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Abstract. We prove that any strongly mixing action of a countable abelian group on a
probability space has higher-order mixing properties. This is achieved via the utilization
of R-limits, a notion of convergence which is based on the classical Ramsey theorem.
R-limits are intrinsically connected with a new combinatorial notion of largeness which
is similar to but has stronger properties than the classical notions of uniform density one
and IP∗. While the main goal of this paper is to establish a universal property of strongly
mixing actions of countable abelian groups, our results, when applied to Z-actions, offer
a new way of dealing with strongly mixing transformations. In particular, we obtain
several new characterizations of strong mixing for Z-actions, including a result which
can be viewed as the analogue of the weak mixing of all orders property established by
Furstenberg in the course of his proof of Szemerédi’s theorem. We also demonstrate the
versatility of R-limits by obtaining new characterizations of higher-order weak and mild
mixing for actions of countable abelian groups.
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1. Introduction
Let G = (G, +) be a countable discrete abelian group and let (Tg)g∈G be a
measure-preserving G-action on a separable probability space (X, A, μ). We will call
the quadruple (X, A, μ, (Tg)g∈G) a measure-preserving system. A measure-preserving
system (X, A, μ, (Tg)g∈G) is strongly mixing (or 2-mixing) if for any A0, A1 ∈ A, one has

lim
g→∞ μ(A0 ∩ TgA1) = μ(A0)μ(A1). (1.1)

The goal of this paper is to obtain new results about higher-order mixing properties of
strongly mixing actions of abelian groups. These results are motivated by the following
classical problem going back to Rohlin (who formulated it for Z-actions; see [27]).

ROHLIN’S PROBLEM. Assume that a measure-preserving system (X, A, μ, (Tg)g∈G)

is strongly mixing. Is it true that, given any � ≥ 2, the system (X, A, μ, (Tg)g∈G) is
(� + 1)-mixing? This would mean that for any A0, . . . , A� ∈ A and any sequences
(g

(1)
k )k∈N, . . . ,(g(�)

k )k∈N in G satisfying that,
(i) for any j ∈ {1, . . . , �},

lim
k→∞ g

(j)
k = ∞, (1.2)

(ii) and, for any distinct i, j ∈ {1, . . . , �},
lim

k→∞(g
(j)
k − g

(i)
k ) = ∞, (1.3)

one has

lim
k→∞ μ(A0 ∩ T

g
(1)
k

A1 ∩ · · · ∩ T
g

(�)
k

A�) =
�∏

j=0

μ(Aj ). (1.4)

While for Z-actions Rohlin’s problem is still unsolved, an example for Z2-actions, due
to Ledrappier, shows that, in general, mixing does not imply mixing of higher orders
[22] (the reader is referred to [30] for more Ledrappier-type examples for Z

d -actions).
More precisely, Ledrappier provided an example of a pair S, T of commuting mixing
automorphisms of a compact abelian group X such that, for some measurable set A ⊆ X,

μ(A ∩ T 2n

A ∩ S2n

A) 	−−−→
n→∞ μ3(A),

where μ is the normalized Haar measure on X. The analysis of Ledrappier’s example
undertaken in [1] reveals that Ledrappier’s system is ‘almost mixing of all orders’ in the
sense that, for any � ∈ N, if the sequences (g

(1)
k )k∈N, . . . ,(g(�)

k )k∈N in Z
2 satisfy (1.2) and

(1.3) and, in addition, the �-tuples (g
(1)
k , . . . , g

(�)
k ) avoid certain rather rarefied subsets

of Z2�, equation (1.4) holds for any measurable A0, . . . , A� ⊆ X (see [1, Theorem 3.3]).
The results obtained in [1] were extended in [2] to a rather large family of systems of
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algebraic origin. The notable classes of Z-actions for which it is known that 2-mixing
implies mixing of all orders include ergodic automorphisms of compact groups [27],
mixing transformations with singular spectrum [18], and mixing actions of finite rank [19,
28]. It is also known that some natural actions of various locally compact groups possess
the property of mixing of all orders (see, for example, [12, 24, 26, 29]).

In view of the results obtained in [1, 2], one might wonder if it could possibly
be true that, similarly to the case of Ledrappier’s system, any strongly mixing action
(X, A, μ, (Tg)g∈G) of an abelian group G is, in some sense, almost mixing of all orders.
The goal of this paper is to establish a result that can be interpreted as a positive answer to
this question.

At this point, we would like to mention that in the special case when G = Z, our main
theorem (Theorem 1.21 below) has corollaries (Theorem 1.4 and Corollary 1.12) which
provide new non-trivial characterizations of the notion of strong mixing in terms of the
largeness of sets of the form

Ra1,...,a�
ε (A0, . . . , A�) =

{
n ∈ Z

∣∣∣∣
∣∣∣∣μ(A0 ∩ T a1nA1 ∩ · · · ∩ T a�nA�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}

(1.5)

and

Rε(A0, . . . , A�)

=
{
(n1, . . . , n�) ∈ Z

�

∣∣∣∣
∣∣∣∣μ(A0 ∩ T n1A1 ∩ · · · ∩ T n�A�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}
.

(1.6)

So, if it turns out that sets of the form (1.5) and (1.6) are not always cofinite, our results
still imply that these sets are large in some natural sense, thereby establishing the validity
of the claim that strongly mixing Z-actions are almost mixing of all orders.

Let (X, A, μ, (Tg)g∈G) be a measure-preserving system. Let � ∈ N and ε > 0. For any
A0, . . . , A� ∈ A consider the set

Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}
. (1.7)

Clearly, the higher is the degree of multiple mixing of the system (X, A, μ, (Tg)g∈G), the
more massive should the set Rε(A0, . . . , A�) be as a subset of G�. While, for � = 1, the
strong mixing property of (X, A, μ, (Tg)g∈G) implies that the set Rε(A0, A1) is cofinite,
this is no longer the case for � ≥ 2 even if our system (X, A, μ, (Tg)g∈G) is mixing of all
orders. For example, for any 3-mixing system and any A ∈ A with μ(A) ∈ (0, 1), one has
that, if ε > 0 is small enough, the set

Rε(A, A, A) = {(g1, g2) ∈ G2 | |μ(A ∩ Tg1A ∩ Tg2A) − μ3(A)| < ε}
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can only have a finite intersection with any of the ‘lines’ {(g, g) | g ∈ G}, {(g, 0) | g ∈ G}
and {(0, g) | g ∈ G}.

In what follows we will show that, for any mixing system (X, A, μ, (Tg)g∈G), the
subsets of G� which are of the form Rε(A0, . . . , A�) possess a strong ubiquity property
which we will call �̃∗

� and which is quite a bit stronger than the properties of largeness
associated with weakly and mildly mixing systems. In other words, we will show that for
any strongly mixing system the complement of any set of the form Rε(A0, . . . , A�) is very
‘small’, giving meaning to the claim that (X, A, μ, (Tg)g∈G) is ‘almost strongly mixing’
of all orders. This will be achieved with the help of R-limits, a notion of convergence
which is based on a classical combinatorial result due to Ramsey and, as we will see, is
adequate for dealing with strongly mixing systems. (In particular, we will show that the �̃∗

�

property of the sets Rε(A0, . . . , A�) implies the strong mixing of (X, A, μ, (Tg)g∈G).)
We would like to remark that while the results that we obtain are not as sharp as those

obtained in [1, 2], they have the advantage of being applicable to any strongly mixing
system (X, A, μ, (Tg)g∈G), where G is a countable abelian group. Moreover, as will be
demonstrated in §6, the versatility of R-limits allows one to obtain new and recover
some old results pertaining to multiple recurrence properties of weakly and mildly mixing
actions of countable abelian groups. We would also like to mention that, as will be seen
in §3, the utilization of R-limits brings to life many new equivalent characterizations of
strong mixing (some of which bear a strong analogy with the familiar characterizations of
weak mixing via convergence in density and mild mixing via IP-convergence).

Before introducing the above-mentioned notion of largeness for subsets of G�, we define
a related and somewhat simpler notion in G.

Definition 1.1. Let m ∈ N, let (G, +) be a countable abelian group, and let E ⊆ G.
(1) We say that E is a �m set if it is of the form

{g(1)
k1

+ · · · + g
(m)
km

| k1 < · · · < km}
where, for each j ∈ {1, . . . , m}, (g

(j)
k )k∈N is a sequence in G which satisfies

limk→∞ g
(j)
k = ∞.

(2) We say that E is a �∗
m set if it has a non-trivial intersection with every �m set.

