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ON OPTIMALITY OF BOLD PLAY FOR
DISCOUNTED DUBINS–SAVAGE GAMBLING
PROBLEMS WITH LIMITED PLAYING TIMES
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Abstract

In the classic Dubins–Savage subfair primitive casino gambling problem, the gambler can
stake any amount in his possession, winning (1− r)/r times the stake with probability w

and losing the stake with probability 1 − w, 0 ≤ w ≤ r ≤ 1. The gambler seeks to
maximize the probability of reaching a fixed fortune by gambling repeatedly with suitably
chosen stakes. This problem has been extended in several directions to account for limited
playing time or future discounting. We propose a unifying framework that covers these
extensions, and prove that bold play is optimal provided that w ≤ 1

2 ≤ r . We also show
that this condition is in fact necessary for bold play to be optimal subject to the constraint
of limited playing time.
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1. Introduction

In their classic work, Dubins and Savage [10], [11] introduced the primitive casino gambling
problem in which a gambler can stake any amount s of his current fortune f , 0 ≤ s ≤ f < 1.
If he stakes an amount s, his fortune becomes f + r̄s/r with probability w and f − s with
probability w̄ = 1 − w, where 0 < r ≤ 1 and 0 ≤ w ≤ 1 are fixed constants (and r̄ = 1 − r).
While he is allowed to gamble repeatedly, the gambler’s objective is to maximize the probability
of reaching a fortune of 1 (the goal). In an ingenious proof, Dubins and Savage showed that it
is optimal to play boldly if the primitive casino is subfair (i.e. w ≤ r). Here the word ‘subfair’
is used in the weak sense, meaning ‘fair or subfair’, and to play boldly is to stake on each play
as much as possible without risking overshooting the goal, i.e. to stake min{f, (1 − f ) r/r̄} if
the current fortune is f , 0 < f < 1. The Dubins–Savage optimality result on the bold strategy
has been generalized in several directions, as summarized below. Let fn denote the fortune at
the end of the nth play, n = 1, 2, . . . , with f0 = f being the initial fortune.

(i) Subfair primitive casinos with limited playing times. Under the requirement that the total
number of plays be limited to a prescribed integer value n > 0, Dvoretzky proved (see [11,
pp. 92–95]) that the bold strategy remains optimal provided that w ≤ r = 1

2 (the subfair ‘red-
and-black’ casino setting) or that 1

2 = w ≤ r (the ‘taxed-coin’ casino setting). Dvoretzky also
constructed examples demonstrating that the bold strategy is not optimal in general for subfair
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Optimality of bold play 213

primitive casinos with limited playing times [11, pp. 110–111]. Beyond those for subfair red-
and-black and taxed-coin casinos, no further optimality results on the bold strategy have been
published in the literature. The present study was motivated by this, and our main results show
that for each n ≥ 3 the condition that w ≤ 1

2 ≤ r is necessary and sufficient for the bold
strategy to be optimal for all initial fortunes f ∈ (0, 1) when the gambler is allowed to play at
most n times.

(ii) Discounted, subfair primitive casinos. The gambler seeks to maximize the expected utility
earned upon reaching the fortune 1 (the goal), where the utility at the goal is βn (and β,
0 ≤ β ≤ 1, is the discount factor) if the goal is reached on the nth play. In other words, it
is desired to find a strategy that maximizes E βN 1{N<∞}, where N = inf{n : fn ≥ 1} (the
number of plays needed to reach the goal) and 1A denotes the indicator of the (generic) set A.
Note that this discounted version of the Dubins–Savage gambling problem is equivalent to the
following formulation; see [14]. If the gambler stakes an amount s of his fortune f , then his
fortune becomes f + r̄s/r , f − s, or 0 with respective probability βw, βw̄, or β̄ = 1 − β.
The objective remains to maximize the probability of reaching the fortune 1. For discounted,
subfair red-and-black casinos (w ≤ r = 1

2 ), Klugman [14] proved that the bold strategy is
optimal for all β. This result was extended to discounted, subfair primitive casinos by Chen
and Zame [5], who showed that the bold strategy is optimal provided that w ≤ 1

2 ≤ r or that
1
2 ≤ w ≤ r ≥ (

√
5 − 1)/2. On the other hand, Chen [3] found for discounted, subfair primitive

casinos that if either 0 < w ≤ r < 1
2 or 1

2 < w ≤ r < (
√

5 − 1)/2, then there exists an initial
fortune f ∈ (0, 1) for which the bold strategy is not optimal for sufficiently small β > 0.

