. Observe that, for $x>h$, a passage cannot be interrupted by an end of a cycle. We recall from (1) that $R(A)$ is the expected number of epochs at which S_{n} is in A (the renewal measure) and denote by $R_{x}(A)$ the expected number of epochs at which X_{n}^{x} is in A during the first cycle. $R(x+I)$ tends to the length of I divided by μ as $x \rightarrow \infty$ and to 0 as $x \rightarrow-\infty$ for all bounded intervals I. Clearly, $R_{x} \leq R$ and since $R(A)$ and $R_{x}(A)$ differ at most by the expected number of points of S_{n} that return to $[\inf A, \sup A]$ after S_{n} has crossed $2 x$, it follows that

$$
\left|R_{x}(x+A)-R(x+A)\right| \leq \sup _{y \geq x} R((-y,-y+h]) \quad \text { for all } A \subset(0, h] .
$$

Hence, recalling that $R((-y,-y+h]) \rightarrow 0$ as $y \rightarrow \infty$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{A \subset[0, h]}\left|R_{x}(x+A)-R(x+A)\right| \rightarrow 0 \tag{9}
\end{equation*}
$$

Since $N^{x}-\tilde{N}^{x}$ is bounded above by the overall number of visits to $(x, x+h]$ after the first cycle, it also follows that

$$
0 \leq \mathbb{E} N^{x}-\mathbb{E} \tilde{N}^{x} \leq R((x, x+h])-R_{x}((x, x+h]),
$$

so we also have

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(\mathbb{E} N^{x}-\mathbb{E} \tilde{N}^{x}\right)=0 \tag{10}
\end{equation*}
$$

Let us first fix $x>0$. By the ergodic theorem for regenerative processes (see, e.g. [1, p. 170]), the stationary distribution v_{x} of X_{n}^{x} is of the form $v_{x}(A)=$ expected number of points in A in the first cycle divided by the expected cycle length, i.e. $v_{x}(A)=R_{x}(A) / c(x)$, where $c(x)$ is the (finite) expected cycle length of X_{n}^{x}.

Now, make the (Markov) process $\left(X_{n}^{x}\right)_{n \geq 0}$ a stationary and ergodic sequence by starting it with v_{x}. Then let $V_{1}^{x}, V_{2}^{x}, \ldots$ be the lengths of the consecutive passages of X_{n}^{x} through $(x, x+h]$. From Lemma 1, as $n \rightarrow \infty$,

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n} V_{i}^{x} \rightarrow v_{x}=:\left(1-\mathbb{P}\left(X_{1}^{x} \in(x, x+h] \mid X_{0}^{x} \in(x, x+h]\right)\right)^{-1} \quad \text { almost surely } \tag{11}
\end{equation*}
$$

Let $Y \sim R_{x}(\cdot) / c(x)$ be independent of $X\left(X \sim X_{1}\right)$. Then, the conditional probability on the right-hand side of (11) can be written as

$$
\begin{aligned}
&\left.\frac{\mathbb{P}\left(X_{0}^{x}\right.}{} \in(x, x+h], X_{1}^{x} \in(x, x+h]\right) \\
& \mathbb{P}\left(X_{0}^{x} \in(x, x+h]\right) \\
&=\frac{\mathbb{P}(Y \in(x, x+h], Y+X \in(x, x+h])}{\mathbb{P}(Y \in(x, x+h])} \\
&=\frac{\mathbb{P}\left(x+X^{-}<Y \leq x+h-X^{+}\right)}{\mathbb{P}(Y \in(x, x+h])} \\
&=\frac{\mathbb{P}\left(x+X^{-}<Y \leq x+h-X^{+}, X^{-}<h-X^{+}\right)}{\mathbb{P}(Y \in(x, x+h])}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathbb{P}\left(Y \in\left(x+X^{-}, x+h-X^{+}\right],|X|<h\right)}{\mathbb{P}(Y \in(x, x+h])} \\
& =\frac{c(x)^{-1} \mathbb{E} R_{x}\left(\left(x+X^{-}, x+h-X^{+}\right]\right) \mathbf{1}_{\{|X|<h\}}}{c(x)^{-1} R_{x}((x, x+h])} \\
& =\frac{\mathbb{E} R_{x}\left(\left(x+X^{-}, x+h-X^{+}\right]\right) \mathbf{1}_{\{|X|<h\}}}{R_{x}((x, x+h])} .
\end{aligned}
$$

It is well known (and quite easy to show) that there are finite constants a and b such that $R((x, x+h]) \leq a h+b$ for all (finite) $x, h>0$ and, thus,

$$
\begin{aligned}
R_{x}\left(\left(x+X^{-}, x+h-X^{+}\right]\right) \mathbf{1}_{\{|X|<h\}} & \leq R\left(\left(x+X^{-}, x+h-X^{+}\right]\right) \mathbf{1}_{\{|X|<h\}} \\
& \leq a(h-|X|)^{+}+b \\
& \leq a h+b .
\end{aligned}
$$