Remark 1.2
(a) Note that a subset of G is �∗

1 if and only if it is cofinite. On the other hand, for any
m ≥ 2, a �∗

m set does not need to be cofinite. Moreover, one can show that for each
m ≥ 2, there exists a �∗

m set which fails to be a �∗
n set for each n < m [8].

(b) The notion of �∗
m is similar to (but much stronger than) the notion of IP∗ which has

an intrinsic connection to mild mixing and which plays an instrumental role in IP
ergodic theory and in Ramsey theory (see, for example, [5, 14, 15]). The connection
between these two notions will be discussed in detail in §5.

Since the sets Rε(A0, . . . , A�) are, by definition, subsets of G�, the above-defined
notion of �∗

m has to be ‘upgraded’ to the subsets of the Cartesian power G� in order to
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be useful in the study of the asymptotic behavior of multiparameter expressions of the
form

μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�
A�), g1, . . . , g� ∈ G. (1.8)

However, it is worth noting that the family of �∗
m sets is quite adequate for dealing with

‘diagonal’ multicorrelation sequences. In the case G = Z, such diagonal sequences have
the form

μ(A0 ∩ T a1nA1 ∩ · · · ∩ T a�nA�), (1.9)

where a1, . . . , a� ∈ Z, and play an instrumental role in Furstenberg’s ergodic approach to
Szemerédi’s theorem [13, 14]. For example, our main result (Theorem 1.21), while dealing
with the multiparameter expressions (1.8), has strong corollaries of a ‘diagonal’ nature.
The following theorem (which is a version of Theorem 4.4 below) is an example of a new
result of this kind. Note the appearance of �∗

� sets in the formulation.

THEOREM 1.3. Let (G, +) be a countable abelian group, let (X, A, μ, (Tg)g∈G) be a
strongly mixing system, and let the homomorphisms φ1, . . . , φ� : G → G be such that, for
any j ∈ {1, . . . , �}, ker(φj ) is finite and, for any i 	= j , ker(φj − φi) is also finite. Then,
for any A0, . . . , A� ∈ A and any ε > 0, the set

Rφ1,...,φ�
ε (A0, . . . , A�) =

{
g ∈ G

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tφ1(g)A1 ∩ · · · ∩ Tφ�(g)A�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}

(1.10)

is �∗
� .

When G is finitely generated, Theorem 1.3 has a stronger version (Theorem 4.2), which
in the case G = Z can be formulated as follows.

THEOREM 1.4. Let (X, A, μ, T ) be a measure-preserving system, let � ∈ N, and let
a1, . . . , a� be distinct non-zero integers. Then T is strongly mixing if and only if, for any
A0, . . . , A� ∈ A and any ε > 0, the set

Ra1,...,a�
ε (A0, . . . , A�) =

{
n ∈ Z

∣∣∣∣
∣∣∣∣μ(A0 ∩ T a1nA1 ∩ · · · ∩ T a�nA�) −

�∏
j=0

μ(Aj )

∣∣∣∣< ε

}

(1.11)

is �∗
� .

For a related result see [7, Theorem 1.11]. See also [20].

Remark 1.5. One can view Theorem 1.4 as a strongly mixing analogue of two theorems
due to Furstenberg which pertain to weak and mild mixing (see Theorems 4.11 and
9.27 in [14], respectively). The first of these two theorems states that the assumption
that (X, A, μ, T ) is weakly mixing implies (and is implied by the fact) that the sets
R

a1,...,a�
ε (A0, . . . , A�) defined in (1.11) have uniform density one. The second one states

that the assumption that (X, A, μ, T ) is mildly mixing implies (and is implied by) the IP∗
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property of the sets R
a1,...,a�
ε (A0, . . . , A�). These theorems are instrumental for the proofs

of the ergodic Szemerédi [13] and IP-Szemerédi [15] theorems.

Note that, for � = 1, both diagonal (see (1.9)) and multiparameter (see (1.8)) multicorre-
lation sequences reduce to the classical expression μ(A0 ∩ TgA1). The following theorem
(which is a very special case of stronger results to be established in this paper) shows that,
even in the rather degenerated case � = 1, �∗

m sets provide a new characterization for the
notion of strong mixing for actions of abelian groups.

THEOREM 1.6. Let (G, +) be a countable abelian group and let (X, A, μ, (Tg)g∈G) be a
measure-preserving system. The following statements are equivalent.

(i) (Tg)g∈G is strongly mixing. In other words, for any ε > 0 and any A0, A1 ∈ A, the
set

Rε(A0, A1) = {g ∈ G | |μ(A0 ∩ TgA1) − μ(A0)μ(A1)| < ε}
is cofinite (that is, it is �∗

1 in G).
(ii) For any m ∈ N, any ε > 0 and any A0, A1 ∈ A, the set Rε(A0, A1) is �∗

m in G.
(iii) There exists an m ∈ N such that, for any ε > 0 and any A0, A1 ∈ A, the set

Rε(A0, A1) is �∗
m in G.

We next define the modified versions of �m and �∗
m sets which will be instrumental in

dealing with the multiple mixing properties of strongly mixing systems.

Definition 1.7. Let (G, +) be a countable abelian group and let (gk)k∈N and (hk)k∈N
be two sequences in G. We say that (gk)k∈N and (hk)k∈N grow apart if limk→∞
(gk − hk) = ∞.

Definition 1.8. Let (G, +) be a countable abelian group, let d ∈ N and let (gk)k∈N =
(gk,1, . . . , gk,d)k∈N be a sequence in Gd . We say that (gk)k∈N is non-degenerated if, for
each j ∈ {1, . . . , d},

lim
k→∞ gk,j = ∞.

Definition 1.9. Let d , m ∈ N and let (G, +) be a countable abelian group.
(1) We say that E ⊆ Gd is a �̃m set if it is of the form

{g(1)
k1

+ · · · + g(m)
km

| k1 < · · · < km}
where, for each j ∈ {1, . . . , m}, (g(j)

k )k∈N = (g
(j)

k,1 , . . . , g
(j)
k,d )k∈N is a non- degener-

ated sequence in Gd and for any distinct t , t ′ ∈ {1, . . . , d} the sequences (g
(j)
k,t )k∈N

and (g
(j)

k,t ′)k∈N grow apart. (Note that if d = 1, then E ⊆ G is a �m set if and only if
it is a �̃m set.)

(2) We say that E ⊆ Gd is a �̃∗
m set if it has a non-trivial intersection with every �̃m set

in Gd .

Remark 1.10. The main difference between �̃m sets and �m sets is that �̃m sets are subsets
of Cartesian powers of G and have a built-in feature which guarantees that, asymptotically,
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the elements of �̃m sets stay away from ‘degenerated’ subsets such as the following subsets
of G3: {(g, g, g) | g ∈ G}, {(g, 2g, 0) | g ∈ G} and {(g, g, h) | g, h ∈ G}.

The following theorem, which is a corollary of Theorem 1.21 below, demonstrates the
relevance of �̃m sets for dealing with mixing of higher orders.

THEOREM 1.11. Let (G, +) be a countable abelian group and let (X, A, μ, (Tg)g∈G) be
a measure-preserving system. The following statements are equivalent.

(i) (Tg)g∈G is strongly mixing.
(ii) For any � ∈ N, any A0, . . . , A� ∈ A and any ε > 0, the set

Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}

is �̃∗
� in G�.

(iii) There exists an � ∈ N such that, for any A0, . . . , A� ∈ A and any ε > 0, the set
Rε(A0, . . . , A�) is �̃∗

� in G�.

We take the liberty of stating explicitly the following special case of Theorem 1.11 to
stress the applicability of the apparatus developed in this paper to Z-actions.

COROLLARY 1.12. Let (X, A, μ, T ) be a measure-preserving system. The following
statements are equivalent.

(i) T is strongly mixing.
(ii) For any � ∈ N, any A0, . . . , A� ∈ A and any ε > 0, the set

Rε(A0, . . . , A�)

=
{
(n1, . . . , n�) ∈ Z

�

∣∣∣∣
∣∣∣∣μ(A0 ∩ T n1A1 ∩ · · · ∩ T n�A�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}

is �̃∗
� in Z

�.
(iii) There exists an � ∈ N such that, for any A0, . . . , A� ∈ A and any ε > 0, the set

Rε(A0, . . . , A�) is �̃∗
� in Z

�.

We introduce now the notion of convergence that is utilized in the proof of Theorem 1.11
and is based on the classical Ramsey theorem (which, for convenience of the reader, we
state below). We remark that variants of this notion of convergence can also be found in
[10, 11, 21, 23, 25, 31]. Given m ∈ N and an infinite set S ⊆ N, we denote by S(m) the
family of all m-element subsets of S. When writing {k1, . . . , km} ∈ S(m), we will always
assume that k1 < · · · < km.