(iii) Subfair primitive casinos in the presence of inflation. While the objective remains to maxi-
mize the probability of reaching the (discounted) fortune 1, it is assumed that the gambler’s for-
tune is discounted by a factor of α, 0 < α ≤ 1, after each play. (Note that ᾱ/α = (1−α)/α ≥ 0
may be interpreted as the inflation rate.) Then if the gambler stakes an amount s of his fortune f ,
0 ≤ s ≤ f , his (discounted) fortune becomes α(f + r̄s/r) with probability w and α(f −s) with
probability w̄. Chen [4] proved the optimality of the bold strategy for subfair red-and-black
casinos with inflation, and this was recently extended to subfair primitive casinos with inflation
by Chen et al. [7], who showed that the bold strategy is optimal provided that w ≤ 1

2 ≤ r . On
the other hand, Chen et al. [6] found that the bold strategy is no longer optimal if 0 < w ≤ r < 1

2
and the inflation rate, ᾱ/α, is between r/r̄ and r̄/r .

(iv) Subfair roulette casinos. In a subfair roulette casino governed by two parameters w and
r , 0 ≤ w ≤ r ≤ 1, if the gambler stakes amounts s1, s2, . . . , sk of his fortune f < 1
on k different numbers (with kw ≤ 1 and S := ∑k

j=1 sj ≤ f ), then his fortune becomes
f − S + si/r , i = 1, . . . , k, with probability w and f − S with probability 1 − kw. Note that
this reduces to the primitive casino setting if the gambler is allowed to bet on only one number
in each play. (In many real-world casinos, w = 1

38 and r = 1
36 .) It was proved by Smith [22]

and Dubins [8] that the maximum probability of reaching the fortune 1 is attained by the bold
strategy that stakes, on each play, an amount min{f, (1 − f )r/r̄} of the current fortune f on
only one number.

(v) Subfair red-and-black casinos with house limits. When there is a house limit z, 0 < z < 1
2 ,

the bold strategy is to stake an amount min{f, 1−f, z} of the fortune f . Wilkins [24] established
the optimality of the bold strategy for subfair red-and-black casinos with a house limit z = 1/n,
for any integer n ≥ 3. This result was extended by Chen [2] to discounted subfair red-and-
black casinos. Heath et al. [13] showed, however, that if the house limit z either satisfies
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1/(n + 1) < z < 1/n for some integer n ≥ 3 or is irrational and satisfies 1
3 < z < 1

2 , then
there exists an ε > 0 such that for 0 < w < ε the bold strategy is not optimal for some initial
fortune f . Furthermore, with Bw,z ⊂ (0, 1) denoting the set of initial fortunes for which the
bold strategy is optimal, Heath et al. [13] showed that if 1/(n+ 1) < z < 1/n for some integer
n ≥ 3, then Bw,z has Lebesgue measure 0 for some w < 1

2 . The former result of Heath et
al. [13] was recently improved by Schweinsberg [20], who showed that, for all irrational z < 1

2
and 0 < w < 1

2 , the bold strategy is not optimal for some initial fortune f .

(vi) Subfair fortune-dependent red-and-black casinos. In this case, if the gambler stakes an
amount s of his fortune f , then his fortune becomes f +s with probability w ≡ w(f ) and f −s

with probability 1 − w(f ), where the win probability w depends on the gambler’s fortune f .
Dubins [9] constructed an example to show that the bold strategy is not necessarily optimal
even when w(f ) < 1

2 for all f . It will be of theoretical interest to find general conditions on
w(f ) under which the bold strategy is optimal.

(vii) Continuous-time gambling problems. Motivated by Dubins–Savage discrete-time gam-
bling theory, Heath and Sudderth [12], Pestien and Sudderth [17], [18], and Sudderth and
Weerasinghe [23] have introduced and solved some continuous-time gambling problems in
which a player (gambler) starts at x ∈ (0, 1) and seeks to maximize the probability of reaching 1.
The process, {X(t) : t ≥ 0}, of the player’s positions (fortunes) is a diffusion process whose drift
and diffusion parameters are chosen by the player at each instant of time from a set depending
on the current position. Of particular interest is a result in [23] showing that the bold strategy
is optimal for continuous-time subfair red-and-black and roulette casinos with limited playing
times. In contrast to the discrete-time setting, where no explicit expression is available for
the optimal value function in general, the continuous-time theory often allows one to solve a
problem by checking the conditions of a corresponding ‘verification lemma’ for the explicit
value function of a guessed optimal strategy (see [18]).

While in the present study we consider only subfair casinos, for which bold play is of primary
concern, there have been extensive studies of superfair casinos and various generalizations, for
which timid play is of special interest; see, e.g. [1], [9], [15], [16], [17], [19], and [21].