Thus, by dominated convergence, (9), and the generalized renewal theorem, it follows that, as $x \rightarrow \infty$,

$$
\begin{aligned}
\frac{\mathbb{E} R_{x}\left(\left(x+X^{-}, x+h-X^{+}\right]\right) \mathbf{1}_{\{|X|<h\}}}{R_{x}((x, x+h])} & \rightarrow \frac{\mathbb{E}(h-|X|)^{+} / \mu}{h / \mu} \\
& =\frac{\mathbb{E}(h-|X|)^{+}}{h} \\
& =1-\frac{\mathbb{E} \min (|X|, h)}{h}
\end{aligned}
$$

and so, recalling (11), we have, as $x \rightarrow \infty$,

$$
v_{x} \rightarrow \frac{h}{\mathbb{E} \min (|X|, h)}
$$

Next let \tilde{N}_{j}^{x} be the number of passages through $(x, x+h]$ in the j th cycle, and let $V_{i, j}^{x}$ be the length of the i th passage through $(x, x+h]$ in the j th cycle. Then

$$
\begin{aligned}
v_{x} & =\lim _{k \rightarrow \infty} \frac{\sum_{j=1}^{k} \sum_{i=1}^{\tilde{N}_{i}^{x}} V_{i, j}^{x}}{\sum_{j=1}^{k} \tilde{N}_{j}^{x}} \\
& =\frac{\lim _{k \rightarrow \infty} k^{-1} \sum_{j=1}^{k} \sum_{i=1}^{\tilde{N}_{i}^{x}} V_{i, j}^{x}}{\lim _{k \rightarrow \infty} k^{-1} \sum_{j=1}^{k} \tilde{N}_{j}^{x}} \\
& =\frac{R_{x}((x, x+h])}{\mathbb{E} \tilde{N}^{x}} \text { almost surely. }
\end{aligned}
$$

The last equality follows since we have the moment estimator from an i.i.d. sample of size k of the expected number of points of S_{n} in $(x, x+h]$ before exceeding $2 x$ in the numerator, and the corresponding moment estimator of $\mathbb{E} \tilde{N}^{x}$ in the denominator. Thus, we have, as $x \rightarrow \infty$,

$$
\begin{equation*}
\mathbb{E} \tilde{N}^{x}=R((x, x+h]) v_{x}^{-1} \rightarrow \frac{h}{\mu} \frac{\mathbb{E} \min (|X|, h)}{h}=\frac{\mathbb{E} \min (|X|, h)}{\mu}, \tag{12}
\end{equation*}
$$

and, finally, from (10), the desired limit is achieved.

3.2. Proof of Theorem 2: $h=\infty$

We first note that clearly every passage above x can be matched with a passage below x and, thus, for $x>0$, the number of passages through (x, ∞) is the same as the number of passages through $(-\infty, x]$, provided that the terminal passage that starts above x and never ends is also counted as one passage and the same holds for the first passage under x that starts at 0 . The proof, therefore, follows the same procedure as before but with N^{x} denoting the number of passages below (and, thus, above) x. The only difference is the following computation:

$$
\begin{aligned}
v_{x}^{-1} & =1-\frac{\mathbb{P}\left(X_{0}^{x} \leq x, X_{1}^{x} \leq x\right)}{\mathbb{P}\left(X_{0}^{x} \leq x\right)} \\
& =1-\frac{\mathbb{P}(Y \leq x, Y+X \leq x)}{\mathbb{P}(Y \leq x)} \\
& =1-\frac{\mathbb{P}\left(Y \leq x-X^{+}\right)}{\mathbb{P}(Y \leq x)} \\
& =1-\frac{c(x)^{-1} \mathbb{E} R_{x}\left(\left(-\infty, x-X^{+}\right]\right)}{c^{-1}(x) R_{x}((-\infty, x])} \\
& =1-\frac{\mathbb{E} R_{x}\left(\left(-\infty, x-X^{+}\right]\right)}{R_{x}((-\infty, x])} \\
& =\frac{\mathbb{E} R_{x}\left(\left(x-X^{+}, x\right]\right)}{R_{x}((-\infty, x])} .
\end{aligned}
$$

Since

$$
R_{x}\left(\left(x-X^{+}, x\right]\right) \leq R\left(\left(x-X^{+}, x\right]\right) \leq a X^{+}+b
$$

and $\mathbb{E}|X|<\infty$, we can conclude as in (12), using dominated convergence and applying the same arguments as in the proof of Theorem 1, that

$$
\mathbb{E} \tilde{N}^{x}=R_{x}(-\infty, x] v_{x}^{-1}=\mathbb{E} R_{x}\left(\left(x-X^{+}, x\right]\right) \rightarrow \frac{\mathbb{E} X^{+}}{\mu}
$$

as $x \rightarrow \infty$ and, hence, also that

$$
\mathbb{E} N^{x} \rightarrow \frac{\mathbb{E} X^{+}}{\mu}
$$

as required.

References

[1] Asmussen, S. (2003). Applied Probability and Queues (Appl. Math. 51), 2nd edn. Springer, New York.
[2] Breiman, L. (1992). Probability (Classics Appl. Math. 7). Society for Industrial and Applied Mathematics, Philadelphia, PA.
[3] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.

[^0]: Received 9 May 2012.

 * Postal address: Department of Statistics, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel. Email address: offer.kella@huji.ac.il
 Supported in part by grant no. 434/09 from the Israel Science Foundation and the Vigevani Chair in Statistics.
 ** Postal address: Institute of Mathematics, University of Osnabrück, 49069 Osnabrück, Germany.
 Email address: wstadje@uos.de
 Supported by grant no. 306/13-2 of the Deutsche Forschungsgemeinschaft.