THEOREM 1.13. (Ramsey’s theorem) Let r , m ∈ N and let C1, . . . , Cr ⊆ N
(m) be such

that
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N
(m) =

r⋃
j=1

Cj . (1.12)

Then there exist j0 ∈ {1, . . . , r} and an infinite subset S ⊆ N satisfying S(m) ⊆ Cj0 .

Remark 1.14. It is easy to see that Theorem 1.13 can be formulated in the following
equivalent form that will be frequently used in the sequel.

Let r , m ∈ N, let P be an infinite subset of N and let C1, . . . , Cr ⊆ N
(m) be such that

P (m) ⊆
r⋃

j=1

Cj . (1.13)

Then there exist j0 ∈ {1, . . . , r} and an infinite subset S ⊆ P satisfying S(m) ⊆ Cj0 .

Definition 1.15. Let m ∈ N, let (X, d) be a compact metric space, let x ∈ X, let (xα)α∈N(m)

be an N
(m)-sequence in X, and let S be an infinite subset of N. We write

R-lim
α∈S(m)

xα = x (1.14)

if, for every ε > 0, there exists α0 ∈ N
(m) such that, for any α ∈ S(m) satisfying

min α > max α0, one has

d(xα , x) < ε.

The following theorem can be viewed as a version of Bolzano–Weierstrass theorem for
R-convergence. It follows from Theorem 1.13 with the help of a diagonalization argument.

THEOREM 1.16. Let m ∈ N, let (X, d) be a compact metric space and let (xα)α∈N(m) be an
N

(m)-sequence in X. Then, for any infinite set S1 ⊆ N, there exist an x ∈ X and an infinite
set S ⊆ S1 such that

R-lim
α∈S(m)

xα = x. (1.15)

Remark 1.17. Let (xα)α∈N(m) be an N
(m)-sequence in a compact metric space (X, d). The

above-introduced R-limits have an intrinsic connection with iterated limits of the form

lim
j1→∞ · · · lim

jm→∞ x{kj1 ,...,kjm }. (1.16)

The goal of this extended remark is to clarify this connection.
(a) Using the compactness of X, one can show with the help of a diagonalization

argument that for any increasing sequence (kj )j∈N, there exists a subsequence
(k′

j )j∈N for which all the limits in (1.16) exist.
(b) By Theorem 1.16, there exists an increasing sequence of natural numbers (kj )j∈N so

that, for S = {kj | j ∈ N}, R-limα∈S(m)xα exists. Let (k′
j )j∈N be the subsequence of

(kj )j∈N which is guaranteed to exist by (a). Letting S1 = {k′
j | j ∈ N}, we have

R-lim
α∈S

(m)
1

xα = lim
j1→∞ · · · lim

jm→∞ x{k′
j1

,...,k′
jm

}. (1.17)
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(c) When X = {1, . . . , r}, one can use (a) to prove Theorem 1.13. Let r , m ∈ N and
consider a partition N

(m) = ⋃r
j=1 Cj . Let (xα)α∈N(m) be defined by xα = j if

α ∈ Cj . For some increasing sequence (kj )j∈N in N there exists a j0 ∈ {1, . . . , r}
such that

lim
j1→∞ · · · lim

jm→∞ x{kj1 ,...,kjm } = j0.

By using a diagonalization argument, we obtain a subsequence (k′
j )j∈N of

(kj )j∈N with the property that x{k′
j1

,...,k′
jm

} = j0 for any j1 < · · · < jm. Now let

S = {k′
j | j ∈ N}. It follows that S(m) ⊆ Cj0 .

Before formulating our main result, we need two more definitions.

Definition 1.18. Let m ∈ N and let (G, +) be a countable abelian group. For any sequence
(gk)k∈N = (gk,1, . . . , gk,m)k∈N and any α = {k1, . . . , km} ∈ N

(m) we let

gα =
m∑

j=1

gkj ,j = gk1,1 + gk2,2 + · · · + gkm,m, (1.18)

where k1 < · · · < km.

Definition 1.19. Let m ∈ N, let (G, +) be a countable abelian group and let

(gk)k∈N = (gk,1, . . . , gk,m)k∈N and (hk)k∈N = (hk,1, . . . , hk,m)k∈N

be sequences in Gm. We say that (gk)k∈N and (hk)k∈N are essentially distinct if, for each
t ∈ {1, . . . , m}, (gk,t )k∈N and (hk,t )k∈N grow apart (that is, limk→∞(gk,t − hk,t ) = ∞).

Remark 1.20. The following observation indicates the natural connection between
non-degenerated, essentially distinct sequences in Gm and �̃m sets. Let d , m ∈ N and
let (G, +) be a countable abelian group. Then for any non-degenerated and essentially
distinct sequences

(g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)
k,m)k∈N, j ∈ {1, . . . , d},

in Gm, the set

{(g(1)
α , . . . , g(d)

α ) | α ∈ N
(m)}

= {(g(1)
k1,1 + · · · + g

(1)
km,m, . . . , g

(d)
k1,1 + · · · + g

(d)
km,m) | k1 < · · · < km}

= {(g(1)
k1,1, . . . , g

(d)
k1,1) + · · · + (g

(1)
km,m, . . . , g

(d)
km,m) | k1 < · · · < km}

is a �̃m set in Gd .

We are now ready to formulate our main result (it appears as Theorem 3.1 in §3).
It incorporates some of the characterizations of strongly mixing systems which were
mentioned above.
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THEOREM 1.21. Let � ∈ N, let (G, +) be a countable abelian group and let
(X, A, μ, (Tg)g∈G) be a measure-preserving system. The following statements are
equivalent.

(i) (Tg)g∈G is strongly mixing.
(ii) For any non-degenerated and essentially distinct sequences

(g(j)
k )k∈N, j ∈ {1, . . . , �},

in G(�), there exists an infinite S ⊆ N such that, for any A0, . . . , A� ∈ A,

R-lim
α∈S(�)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=0

μ(Aj ). (1.19)

More explicitly, if

(g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)
k,� )k∈N,

for each j ∈ {1, . . . , �}, then

R-lim
{k1,...,k�}∈S(�)

μ(A0 ∩ T
g

(1)
k1,1+···+g

(1)
k� ,�

A1 ∩ · · · ∩ T
g

(�)
k1,1+···+g

(�)
k� ,�

A�) =
�∏

j=0

μ(Aj ).

(iii) For any ε > 0 and any A0, . . . , A� ∈ A, the set

Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}

is �̃∗
� in G�.

(iv) For any ε > 0 and any A0, A1 ∈ A, the set Rε(A0, A1) is �∗
� in G.

The structure of this paper is as follows. In §2 we review some basic facts about
couplings of probability spaces and establish some auxiliary results which will be needed
in §3 and §6. In §3 we prove our main result, Theorem 1.21 (=Theorem 3.1). In §4
we derive some diagonal results for strongly mixing systems. In §5 we describe the
largeness properties of �̃∗

m sets and, more specifically, of the sets Rε(A0, . . . , A�). We
also juxtapose the properties of �̃∗

m sets with those of ĨP
∗

sets and sets of uniform density
one which are characteristic, correspondingly, of mild and weak mixing. In §6 we utilize
the methods developed in §2 and §5 to obtain analogues of Theorem 1.21 for mildly and
weakly mixing systems.

Remark 1.22. Throughout this paper, we will be tacitly assuming that the measure-
preserving systems (X, A, μ, (Tg)g∈G) that we are working with are regular, meaning that
the underlying probability space (X, A, μ) is regular (that is, X is a compact metric space
and A = Borel(X)). Note that this assumption can be made without loss of generality
since every separable measure-preserving system is equivalent to a regular one (see, for
instance, [14, Proposition 5.3]).
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2. Some auxiliary facts involving couplings and R-limits
In this section we review some basic facts about couplings of probability spaces and
establish some auxiliary results which will be needed in §3 and §6.

Definition 2.1. Let N ∈ N. Given regular probability spaces Xj = (Xj , Aj , μj ), j ∈
{1, . . . , N}, a coupling of X1, . . . , XN is a Borel probability measure λ defined on the
measurable space

( N∏
j=1

Xj ,
N⊗

j=1

Aj

)

having the property that, for any j ∈ {1, . . . , N} and any A ∈ Aj , λ(π−1
j (A)) = μj (A),

where πj :
∏N

i=1 Xi → Xj is the projection map onto the jth coordinate of
∏N

j=1 Xj .
(A coupling is just a joining of the trivial measure-preserving systems (Xj , Aj , μj , Idj ),
j ∈ {1, . . . , N}, where Idj : Xj → Xj denotes the identity map on Xj .)