In Section 2 we propose a unifying framework involving the parameters, r , w, n (the number
of plays allowed), and α and β (which are discount factors), that cover cases (i)–(iv). It is shown
that the bold strategy is optimal for all n, α, and β if w ≤ 1

2 ≤ r . In particular, the bold strategy
is optimal for the original Dubins–Savage primitive casino gambling problem with limited
playing time provided that w ≤ 1

2 ≤ r (which includes the subfair red-and-black and taxed-
coin casinos as special cases). In Section 3 it is shown that the condition w ≤ 1

2 ≤ r is in fact
necessary for the bold strategy to be optimal subject to the constraint of limited playing time.
Section 4 contains the proof of the technical result Lemma 1.

2. The unifying framework and optimality of the bold strategy

We first consider the discounted primitive casino case. Under the unifying framework, if the
gambler stakes an amount s of his fortune f , then his fortune becomes α(f + r̄s/r), α(f − s),
or 0 with respective probability βw, βw̄, or β̄. The objective is to maximize the probability
of reaching fortune 1 in at most n plays, n = 1, 2, . . . ,∞ (n = ∞ corresponding to the case
of unlimited playing time). Note that cases (i), (ii), and (iii) in Section 1 correspond to the
parameter choices α = β = 1 and n < ∞; α = 1, 0 < β ≤ 1, and n = ∞; and 0 < α ≤ 1,
β = 1, and n = ∞, respectively.
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Let U0(f ) = 1[1,∞)(f ), f ≥ 0. For n = 0, 1, . . . , recursively define

Un+1(f ) =
{

sup{βw̄Un(α(f − y)) + βwUn(α(f + yr̄/r)) : 0 ≤ y ≤ B(f )}, 0 ≤ f < 1,

1, f ≥ 1,

(1)
where the bold stake, B(f ), is defined as

B(f ) = min{f, (α−1 − f )r/r̄}, 0 ≤ f < 1,

=
{

f, 0 ≤ f ≤ r/α,

(α−1 − f )r/r̄, r/α ≤ f < 1.
(2)

It is easily seen that Un(f ) is the maximum probability of attaining fortune 1 (the goal) with
initial fortune f when the gambler is allowed to play at most n times. Clearly, as n tends
to ∞, Un(f ) increases to U∞(f ), the maximum probability of attaining the goal with initial
fortune f when there is unlimited playing time (see [11, Section 2.15] and [16, Section 3.6]).
It will be shown for w ≤ 1

2 ≤ r that the supremum in (1) is attained at y = B(f ), from which
it follows that the bold strategy is optimal. To this end, define Q0(f ) = 1[1,∞)(f ), f ≥ 0,
and, for n = 0, 1, . . . ,

Qn+1(f ) =
{

βw̄Qn(α(f − B(f ))) + βwQn(α(f + B(f )r̄/r)), 0 ≤ f < 1,

1, f ≥ 1.
(3)

Then Qn(f ) is the probability of attaining the goal in n plays under the bold strategy (with
initial fortune f ). As n tends to ∞, Qn(f ) increases to Q∞(f ), the probability of attaining
the goal when the gambler uses the bold strategy with unlimited playing time.

Theorem 1. Assume that 0 ≤ w ≤ 1
2 ≤ r ≤ 1 and 0 ≤ α, β ≤ 1. Then Qn(f ) = Un(f ) for

f ≥ 0 and n = 0, 1, . . . ,∞.

Theorem 1 shows that the bold strategy is optimal provided that w ≤ 1
2 ≤ r , which includes

some of the results of [4], [5], [7], [10], [11], and [14] as special cases.

Proof. The theorem is trivially true if w = 0, r = 1, α = 0, β = 0, or α ≤ r . We now
assume that 0 < w ≤ 1

2 ≤ r < 1, 0 < α, β ≤ 1, and α > r . It follows from (3) and Lemma 1,
below, that

Qn+1(f )=
{

sup{βw̄Qn(α(f − y)) + βwQn(α(f + yr̄/r)) : 0 ≤ y ≤ B(f )}, 0 ≤ f < 1,

1, f ≥ 1.

In view of (1), Qn and Un satisfy the same recursion equation with the same initial condition,
Q0 = U0. Thus, Qn(f ) = Un(f ) for all finite n and

Q∞(f ) = lim
n→∞ Qn(f ) = lim

n→∞ Un(f ) = U∞(f ).

The proof is complete.