We will let C(X1, . . . , XN) denote the set of all couplings of X1, . . . , XN .
C(X1, . . . , XN) is a closed subspace of the set of all probability Borel measures on∏N

j=1 Xj endowed with the weak-* topology. With this topology, C(X1, . . . , XN) is a
compact metrizable space. Given a sequence (λk)k∈N in C(X1, . . . , XN),

λk −−−→
k→∞ λ

if and only if, for any A1 ∈ A1, . . . ,AN ∈ AN ,

λk(A1 × · · · × AN) −−−→
k→∞ λ(A1 × · · · × AN).

The following proposition follows immediately from the compactness of C(X1, . . . , XN)

and Theorem 1.16.

PROPOSITION 2.2. Let Xj = (Xj , Aj , μj ), j ∈ {1, . . . , N}, be regular probability
spaces. For any m ∈ N, any infinite S ⊆ N and any N

(m)-sequence (λα)α∈N(m) in
C(X1, . . . , XN),

R-lim
α∈S(m)

λα = λ

if and only if, for any A1 ∈ A1, . . . ,AN ∈ AN ,

R-lim
α∈S(m)

λα(A1 × · · · × AN) = λ(A1 × · · · × AN).

Our next goal is to establish a useful criterion for mixing of higher orders
(Proposition 2.9). First, we need a definition and two lemmas.

Definition 2.3. Let (Z, D, λ) be a regular probability space and let, for each k ∈ N, Tk :
Z → Z be a measure-preserving transformation. The sequence (Tk)k∈N has the mixing
property if, for every A0, A1 ∈ D,

lim
k→∞ λ(A0 ∩ T −1

k A1) = λ(A0)λ(A1).
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Remark 2.4
(a) If each of the transformations Tk , k ∈ N, is invertible, (Tk)k∈N has the mixing

property if and only if (T −1
k )k∈N has the mixing property.

(b) (Tk)k∈N has the mixing property if and only if, for any f , g ∈ L2(μ),

lim
k→∞

∫
X

f Tkg dμ =
∫

X

f dμ

∫
X

g dμ.

LEMMA 2.5. Let X = (X, A, μ) and Y = (Y , B, ν) be regular probability spaces. For
each k ∈ N, let Tk : Y → Y be a measure-preserving transformation, and assume that the
sequence (Tk)k∈N has the mixing property. Let λ0 be a coupling of X and Y. Assume that
λ is a probability measure on A ⊗ B such that, for any A ∈ A and B ∈ B, one has

lim
k→∞ λ0((Id × T −1

k )(A × B)) = λ(A × B). (2.1)

Then λ = μ ⊗ ν.

Proof. Note that it suffices to show that, for any A ∈ A and B ∈ B,

λ(A × B) = μ(A)ν(B). (2.2)

Fix A ∈ A and B ∈ B. Since 1A ⊗ 1B = (1A ⊗ 1Y )(1X ⊗ 1B), we have by (2.1) that∫
X×Y

(1A ⊗ 1Y )(1X ⊗ 1B) dλ = λ(A × B)

= lim
k→∞ λ0((Id × T −1

k )(A × B))

= lim
k→∞

∫
X×Y

(Id × Tk)(1A ⊗ 1Y )(Id × Tk)(1X ⊗ 1B) dλ0. (2.3)

Note that (Id × Tk)(1A ⊗ 1Y ) = 1A ⊗ 1Y and, if we regard B as a sub-σ -algebra of
A ⊗ B, λ0|B = ν. The rightmost expression in (2.3) equals

lim
k→∞

∫
X×Y

(1A ⊗ 1Y )(1X ⊗ Tk1B) dλ0

= lim
k→∞

∫
X×Y

E(1A ⊗ 1Y | B)(1X ⊗ Tk1B) dλ0

= lim
k→∞

∫
Y

E(1A ⊗ 1Y | B)Tk1B dν, (2.4)

where E(1A ⊗ 1Y | B) denotes the conditional expectation of 1A ⊗ 1Y with respect to B.
But (Tk)k∈N has the mixing property, so the rightmost expression in (2.4) equals∫

Y

E(1A ⊗ 1Y | B) dν

∫
Y

1B dν = λ(A × B). (2.5)

By noting that∫
Y

E(1A ⊗ 1Y | B) dν =
∫

X×Y

(1A ⊗ 1Y ) dλ0 =
∫

X

1A dμ,

we have that (2.5) equals μ(A)ν(B).

https://doi.org/10.1017/etds.2023.63 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.63


Strongly mixing systems are almost strongly mixing of all orders 1501

LEMMA 2.6. Let m ∈ N, let (X, d) be a compact metric space, and let (xα)α∈N(m+1) be
an N

(m+1)-sequence in X. Assume that there exists an infinite S ⊆ N with the following
properties: (a) for some x ∈ X, R-limα∈S(m+1)xα = x; (b) for each k ∈ S, there exists
yk ∈ X such that

R-lim
α∈S(m), k<min α

x{k}∪α = yk .

Then

lim
k→∞, k∈S

R-lim
α∈S(m), k<min α

x{k}∪α = lim
k→∞, k∈S

yk = R-lim
α∈S(m+1)

xα .

Proof. Let ε > 0. Note that (1) there exists k0 ∈ S such that, for any α ∈ S(m+1) with
k0 ≤ min α, d(xα , x) < ε/2 and (2) for any k ∈ S, there exists an αk ∈ S(m) such
that, for any α ∈ S(m) with min α > max(αk ∪ {k}), d(x{k}∪α , yk) < ε/2. It follows that,
for any k ∈ S with k ≥ k0 and any α ∈ S(m) with min α > max(αk ∪ {k}), d(yk , x) <

d(x{k}∪α , yk) + d(x{k}∪α , x) < ε. Since ε > 0 was arbitrary,

lim
k→∞, k∈S

yk = x = R-lim
α∈S(m+1)

xα .

Remark 2.7. Let m ∈ N and let (xα)α∈N(m+1) be an N
(m+1)-sequence in a compact

metric space X. By applying Theorem 1.16 first to the N
(m)-sequence (ωα)α∈N(m) =

((x{k}∪α)k∈N)α∈N(m) in XN (here x{k}∪α = x0 for some fixed x0 ∈ X, whenever k ≥ min α),
and then to the N

(m+1)-sequence (xα)α∈N(m+1) , we obtain an infinite set S ⊆ N for which
(a) and (b) in the statement of Lemma 2.6 hold. A similar reasoning shows that one can
pick S to be a subset of any prescribed in advance infinite set S1 ⊆ N.

Remark 2.8. In Remark 1.17(c), we indicated how the utilization of iterated limits

lim
j1→∞ · · · lim

jm→∞ x{kj1 ,...,kjm }

leads to a proof of Ramsey’s theorem (Theorem 1.13). In this remark, we show that
Lemma 2.6 and Remark 2.7 (which are corollaries of Ramsey’s Theorem) imply that, for
any infinite set S1 ⊆ N and any N

(m)-sequence (xα)α∈N(m) in a compact metric space X,
there exists an increasing sequence (kj )j∈N in S1 such that, for S = {kj | j ∈ N}, each of
the limits in the formula

R-lim
α∈S(m)

xα = lim
j1→∞ · · · lim

jm→∞ x{kj1 ,...,kjm }

exists. The proof is by induction on m ∈ N. When m = 1, the result follows from the
compactness of X. Now let m > 1 and let S1 be an infinite subset of N. By Remark 2.7
and Lemma 2.6, there exists an increasing sequence (kj )j∈N in S1 such that, for
S = {kj | j ∈ N},

R-lim
α∈S(m)

xα = lim
j→∞ R-lim

α∈S(m−1)
x{kj }∪α .

The result now follows from the inductive hypothesis applied to the infinite set S ⊆ N and
the N

(m−1)-sequence ((x{k}∪α)k∈N)α∈N(m−1) in the compact metric space XN.
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The following proposition provides a useful technical tool for establishing higher-order
mixing properties of measure-preserving systems. It will be instrumental in §3 for dealing
with strongly mixing systems and in §6 where we will focus on mildly and weakly mixing
systems.

PROPOSITION 2.9. Let (G, +) be a countable abelian group, let (X, A, μ, (Tg)g∈G) be a
measure-preserving system, let � ∈ N and, for each j ∈ {1, . . . , �}, let

(g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)

k,� )k∈N

be a sequence in G�. Suppose that, for any t ∈ {1, . . . , �} and any j ∈ {1, . . . , �},
(T

g
(j)
k,t

)k∈N has the mixing property and that, for any t and any i 	= j , (T
(g

(j)
k,t −g

(i)
k,t )

)k∈N
also has the mixing property. Then, there exists an infinite set S ⊆ N such that, for any
A0, . . . , A� ∈ A,

R-lim
α∈S(�)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=0

μ(Aj ).

Proof. The proof is by induction on �. When � = 1, it follows from our hypothesis that,
for any A0, A1 ∈ A,

R-lim
α∈N(1)

μ(A0 ∩ T
g

(1)
α

A1) = lim
k→∞ μ(A0 ∩ T

g
(1)
k,1

A1) = μ(A0)μ(A1).

Now fix � ∈ N and suppose that Proposition 2.9 holds for any �′ ≤ �. Let X = (X, A, μ)

and let μ� ∈ C = C(X, . . . , X︸ ︷︷ ︸
�+2 times

) be defined by μ(A0 × · · · × A�+1) = μ(A0 ∩ · · · ∩

A�+1). By the inductive hypothesis, there exists an infinite S ⊆ N such that, for any
A1, . . . , A�+1 ∈ A,

R-lim
{j1,...,j�}∈S(�)

μ�(X × T
g

(1)
j1,2+···+g

(1)
j� ,�+1

A1 × · · · × T
g

(�+1)
j1,2 +···+g

(�+1)
j� ,�+1

A�+1)

= R-lim
{j1,...,j�}∈S(�)

μ(X ∩ T
g

(1)
j1,2+···+g

(1)
j� ,�+1

A1 ∩ · · · ∩ T
g

(�+1)
j1,2 +···+g

(�+1)
j� ,�+1

A�+1)

= R-lim
{j1,...,j�}∈S(�)

μ(T
g

(1)
j1,2+···+g

(1)
j� ,�+1

A1 ∩ · · · ∩ T
g

(�+1)
j1,2 +···+g

(�+1)
j� ,�+1

A�+1)

= R-lim
{j1,...,j�}∈S(�)

μ(A1 ∩ T
(g

(2)
j1,2−g

(1)
j1,2)+···+(g

(2)
j� ,�+1−g

(1)
j� ,�+1)

A2 ∩ · · · ∩ T
(g

(�+1)
j1,2 −g

(1)
j1,2)+···+(g

(�+1)
j� ,�+1−g

(1)
j� ,�+1)

A�+1)

=
�+1∏
j=1

μ(Aj ). (2.6)

By Theorem 1.16 and the compactness of C, there exist an infinite set S0 ⊆ S and λ0 ∈ C
such that, for any A0, . . . , A�+1 ∈ A,

R-lim
{j1,...,j�}∈S

(�)
0

μ�(A0 × T
g

(1)
j1,2+···+g

(1)
j� ,�+1

A1 × · · · × T
g

(�+1)
j1,2 +···+g

(�+1)
j� ,�+1

A�+1) = λ0

( �+1∏
j=0

Aj

)
.

(2.7)
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Likewise, there exist an infinite set S1 ⊆ S0 and λ ∈ C such that, for any A0, . . . ,
A�+1 ∈ A,

R-lim
{j1,...,j�+1}∈S

(�+1)
1

μ�(A0 × T
g

(1)
j1,1+···+g

(1)
j�+1,�+1

A1 × · · · × T
g

(�+1)
j1,1 +···+g

(�+1)
j�+1,�+1

A�+1)

= λ

( �+1∏
j=0

Aj

)
. (2.8)

Let Y = (
∏�+1

j=1 X,
⊗�+1

j=1 A,
⊗�+1

j=1 μ). Note that (2.6) holds if we substitute S1 for S and
(2.7) holds when we substitute S1 for S0. Performing this substitution and applying first
(2.7) and then (2.6) to A1, . . . , A�+1 ∈ A, we have

λ0(X × A1 × · · · × A�+1) =
�+1∏
j=1

μ(Aj ).

Also, trivially, for any A0 ∈ A,

λ0(A0 × X × · · · × X) = μ(A0).

Thus, λ0 is a coupling of X and Y.
Using formula (2.7), Lemma 2.6 and applying (2.8) to the set S1 = {kj | j ∈ N} (where

we assume that (kj )j∈N is an increasing sequence), we have

lim
t→∞ λ0(A0 × T

g
(1)
kt ,1

A1 × · · · × T
g

(�+1)
kt ,1

A�+1)

= lim
t→∞ R-lim

{j2,...,j�+1}∈S
(�)
1

μ�(A0 × T
g

(1)
j2,2+···+g

(1)
j�+1,�+1

(T
g

(1)
kt ,1

A1)

× · · · × T
g

(�+1)
j2,2 +···+g

(�+1)
j�+1,�+1

(T
g

(�+1)
kt ,1

A�+1))

= lim
t→∞ R-lim

{j2,...,j�+1}∈S
(�)
1 , kt<j2

μ�(A0 × T
g

(1)
kt ,1+g

(1)
j2,2+···+g

(1)
j�+1,�+1

A1

× · · · × T
g

(�+1)
kt ,1 +g

(�+1)
j2,2 +···+g

(�+1)
j�+1,�+1

A�+1)

= R-lim
{j1,...,j�+1}∈S

(�+1)
1

μ�(A0 × T
g

(1)
j1,1+···+g

(1)
j�+1,�+1

A1 × · · · × T
g

(�+1)
j1,1 +···+g

(�+1)
j�+1,�+1

A�+1)

= λ

( �+1∏
j=0

Aj

)
, (2.9)

For each j ∈ N, let Tj = T
g

(1)
kj ,1

× · · · × T
g

(�+1)
kj ,1

. Note that, for any increasing sequence

(ts)s∈N in N, there exist a subsequence (t ′s)s∈N and a measure λ′ ∈ C(X, Y), such that, for
any A ∈ A and any B ∈ ⊗�+1

j=1 A, lims→∞ λ0(A × Tt ′s B) = λ′(A × B). By (2.9), λ′ = λ

and hence, for any A ∈ A and any B ∈ ⊗�+1
j=1 A, limj→∞ λ0(A × TjB) = λ(A × B).

By Lemma 2.5 applied to X = (X, A, μ), Y = (
∏�+1

j=1 X,
⊗�+1

j=1 A,
⊗�+1

j=1 μ) and the

sequence of measure-preserving transformations (T −1
g

(1)
kj ,1

× · · · × T −1
g

(�+1)
kj ,1

)j∈N, we have that

λ = ⊗�+1
j=0 μ. It follows that, for any A0, . . . , A�+1 ∈ A,
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R-lim
α∈S

(�+1)
1

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�+1)
α

A�+1)

= R-lim
α∈S

(�+1)
1

μ�(A0 × T
g

(1)
α

A1 × · · · × T
g

(�+1)
α

A�+1) =
�+1∏
j=0

μ(Aj ),

completing the proof.

3. Strongly mixing systems are ‘almost’ strongly mixing of all orders
In this section we will prove the following theorem (Theorem 1.21 from the Introduction)
which is the main result of this paper.

THEOREM 3.1. Let � ∈ N and let (X, A, μ, (Tg)g∈G) be a measure-preserving system.
The following statements are equivalent.

(i) (Tg)g∈G is strongly mixing.
(ii) For any � non-degenerated and essentially distinct sequences

(g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)

k,� )k∈N, j ∈ {1, . . . , �},
in G�, there exists an infinite S ⊆ N such that, for any A0, . . . , A� ∈ A,

R-lim
α∈S(�)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=0

μ(Aj ). (3.1)

(iii) For any ε > 0 and any A0, . . . , A� ∈ A, the set

Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}

is �̃∗
� in G�.

(iv) For any ε > 0 and any A0, A1 ∈ A, the set Rε(A0, A1) is �∗
� in G.

Proof. (i) �⇒ (ii): Note that since (Tg)g∈G is strongly mixing, for any t ∈ {1, . . . , �} and
any j ∈ {1, . . . , �}, (T

g
(j)
k,t

)k∈N has the mixing property and that for any t and any i 	= j ,

(T
(g

(j)
k,t −g

(i)
k,t )

)k∈N also has the mixing property. Thus (ii) follows from Proposition 2.9.

(ii) �⇒ (iii): By (ii), we have that, for any ε > 0, any A0, . . . , , A� ∈ A and any �

non-degenerated and essentially distinct sequences

(g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)
k,� )k∈N, j ∈ {1, . . . , �},

in G�, there exists an α ∈ N
(�) such that

(g(1)
α , . . . , g(�)

α ) ∈ Rε(A0, . . . , A�),

which implies that Rε(A0, . . . , A�) is �̃∗
� .
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(iii) �⇒ (iv): Let ε > 0, let A0, A1 ∈ A and let (g(1)
k )k∈N = (g

(1)
k,1 , . . . , g

(1)
k,�)k∈N be a

non-degenerated sequence in G�. In order to prove that Rε(A0, A1) is �∗
� , it suffices to

show that for some α ∈ N
(�), g

(1)
α ∈ Rε(A0, A1).