Lemma 1. Assume that 0 < w ≤ 1
2 ≤ r < 1, 0 < α, β ≤ 1, and α > r . Then, for

n = 0, 1, . . . , and 0 ≤ y ≤ f < 1,

Qn+1(f ) ≥ βw̄Qn(α(f − y)) + βwQn(α(f + yr̄/r)). (4)
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The proof of Lemma 1, which is long, is relegated to Section 4.
We next consider the case of a discounted roulette casino governed by the parameters w, r ,

α, β, and n. Under the unifying framework, if the gambler stakes amounts s1, . . . , sk of his
fortune f on k different numbers, then his fortune becomes α(f − S + si/r), i = 1, . . . , k,
with probability βw, α(f − S) with probability β(1 − kw), and 0 with probability β̄ = 1 − β,
where S := s1 + · · · + sk ≤ f and kw ≤ 1. Note that case (iv) in Section 1 corresponds
to the parameter choices α = β = 1 and n = ∞. Letting U∗

0 (f ) = 1[1,∞)(f ), f ≥ 0, for
n = 0, 1, . . . , we recursively define

U∗
n+1(f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup

{
β(1 − kw)U∗

n (α(f − Y )) + βw

k∑
i=1

U∗
n

(
α

(
f − Y + yi

r

))
:

kw ≤ 1, yi ≥ 0, Y := ∑k
j=1 yj ≤ f

}
,

0 ≤ f < 1,

1, f ≥ 1.

Clearly, U∗
n (f ) is the maximum probability of attaining fortune 1 when the gambler with initial

fortune f is allowed to play at most n times in the discounted roulette casino. Also, as n tends
to ∞, U∗

n (f ) increases to U∗∞(f ), the maximum probability of reaching fortune 1 when the
gambler can play indefinitely. (Obviously Qn(f ) ≤ Un(f ) ≤ U∗

n (f ).) The following theorem
shows that, to attain the maximum probability of reaching fortune 1, the gambler should stake
an amount B(f ) of his fortune f on only one number in each play, provided that w ≤ 1

2 ≤ r .

Theorem 2. Assume that 0 ≤ w ≤ 1
2 ≤ r ≤ 1 and 0 ≤ α, β ≤ 1. Then U∗

n (f ) = Un(f ) for
f ≥ 0 and n = 0, 1, . . . ,∞.

Proof. It suffices to show that, for n = 0, 1, . . . and for any stakes y1 ≥ y2 ≥ · · · ≥ yk > 0
with k ≥ 2, kw ≤ 1, and Y := y1 + · · · + yk ≤ f < 1, we have

β(1 − kw)U∗
n (α(f − Y )) + βw

k∑
i=1

U∗
n

(
α

(
f − Y + yi

r

))

≤ β(1 − (k − 1)w)U∗
n (α(f − Y ′)) + βw

k−1∑
i=1

U∗
n

(
α

(
f − Y ′ + y′

i

r

))
, (5)

where y′
i = yi − yk and Y ′ = ∑k−1

i=1 y′
i = Y − kyk . That is, when the gambler is allowed to

play at most n + 1 times, initially staking y1 ≥ · · · ≥ yk on k different numbers is dominated
by staking y′

1 ≥ · · · ≥ y′
k−1 on k − 1 numbers. Since U∗

n (x) is nondecreasing in x, (5) follows
easily upon noting that r ≥ 1

2 and k ≥ 2 together imply that Y −yi/r ≥ Y ′−y′
i/r , i = 1, . . . , k.

Remark 1. The above proof takes advantage of the following simple observation. In the
undiscounted case, in which α = β = 1, for r > 1

2 a gambler who stakes the same amount on
two (or more) numbers is guaranteed to lose money even if the bet is won. Likewise, a gambler
who bets on multiple numbers can always do better by reducing all bets by the same amount.

3. Necessity of the condition w ≤ 1
2 ≤ r for optimality of the bold strategy

In this section we focus on the undiscounted case, in which α = β = 1. By Theorem 1, for
subfair primitive casinos with limited playing times, the bold strategy is optimal provided that
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w ≤ 1
2 ≤ r . On the other hand, Dvoretzky showed (see [11, Section 6.6]) that the bold strategy

is not optimal for some initial fortune f if w < r < 1
2 or 2

3 < w < r < 2−1/2. It is natural to
ask whether the condition w ≤ 1

2 ≤ r of Theorem 1 is necessary for the bold strategy to be
optimal. The following result answers this question in the affirmative.

Theorem 3. Let 3 ≤ n < ∞, 0 < w ≤ r < 1, and α = β = 1. Then

(i) Qn(f ) = Un(f ) for all f ≥ 0 if and only if w ≤ 1
2 ≤ r , and

(ii) Qn(f ) = U∗
n (f ) for all f ≥ 0 if and only if w ≤ 1

2 ≤ r .

Theorem 3 follows immediately from Theorems 1 and 2 and Lemmas 2 and 3, below.

Lemma 2. For 3 ≤ n < ∞, 0 < w ≤ r < 1
2 , α = β = 1, and f ∈ [rn−2(1− r̄(r̄ −r)), rn−2),

we have
Qn(f ) = wn−1(1 + w̄) < wn−1(1 + 2w̄) ≤ Un(f ).