Note that, for any sequence (h
(1)
k )k∈N in G with limk→∞ h

(1)
k = ∞, one can pick

sequences (h
(2)
k )k∈N, . . . ,(h(�)

k )k∈N in G with the property that, for any distinct i, j ∈
{1, . . . , �},

lim
k→∞ h

(j)
k = ∞ and lim

k→∞(h
(j)
k − h

(i)
k ) = ∞.

Hence, one can find non-degenerated sequences (g(j)
k )k∈N in G�, j ∈ {2, . . . , �}, such that

(g(1)
k )k∈N, . . . ,(g(�)

k )k∈N are essentially distinct. By (iii), there exists an α ∈ N
(�) for which

(g(1)
α , . . . , g(�)

α ) ∈ Rε(A0, A1, X, . . . , X︸ ︷︷ ︸
�−1 times

).

This implies that g
(1)
α ∈ Rε(A0, A1).

(iv) �⇒ (i): We will show that, for any ξ , η ∈ L2
0(μ) = {f ∈ L2(μ) | ∫

X
f dμ = 0},

limg→∞〈Tgξ , η〉 = 0. To do this, it suffices to prove that for any sequence (gk)k∈N in G
with limk→∞ gk = ∞, there exists an increasing sequence (kj )j∈N in N such that, for any
ξ , η ∈ L2

0(μ),

lim
j→∞〈Tgkj

ξ , η〉 = 0. (3.2)

Let (gk)k∈N ⊆ G with limk→∞ gk = ∞. Let (gk)k∈N = (gk , . . . , gk︸ ︷︷ ︸
� times

)k∈N (note that

(gk)k∈N is a non-degenerated sequence in G�). We claim that there exist an increasing
sequence (kj )j∈N in N and a bounded linear operator V : L2

0(μ) → L2
0(μ) such that, if

we set S = {kj | j ∈ N}, the following assertions hold.
(1) For any ξ , η ∈ L2

0(μ),

〈V ξ , η〉 = lim
j→∞〈Tgkj

ξ , η〉. (3.3)

(2) For any A0, A1 ∈ A, there exists a real number rA0,A1 such that

R-lim
α∈S(�)

μ(A0 ∩ T−gαA1) = rA0,A1 . (3.4)

Let D be a countable dense subset of L2
0(μ). By a diagonalization argument, one obtains

an increasing sequence (k′
j )j∈N for which the limit in (3.3) exists for any ξ , η ∈ D.

Diagonalizing once more, we can pick a subsequence (kj )j∈N of (k′
j )j∈N for which (3.4)

holds for any A0, A1 from a countable dense subset of A. It follows (by a standard
approximation argument) that all the limits appearing in (3.3) and (3.4) exist for any
ξ , η ∈ L2

0(μ) and any A0, A1 ∈ A. Notice that (3.3) holds for a unique linear operator V.
Since

sup
‖ξ‖≤1

‖V ξ‖ ≤ sup
g∈G

sup
‖ξ‖≤1

‖Tgξ‖ = 1,

we have that V is norm-bounded.
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We claim that V � = 0. To see this, note that, by (iv), for every A0, A1 ∈ A, rA0,A1 =
μ(A0)μ(A1) (otherwise we would be able to find an ε > 0 for which the set Rε(A0, A1) is
not �∗

� ). Since the linear combinations of indicator functions are dense in L2(μ), it follows
that, for any f1, f2 ∈ L2(μ),

R-lim
α∈S(�)

∫
X

f1Tgαf2 dμ =
∫

X

f1 dμ

∫
X

f2 dμ. (3.5)

Observe that, by (3.3), TgV = V Tg for all g ∈ G. Thus, all the limits appearing in the
expression

lim
j1→∞ · · · lim

j�→∞〈T(gkj1
+···+gkj�

)ξ , η〉

exist for any ξ , η ∈ L2
0(μ). Combining (3.3) and (3.5), we obtain that, for any ξ , η ∈

L2
0(μ),

0 = R-lim
α∈S(�)

∫
X

ηTgαξ dμ = R-lim
α∈S(�)

〈Tgαξ , η〉
= lim

j1→∞ · · · lim
j�→∞〈T(gkj1

+···+gkj�
)ξ , η〉 = 〈V �ξ , η〉,

proving our claim.
It follows that in order to prove that (3.2) holds, it is enough to show that L2

0(μ) =
Ker(V �) ⊆ Ker(V ). To do this, we will first show that V is a normal operator. Indeed, for
any ξ , η ∈ L2

0(μ),

〈V ∗ξ , η〉 = 〈V η, ξ〉 = lim
j→∞ 〈Tgkj

η, ξ〉 = lim
j→∞〈T−gkj

ξ , η〉

and, hence,

V ∗V ξ = lim
j→∞ T−gkj

V ξ = lim
j→∞ V T−gkj

ξ = V V ∗ξ .

So, for any ξ ∈ L2
0(μ),

‖V ξ‖2 = 〈V ξ , V ξ〉 = 〈V ∗V ξ , ξ〉 = 〈V ∗ξ , V ∗ξ〉 = ‖V ∗ξ‖2. (3.6)

Now take t ∈ N, η ∈ L2
0(μ), and set ξ = V t−1η. Suppose that η 	∈ Ker(V t ). Then ξ 	∈

Ker(V ) and, by (3.6), 〈V ∗V ξ , ξ〉 	= 0. Applying (3.6) to V ξ , we obtain ‖V 2ξ‖2 =
‖V ∗V ξ‖2. So, since 〈V ∗V ξ , ξ〉 	= 0, V t+1η = V 2ξ 	= 0. This proves that, for each t ∈ N,
if η 	∈ Ker(V t ), then η 	∈ Ker(V t+1). So, L2

0(μ) = Ker(V �) ⊆ Ker(V ) and, hence, for any
ξ , η ∈ L2

0(μ),

0 = 〈V ξ , η〉 = lim
j→∞〈Tgkj

ξ , η〉.

4. Some ‘diagonal’ results for strongly mixing systems
In order to give the reader the flavor of the main theme of this section, we start by
formulating a slightly enhanced form of Theorem 1.4. (This theorem is a rather special
case of the results of ‘diagonal’ nature to be proved in this section.)
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PROPOSITION 4.1. Let (X, A, μ, T ) be a measure-preserving system and let a1, . . . , a�

be non-zero distinct integers. Then T is strongly mixing if and only if, for any A0, . . . , A� ∈
A and any ε > 0, the set

{
n ∈ Z

∣∣∣∣
∣∣∣∣μ(A0 ∩ T a1nA1 ∩ · · · ∩ T a�nA�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}

is �∗
� .

We move now to formulations of more general ‘diagonal’ results.
Let (G, +) be a countable abelian group, let (X,A, μ, (Tg)g∈G) be a measure-preserving

system, let � ∈ N and let φ1, . . . , φ� : G → G be homomorphisms. For any ε > 0 and any
A0, . . . , A� ∈ A, define

Rφ1,...,φ�
ε (A0, . . . , A�) =

{
g ∈ G

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tφ1(g)A1 ∩ · · · ∩Tφ�(g)A�)−

�∏
j=0

μ(Aj )

∣∣∣∣< ε

}
.

We first give two equivalent formulations of a general result which deals with finitely
generated groups.

THEOREM 4.2. Let (G, +) be a finitely generated abelian group, let (X, A, μ, (Tg)g∈G)

be a measure-preserving system and let the homomorphisms φ1, . . . , φ� : G → G be such
that, for any j ∈ {1, . . . , �}, ker(φj ) is finite and, for any i 	= j , ker(φj − φi) is also finite.
Then (Tg)g∈G is strongly mixing if and only if, for any A0, . . . , A� ∈ A and any ε > 0,
the set R

φ1,...,φ�
ε (A0, . . . , A�) is �∗

� .

Note that if G is a finitely generated abelian group and φ : G → G is a homomorphism,
ker(φ) is finite if and only if the index of φ(G) in G is finite. It follows that Theorem 4.2
can be formulated in the following equivalent form.

THEOREM 4.3. Let (G, +) be a finitely generated abelian group, let (X, A, μ, (Tg)g∈G)

be a measure-preserving system and let the homomorphisms φ1, . . . , φ� : G → G be such
that, for any j ∈ {1, . . . , �}, the index of φj (G) in G is finite and, for any i 	= j , the index
of (φj − φi) in G is also finite. Then (Tg)g∈G is strongly mixing if and only if, for any
A0, . . . , A� ∈ A and any ε > 0, the set R

φ1,...,φ�
ε (A0, . . . , A�) is �∗

� .