Proof. The following argument is easily adapted from [11, Section 6.6, Example 1], and is
included here for completeness. Under the bold strategy, the gambler goes broke if any of his
first n − 2 plays is unsuccessful, whereas his fortune increases to f/rn−2 ∈ [1 − r̄(r̄ − r), 1)

after n − 2 successful plays. (Note that 1 − r̄(r̄ − r) > r since r > 0.) If the (n − 1)th play is
successful, the gambler attains the goal; otherwise, his fortune reduces to

f/rn−2 − r

r̄
∈ [2r, 1).

In the latter case, the gambler attains the goal when the nth play is successful, so

Qn(f ) = wn−2(w + w̄w) = wn−1(1 + w̄).

To show that Un(f ) ≥ wn−1(1 + 2w̄), consider the following strategy. Stake boldly in the
first n − 3 plays, resulting in a total fortune of f/rn−3 ∈ [r − rr̄(r̄ − r), r) if the first n − 3
plays are all successful. In the (n − 2)th play stake just enough to reach the fortune r + rr̄ if
successful, and then stake boldly in the remaining two plays. If the (n− 2)th play is successful
(and the fortune thus becomes r + rr̄), then the gambler can reach the goal when at least one
of the remaining two (bold) plays is successful. If the (n − 2)th play is unsuccessful then the
fortune becomes

f/rn−3 − [r + rr̄ − f/rn−3]r/r̄ = [f/rn−3 − r2(1 + r̄)]/r̄ ≥ r2,

in which case the gambler can still attain the goal when the remaining two (bold) plays are both
successful. Hence, under this strategy, the gambler attains the goal with probability

wn−3[w(w + w̄w) + w̄w2] = wn−1(1 + 2w̄),

completing the proof.

Lemma 3. For 3 ≤ n < ∞, 1
2 < w ≤ r < 1, α = β = 1, and

f ∈ [rn−1(1 + 2r̄), rn−2(1 + rr̄)),

we have
Qn(f ) = wn−2 < wn−1(1 + 2w̄) ≤ Un(f ).
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Proof. Under the bold strategy, the gambler goes broke if any of the first n − 3 plays is
unsuccessful, whereas his fortune becomes f/rn−3 ≥ r2(1 + 2r̄) > r after n − 3 successful
plays. If the (n−2)th play is successful, then he attains the goal; otherwise, the fortune becomes

f/rn−3 − r

r̄
<

r + r̄r2 − r

r̄
= r2.

In the latter case, the goal cannot be attained even if the remaining two plays are successful.
Thus, Qn(f ) = wn−2.

To show that Un(f ) ≥ wn−1(1 + 2w̄), consider the following strategy. Stake boldly in the
first n − 3 plays, so that the gambler’s fortune becomes f/rn−3 > r after n − 3 successful
plays (and he goes broke if any of the first n − 3 plays is unsuccessful). In the (n − 2)th play
stake s = f/rn−3 − r2 > 0, and stake boldly in the remaining two plays. If the (n − 2)th
play is unsuccessful, then the fortune reduces to f/rn−3 − s = r2, which is just enough for the
gambler to attain the goal with two successful bold plays. If the (n − 2)th play is successful,
then the fortune increases to

f/rn−3 + sr̄/r = f/rn−2 − rr̄ ∈ [r + rr̄, 1),

meaning that the gambler can attain the goal when at least one of the remaining two bold plays
is successful. Thus, this strategy enables the gambler to attain the goal with probability

wn−3[w̄w2 + w(w + w̄w)] = wn−1(1 + 2w̄),

completing the proof.

Remark 2. For n = 1, 2, it is readily seen that Qn(f ) = Un(f ) for all f ≥ 0 and all w, r , α,
and β.

Remark 3. For general values of α and β, 0 < α, β ≤ 1, it seems much more complicated
to determine the conditions on w, r , α, and β under which Qn(f ) = Un(f ) for all f ≥ 0.
Note that the following generalization of Lemma 2 can be easily proved. For 3 ≤ n < ∞,
0 < w ≤ r < 1

2 , r < α ≤ 1, 0 < β ≤ 1, and (r/α)n−1(1 + 2r̄/α) ≤ f < (r/α)n−2, we have

Qn(f ) = (βw)n−1(1 + βw̄) < (βw)n−1(1 + 2βw̄) ≤ Un(f ),

provided that (r/α)(1 + 2r̄/α) < 1. However, it can be shown that if 0 < w ≤ r < 1
2 and

(r/α)(1 + 2r̄/α) ≥ 1, then Q3(f ) = U3(f ) for all f ≥ 0.