We now formulate and prove variants of Theorems 4.2 and 4.3 which pertain to mixing
actions of general (not necessarily finitely generated) countable abelian groups. Unlike
Theorems 4.2 and 4.3, the following two theorems are not equivalent. We will provide the
relevant counterexamples at the end of this section.

THEOREM 4.4. Let (G, +) be a countable abelian group, let (X, A, μ, (Tg)g∈G) be a
strongly mixing system and let the homomorphisms φ1, . . . , φ� : G → G be such that, for
any j ∈ {1, . . . , �}, ker(φj ) is finite and, for any i 	= j , ker(φj − φi) is also finite. For any
non-degenerated sequence (gk)k∈N = (gk,1, . . . , gk,�)k∈N in G�, there exists an infinite set
S ⊆ N such that, for any A0, . . . , A� ∈ A,
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R-lim
α∈S(�)

μ(A0 ∩ Tφ1(gα)A1 ∩ · · · ∩ Tφ�(gα)A�) =
�∏

j=0

μ(Aj ).

Equivalently, for any A0, . . . , A� ∈ A and any ε > 0, the set R
φ1,...,φ�
ε (A0, . . . , A�) is �∗

� .

Proof. Since, for any distinct i, j ∈ {1, . . . , �}, ker(φj ) and ker(φj − φi) are both finite,
we have for each t ∈ {1, . . . , �},

lim
k→∞ φj (gk,t ) = ∞ and lim

k→∞(φj (gk,t ) − φi(gk,t )) = ∞.

For each j ∈ {1, . . . , �}, let

(g(j)
k )k∈N = (φj (gk,1), . . . , φj (gk,�))k∈N.

Then the sequences (g(1)
k )k∈N, . . . , (g(�)

k )k∈N are non-degenerated and essentially distinct.
By Theorem 3.1(ii), there exists an infinite set S ⊆ N such that, for any A0, . . . , A� ∈ A,

R-lim
α∈S(�)

μ(A0 ∩ Tφ1(gα)A1 ∩ · · · ∩ Tφ�(gα)A�)

= R-lim
α∈S(�)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) = μ

( �∏
j=0

Aj

)
.

Remark 4.5. The goal of this remark is to indicate an alternative way of proving
Theorem 4.4. Let G and φ1, . . . , φ� be as in the hypothesis of Theorem 4.4. In §5
we will show that if E is a �̃∗

� set in G�, then {g ∈ G | (φ1(g), . . . , φ�(g)) ∈ E}
is a �∗

� set in G (see Proposition 5.22). Thus, for any measure-preserving system
(X, A, μ, (Tg)g∈G), any A0, . . . , A� ∈ A and any ε > 0, if Rε(A0, . . . , A�) is a �̃∗

� set,
then R

φ1,...,φ�
ε (A0, . . . , A�) is a �∗

� set. One can now invoke Theorem 3.1(iii).

The next result complements Theorem 4.4. Note that it provides a somewhat stronger
version of one of the directions in Theorem 4.3.

THEOREM 4.6. Let (G, +) be a countable abelian group, let (X, A, μ, (Tg)g∈G) be a
measure-preserving system and let the homomorphisms φ1, . . . , φ� : G → G be such that
at least one of φ1(G), φ2(G), (φ2 − φ1)(G) has finite index in G. If, for all A0, . . . , A� ∈
A and all ε > 0, the set R

φ1,...,φ�
ε (A0, . . . , A�) is �∗

� , then (Tg)g∈G is strongly mixing.

Proof. We will assume that (φ2 − φ1)(G) has finite index in G; the other two cases can
be handled similarly. For any A1, A2 ∈ A and any ε > 0, we have

Rφ1,...,φ�
ε (X, A1, A2, X, . . . , X︸ ︷︷ ︸

�−2 times

)

= {g ∈ G | |μ(X ∩ Tφ1(g)A1 ∩ Tφ2(g)A2 ∩ Tφ3(g)X ∩ · · · ∩ Tφ�(g)X)

− μ(A1)μ(A2)| < ε}
= {g ∈ G | |μ(Tφ1(g)A1 ∩ Tφ2(g)A2) − μ(A1)μ(A2)| < ε} = Rφ2−φ1

ε (A1, A2).
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By our assumption, for any ε > 0 and any A1, A2 ∈ A, the set R
φ2−φ1
ε (A1, A2) is a �∗

� set
and hence, by Theorem 3.1(iv), (T(φ2−φ1)(g))g∈G is strongly mixing.

We will now prove that (Tg)g∈G is strongly mixing by showing that for any sequence
(gk)k∈N in G with limk→∞ gk = ∞, there exists an increasing sequence (kj )j∈N in N with
the property that for any A0, A1 ∈ A,

lim
j→∞ μ(A0 ∩ Tgkj

A1) = μ(A0)μ(A1).

Let (gk)k∈N be a sequence in G with limk→∞ gk = ∞. By assumption, (φ2 − φ1)(G) has
finite index in G, so there exist an increasing sequence (kj )j∈N in N and an element τ ∈ G

for which {gkj
+ τ | j ∈ N} ⊆ (φ2 − φ1)(G). Since (T(φ2−φ1)(g))g∈G is strongly mixing,

for any A0, A1 ∈ A,

lim
j→∞ μ(A0 ∩ Tgkj

A1) = lim
j→∞ μ(A0 ∩ Tgkj

+τ (T−τA1)) = μ(A0)μ(A1),

completing the proof.

The following proposition shows that the assumption made in Theorem 4.2 that G is
finitely generated cannot be removed.

PROPOSITION 4.7. Let G = ⊕
k∈N Z and let � ∈ N. There exist a measure-preserving

system (X, A, μ, (Tg)g∈G) and homomorphisms φ1, . . . , φ� : G → G satisfying (a) for
any j ∈ {1, . . . , �}, ker(φj ) is finite, and (b) for any i 	= j , ker(φj − φi) is also finite, and
such that every set of the form R

φ1,...,φ�
ε (A0, . . . , A�) is �∗

� but (Tg)g∈G is not strongly
mixing.

Proof. We will only carry out the proof for � = 2; the general case can be handled
similarly. Let φ1 : G → G be the homomorphism given by

φ1((a1, a2, . . . , an, . . .)) = (0, a1, 0, a2, . . . , 0, an, . . .).

Note that φ1 is injective (and so ker(φ1) is trivial).
Let X = {0, 1}G be endowed with the product topology, let μ be the ( 1

2 , 1
2 ) product

measure on A = Borel(X) and, for each g ∈ G, let Sg : X → X be the map defined
by (Sg(x))(h) = x(h + g). The system (X, A, μ, (Sg)g∈G) is strongly mixing. Define a
measure-preserving G-action (Tg)g∈G on (X, A, μ) by

T(a1,a2,...) = S(a2,a4,...)

and let φ2 : G → G be defined by φ2(g) = 2φ1(g). Note that, for any g = (a1, a2, . . .) ∈ G,

Tφ1(g) = Tφ1((a1,a2,...)) = T(0,a1,0,a2,...) = S(a1,a2,...) = Sg .

So, for any ε > 0 and any A0, A1, A2 ∈ A,

Rφ1,φ2
ε (A0, A1, A2)

= {g ∈ G | |μ(A0 ∩ Tφ1(g)A1 ∩ Tφ2(g)A2) − μ(A0)μ(A1)μ(A2)| < ε}
= {g ∈ G | |μ(A0 ∩ SgA1 ∩ S2gA2) − μ(A0)μ(A1)μ(A2)| < ε}. (4.1)
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It follows from Theorem 4.4 that every set of the form

{g ∈ G | |μ(A0 ∩ SgA1 ∩ S2gA2) − μ(A0)μ(A1)μ(A2)| < ε}
is �∗

2 and hence, by (4.1), for any A0, A1, A2 and any ε > 0, R
φ1,φ2
ε (A0, A1, A2) is �∗

2 .
Noting that for each k ∈ N, T(k,0,0,...) = S(0,0,...) is the identity map on X, we see that

(Tg)g∈G is not strongly mixing. We are done.

The next result shows that Theorem 4.3 cannot be extended to arbitrary countable
abelian groups.

PROPOSITION 4.8. Let G = ⊕
k∈N Z and let � ∈ N. There exist a strongly mixing system

(X, A, μ, (Tg)g∈G) and homomorphisms φ1, . . . , φ� : G → G satisfying (a) for any
j ∈ {1, . . . , �}, φj (G) = G, and (b) for any i 	= j , (φi − φj )(G) = G, and such that,
for some A ∈ A and some ε > 0, the set R

φ1,...,φ�
ε (A, . . . , A) is not �∗

� .