4. Proof of Lemma 1

Our proof of Lemma 1 is long and based on induction, and is similar in spirit to, but much
more involved than, Dvoretzky’s proof of the optimality of the bold strategy for subfair red-
and-black casinos with limited playing times (see [11, pp. 92–94]), while the detailed analysis
in our proof is similar to that of [7, Theorem 1]. (In contrast to our, induction-based, proof, the
latter proof makes use of [11, Theorem 2.12.1] by verifying that the value function of the bold
strategy is excessive.) We will need the following two simple lemmas, which are essentially
[7, Lemmas 1 and 2] and can be verified in a straightforward manner.

Lemma 4. Suppose that f and y satisfy 0 < y < f < 1 and

(f − y)α2

r
≥ α(f + yr̄/r) − r/α

r̄/α
≥ 0.
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Define
f ′ ≡ f ′(f, y) = 2αf − α(1 − r̄/r)y − r/α,

y′ ≡ y′(f, y) = {r/α − α(1 − r̄/r)f − 2yαr̄/r}r/r̄.
Then

α

(
f ′ + y′ r̄

r

)
= (f − y)

α2

r
≥ α(f ′ − y′) = α(f + yr̄/r) − r/α

r̄/α
≥ 0

and 0 ≤ y′ ≤ f ′.

Lemma 5. Suppose that f and y satisfy 0 < y < f < 1 and

α(f + yr̄/r) − r/α

r̄/α
≥ (f − y)

α2

r
≥ 0.

Define

f ′ ≡ f ′(f, y) = (r̄2/r + r)f + (r̄ − r̄2/r)y − r2/α2

r̄/α
,

y′ ≡ y′(f, y) = (r − r̄)f + 2r̄y − r2/α2

r̄/α
.

Then

α

(
f ′ + y′ r̄

r

)
= α(f + yr̄/r) − r/α

r̄/α
≥ α(f ′ − y′) = (f − y)

α2

r
≥ 0

and 0 ≤ y′ ≤ f ′.

Proof of Lemma 1. Note that Qn(f ) is nondecreasing in f and n, that

Qn+1(f ) = βwQn(f α/r) if B(f ) = f (i.e. f ≤ r/α), (6)

and that

Qn+1(f ) = βw̄Qn

(
f − r/α

r̄/α

)
+βw if B(f ) = (α−1−f )

r

r̄
≤ f

(
i.e.

r

α
≤ f < 1

)
. (7)

We proceed by induction on n. Clearly, (4) holds for n = 0. Suppose that (4) holds for all
n < m, m ≥ 1. We now prove that, for 0 ≤ y ≤ f < 1,

Qm+1(f ) ≥ βw̄Qm(α(f − y)) + βwQm(α(f + yr̄/r)). (8)

For 0 ≤ y ≤ (ᾱ/α)(r/r̄)f , we have

α(f − y) ≤ α(f + yr̄/r) ≤ f,

whence

Qm+1(f ) ≥ Qm(f ) ≥ βw̄Qm(α(f − y)) + βwQm(α(f + yr̄/r)).

(Note that the more intuitive reason for the above inequality to hold is that when y is this small,
the gambler’s fortune decreases even if the bet is won.) For B(f ) < y ≤ f (implying that
B(f ) = (α−1 − f )r/r̄ and f > r/α), by (7) we have

Qm+1(f ) = βw̄Qm(α(f − B(f ))) + βw

≥ βw̄Qm(α(f − y)) + βwQm(α(f + yr̄/r)),
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since Qm(x) = 1 for x ≥ 1. It remains to prove (8) for

0 ≤ (ᾱ/α)(r/r̄)f < y < B(f ). (9)

Since (9) implies that

0 < α(f − y) < f < α(f + yr̄/r) < 1, (10)

it suffices to consider the following four cases separately.
Case (i): α(f − y) < f < α(f + yr̄/r) ≤ r/α. In this case B(f ) = f . By (6) and the

induction hypothesis,

Qm+1(f ) = βwQm(f α/r)

≥ βw{βw̄Qm−1(α(f α/r − yα/r)) + βwQm−1(α(f α/r + (yα/r)r̄/r))}
= βw̄{βwQm−1(α(f − y)α/r)} + βw{βwQm−1(α(f + yr̄/r)α/r)}
= βw̄Qm(α(f − y)) + βwQm(α(f + yr̄/r)),

proving (8).
Case (ii): r/α ≤ α(f − y) < f < α(f + yr̄/r). Let f ′ = (f − r/α)/(r̄/α) and

y′ = (y + ᾱα−2r)α/r̄ . Note that 0 < y′ ≤ f ′ < 1 (since r/α ≤ α(f − y) implies that
y′ ≤ f ′) and that α(f − B(f )) = f ′. By (7) and the induction hypothesis,

Qm+1(f ) = βw̄Qm(f ′) + βw

≥ βw̄

{
βw̄Qm−1(α(f ′ − y′)) + βwQm−1

(
α

(
f ′ + y′ r̄

r

))}
+ βw

≥ βw̄{βw̄Qm−1(α(f ′ − y′)) + βw}
+ βw

{
βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βw

}

= βw̄Qm(α(f − y)) + βwQm

(
α

(
f + y

r̄

r

))
,

proving (8), where the second inequality follows from the fact that

α

(
f ′ + y′ r̄

r

)
− α(f + yr̄/r) − r/α

r̄/α
= ᾱ

r̄
≥ 0

and the last equality follows from (7) and the fact that

α(f ′ − y′) = α(f − y) − r/α

r̄/α
.

Case (iii): α(f − y) < f < r/α < α(f + yr̄/r). Since y < f = B(f ), we have

r/α < α(f + yr̄/r) < f α/r < 1.
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Thus, by (6) and (7),

Qm+1(f ) = βwQm(f α/r)

= βw

{
βw̄Qm−1

(
f α/r − r/α

r̄/α

)
+ βw

}
= βw̄{βwQm−1((f α/r̄ − α−1r2/r̄)α/r)} + β2w2

= βw̄Qm(f α/r̄ − α−1r2/r̄) + β2w2,

Qm(α(f − y)) = βwQm−1((f − y)α2/r),

Qm

(
α

(
f + y

r̄

r

))
= βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βw.

It follows that (8) is equivalent to

Qm

(
f

α

r̄
− α−1 r2

r̄

)
≥ βwQm−1

(
(f − y)

α2

r

)
+ βwQm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
. (11)

(Note that here f α/r̄ − α−1r2/r̄ , (f − y)α2/r , and [α(f + yr̄/r) − r/α]/(r̄/α), the various
arguments of Qm and Qm−1, all lie in the set [0, 1).)

Since w ≤ 1
2 , the monotonicity of Qn(x) in x and n implies (11) if

f
α

r̄
− α−1 r2

r̄
≥ max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
.

It therefore suffices to consider the following two subcases.

Subcase (iii.1):

f
α

r̄
− α−1 r2

r̄
< max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
= (f − y)

α2

r
.

Let f ′ ≡ f ′(f, y) and y′ ≡ y′(f, y) be as defined in Lemma 4, meaning that 0 ≤ y′ ≤ f ′.
Since r ≥ 1

2 and α(f + yr̄/r) > r/α, we have

f α/r̄ − α−1r2/r̄ − f ′ = (r/r̄ − 1)[α(f + yr̄/r) − r/α] ≥ 0.

It follows from Lemma 4, the induction hypothesis, and w ≤ 1
2 that

Qm

(
f

α

r̄
− α−1 r2

r̄

)
≥ Qm(f ′)

≥ βw̄Qm−1(α(f ′ − y′)) + βwQm−1

(
α

(
f ′ + y′ r̄

r

))

≥ βwQm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βwQm−1

(
(f − y)

α2

r

)
,

proving (11) and, hence, (8).

Subcase (iii.2):

f
α

r̄
− α−1 r2

r̄
< max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
= α(f + yr̄/r) − r/α

r̄/α
.
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Let f ′ ≡ f ′(f, y) and y′ ≡ y′(f, y) be as defined in Lemma 5, meaning that 0 ≤ y′ ≤ f ′.
Since r ≥ 1

2 and f > y, we have

f
α

r̄
− α−1 r2

r̄
− f ′ = (r − r̄)(f − y)

r/α
≥ 0.

By Lemma 5, the induction hypothesis, and w ≤ 1
2 ,

Qm

(
f

α

r̄
− α−1 r2

r̄

)
≥ Qm(f ′)

≥ βw̄Qm−1(α(f ′ − y′)) + βwQm−1

(
α

(
f ′ + y′ r̄

r

))

≥ βwQm−1

(
(f − y)

α2

r

)
+ βwQm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
,

proving (11) and, hence, (8).

Case (iv): α(f −y) < r/α ≤ f < α(f +yr̄/r). By (9) and (2), y < B(f ) = (α−1−f )r/r̄ ,
so

r

α
> α(f − y) > α(f − B(f )) = f − r/α

r̄/α
.

Then, by (6) and (7),

Qm+1(f ) = βw̄Qm

(
f − r/α

r̄/α

)
+ βw

= β2w̄wQm−1

(
f − r/α

r̄/α

α

r

)
+ βw,

Qm(α(f − y)) = βwQm−1((f − y)α2/r),

Qm

(
α

(
f + y

r̄

r

))
= βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βw.

It follows that (8) is equivalent to

β̄ + βw̄ + βw̄Qm−1

(
(f − r/α)α/r

r̄/α

)

≥ βw̄Qm−1

(
(f − y)

α2

r

)
+ βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
. (12)

(Note that [(f − r/α)α/r]/(r̄/α), (f − y)α2/r and [α(f + yr̄/r) − r/α]/(r̄/α), the various
arguments of Qm−1, all lie in the set [0, 1).)

Inequality (12) holds trivially if

(f − r/α)α/r

r̄/α
≥ (f − y)

α2

r
or

(f − r/α)α/r

r̄/α
≥ α(f + yr̄/r) − r/α

r̄/α
,

i.e. if
y ≥ (α−1 − f )r/r̄ or y ≤ f − r/α + r2ᾱ/(r̄α2).
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If (α−1 − f )r/r̄ ≤ f − r/α + r2ᾱ/(r̄α2) (i.e. f ≥ 2r/α − r2/α2), then we have finished.
Thus, it remains to prove (12) when

f < 2r/α − r2/α2 (13)

and

f
rᾱ

r̄α
≤ f − r

α
+ r2ᾱ

r̄α2 < y < (α−1 − f )
r

r̄
= B(f ). (14)

Note that the left-most inequality in (14) follows since r/α ≤ f < 1 implies that rᾱ < r̄α and

f − r

α
+ r2ᾱ

r̄α2 = f − r

α

(
1 − rᾱ

r̄α

)
≥ f − f

(
1 − rᾱ

r̄α

)
= f

rᾱ

r̄α
.

Observing that r/α ≤ f α/r − 1 + r/α < 1 (by (13)), we have

Qm

(
f

α

r
− 1 + r

α

)
= βw̄Qm−1

(
f α/r − 1 + r/α − r/α

r̄/α

)
+ βw

= βw̄Qm−1

(
(f − r/α)α/r

r̄/α

)
+ βw,

which implies that (12) is equivalent to

β̄ + β(1 − 2w) + Qm

(
f

α

r
− 1 + r

α

)

≥ βw̄Qm−1

(
(f − y)

α2

r

)
+ βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
. (15)

Since w ≤ 1
2 and β̄ + β(1 − 2w) + 1 ≥ 2βw̄, (15) follows from the monotonicity of Qn(x) in

x and n if

f
α

r
− 1 + r

α
≥ max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
.

It remains to prove (15) for the following two subcases.

Subcase (iv.1):

f
α

r
− 1 + r

α
< max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
= (f − y)

α2

r
.

Let f ′ ≡ f ′(f, y) and y′ ≡ y′(f, y) be as defined in Lemma 4, meaning that 0 ≤ y′ ≤ f ′.
Since r ≥ 1

2 and α(f − y) < r/α, we have

f
α

r
− 1 + r

α
− f ′ = 1 − 2r

r
α(f − y) − 1 + 2

r

α
≥ 1 − 2r

r

r

α
− 1 + 2r

α
= 1

α
− 1 ≥ 0.
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By Lemma 4 and the induction hypothesis,

Qm

(
f

α

r
− 1 + r

α

)
≥ Qm(f ′)

≥ βw̄Qm−1(α(f ′ − y′)) + βwQm−1

(
α

(
f ′ + y′ r̄

r

))

= βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βwQm−1

(
(f − y)

α2

r

)

≥ βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
+ βw̄Qm−1

(
(f − y)

α2

r

)
− β(1 − 2w),

from which (15) (and, hence, (12) and (8)) follows.

Subcase (iv.2):

f
α

r
− 1 + r

α
< max

{
(f − y)

α2

r
,
α(f + yr̄/r) − r/α

r̄/α

}
= α(f + yr̄/r) − r/α

r̄/α
.

Let f ′ ≡ f ′(f, y) and y′ ≡ y′(f, y) be as defined in Lemma 5, meaning that 0 ≤ y′ ≤ f ′.
Since r ≥ 1

2 and α(f + yr̄/r) < 1 (by (10)), we have

f
α

r
− 1 + r

α
− f ′ =

(
1 − r

r̄

)
α

(
f + yr̄

r

)
− 1 + r

r̄α
≥ 1 − r

r̄
− 1 + r

r̄α
= rᾱ

r̄α
≥ 0.

By Lemma 5 and the induction hypothesis,

Qm

(
f

α

r
− 1 + r

α

)
≥ Qm(f ′)

≥ βw̄Qm−1(α(f ′ − y′)) + βwQm−1

(
α

(
f ′ + y′ r̄

r

))

= βw̄Qm−1

(
(f − y)

α2

r

)
+ βwQm−1

(
α(f + yr̄/r) − r/α

r̄/α

)

≥ βw̄Qm−1

(
(f − y)

α2

r

)
+ βw̄Qm−1

(
α(f + yr̄/r) − r/α

r̄/α

)
− β(1 − 2w),

from which (15) (and, hence, (12) and (8)) follows.

This completes the proof.
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