Proof. Let (X, A, μ, (Tg)g∈G) be a strongly mixing system and let p1, . . . , p� ∈ N be �

different prime numbers. For each j ∈ {1, . . . , �}, let φj : G → G be defined by

φj (a1, a2, a3, . . .) = (ap1
j
, ap2

j
, ap3

j
...).

It follows that, for any j ∈ {1, . . . , �}, φj (G) = G and since, for any distinct
i, j ∈ {1, . . . , �}, the sets {pk

i | k ∈ N} and {pk
j | k ∈ N} are disjoint, we have that

(φj − φi)(G) = G as well.
Observe that the subgroup G′ = {(a1, 0, 0, . . .) ∈ G | a1 ∈ Z} is isomorphic to Z

and that, for any j ∈ {1, . . . , �}, G′ ⊆ ker(φj ). Let (gk)k∈N be a sequence in G′ with
limk→∞ gk = ∞. Since, for each k ∈ N, Tφj (gk) = T(0,0,...) = Id, where Id is the identity
map on X, we have that, for any A ∈ A with μ(A) ∈ (0, 1), and any k1 < · · · < k�,

μ(A ∩ Tφ1(gk1+···+gk�
)A ∩ · · · ∩ Tφ�(gk1+···+gk�

)A) = μ(A) 	= μ�+1(A).

It follows that if ε is small enough, the set R
φ1,...,φ�
ε (A, . . . , A) does not intersect the ��

set

{gk1 + · · · + gk�
| k1 < · · · < k�}

and hence it is not �∗
� . This completes the proof.

5. Largeness properties of �̃∗
m sets

As we have seen above, any strongly mixing system (X, A, μ, (Tg)g∈G) has the property
that the sets Rε(A0, . . . , Am) are �̃∗

m (moreover, the strong mixing of (Tg)g∈G is
characterized by this property). This section is devoted to the discussion of massivity and
ubiquity of �̃∗

m sets. Since strong mixing is a stronger property than those of mild and
weak mixing, one should expect that the notions of largeness associated with (multiple)
mild and weak mixing are ‘majorized’ by the notion of largeness associated with �̃∗

m sets.
This will be established in §5.1 and §5.2. Finally, in §5.3 we will show that �̃∗

m sets are
ubiquitous in the sense that they are well spread among the cosets of admissible subgroups
of Gm (the class of admissible subgroups will be introduced in §5.3).
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5.1. Any �̃∗
m set in Gd is an ˜IP∗

set. In this section we will introduce ĨP
∗

sets and
juxtapose them with �̃∗

m sets. (ĨP
∗

sets are intrinsically linked to the multiple mixing
properties of mildly mixing systems. The connection between ĨP

∗
sets and mildly mixing

systems will be addressed in §6.)
Let (G, +) be a countable abelian group and let F denote the set of all non-empty finite

subsets of N. Given a sequence (gk)k∈N in G, define an F-sequence (gα)α∈F by

gα =
∑
j∈α

gj = gk1 + · · · + gkt , α = {k1, . . . , kt }. (5.1)

We will write

lim
α→∞ gα = ∞

if, for every finite K ⊆ G, there exists an α0 ∈ F such that, for any α ∈ F with α > α0

(that is, min α > max α0), gα 	∈ K .
A set E ⊆ G is called an IP set if E = {gα | α ∈ F} for some sequence (gk)k∈N in G

such that limα→∞ gα = ∞. A set E ⊆ G is called IP∗ if it has a non-trivial intersection
with every IP set. IP sets are often defined just as sets of the form

FS((gk)k∈N) = {gk1 + · · · + gkt | k1 < · · · < kt , t ∈ N} = {gα | α ∈ F}
(without the requirement that limα→∞ gα = ∞). Our choice of definition for IP sets is
dictated by our interest in the study of asymptotic properties of measure-preserving actions.
The distinction between our definition and the more traditional one is rather mild: for
any infinite set of the form E = {gα | α ∈ F}, there exists a sequence (hk)k∈N such that
{hα | α ∈ F} ⊆ E and limα→∞ hα = ∞.

We now introduce modifications of IP and IP∗ sets, namely ĨP sets and ĨP
∗

sets, which,
as will be seen in §6, are naturally linked with the properties of the sets Rε(A0, . . . , A�)

in the context of mildly mixing systems.

Definition 5.1. Let (G, +) be a countable abelian group and let d ∈ N. We say that a set
E ⊆ Gd is an ĨP set if it is of the form

E = {(g(1)
α , . . . , g(d)

α ) | α ∈ F},

where, for each j ∈ {1, . . . , d}, {g(j)
α | α ∈ F} is generated by (g

(j)
k )k∈N as in (5.1) and,

in addition, for any j ∈ {1, . . . , d},
lim

α→∞ g(j)
α = ∞ (5.2)

and, for any i 	= j ,

lim
α→∞(g(j)

α − g(i)
α ) = ∞. (5.3)

(Note that if d = 1, then E ⊆ G is an IP set if and only if it is an ĨP set.)
A set E ⊆ Gd is called an ĨP

∗
set if it has a non-trivial intersection with every ĨP set

in Gd .
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Remark 5.2. Let (G, +) be a countable abelian group, let d ∈ N and let E ⊆ Gd be an
ĨP set. From now on, whenever we pick a sequence (gk)k∈N = (g

(1)
k , . . . , g

(d)
k )k∈N in

Gd with the property that E = {(g(1)
α , . . . , g

(d)
α ) | α ∈ F}, we will tacitly assume that

(g
(1)
k )k∈N, . . . ,(g(d)

k )k∈N satisfy (5.2) and (5.3).

The following lemma unveils an important connection between ĨP and �̃m sets.

LEMMA 5.3. Let (G, +) be a countable abelian group and let d , m ∈ N. Any ˜IP set
E ⊆ Gd contains a �̃m set. Namely, there exist non-degenerated and essentially distinct
sequences

(g(j)
k ) = (g

(j)

k,1 , . . . , g
(j)
k,m)k∈N, j ∈ {1, . . . , d},

in Gm with the property that {(g(1)
α , . . . , g

(d)
α ) | α ∈ N

(m)} ⊆ E, where, for each
j ∈ {1, . . . , d} and each α = {k1, . . . , km} ∈ N

(m), g
(j)
α = g

(j)

k1,1 + · · · + g
(j)
km,m.

Proof. Let E be an ĨP set and let (hk)k∈N = (h
(1)
k , . . . , h

(d)
k )k∈N be such that

E = {hα | α ∈ F} = {(h(1)
α , . . . , h(d)

α ) | α ∈ F}.
Following the stipulation made in Remark 5.2, for any finite set F ⊆ G, we can find an
αF ∈ F such that, for any α ∈ F with α > αF and any distinct i, j ∈ {1, . . . d}, h

(j)
α 	∈ F

and (h
(j)
α − h

(i)
α ) 	∈ F . In particular, for any distinct i, j ∈ {1, . . . , d},

lim
k→∞ h

(j)
k = ∞ and lim

k→∞(h
(j)
k − h

(i)
k ) = ∞. (5.4)

For each j ∈ {1, . . . , d} and each k ∈ N, we let

g(j)
k = (h

(j)
k , . . . , h

(j)
k )︸ ︷︷ ︸

m times

. (5.5)

Note that, by (5.4), the sequences (g(1)
k )k∈N, . . . ,(g(d)

k )k∈N are non-degenerated and
essentially distinct. It follows now from (5.5) that, for any α = {k1, . . . , km} ∈ N

(m),

(g(1)
α , . . . , g(d)

α ) =
( m∑

j=1

h
(1)
kj

, . . . ,
m∑

j=1

h
(d)
kj

)
=

(
h

(1)
{k1,...,km}, . . . , h

(d)
{k1,...,km}

)
∈ E,

which completes the proof.

Remark 5.4. The proof of Lemma 5.3 actually shows that any ĨP set is a union of �̃t sets.
Let E ⊆ Gd be an ĨP set and let (gk)k∈N be a sequence such that E = {gα |α ∈ F}. The
proof of Lemma 5.3 shows that, for each t ∈ N, {gk1

+ · · · + gkt
| k1 < · · · < kt } is a �̃t

set. Hence,

E =
⋃
t∈N

{gk1
+ · · · + gkt

| k1 < · · · < kt }.

As an immediate consequence of Lemma 5.3 we have the following result.

COROLLARY 5.5. Let (G, +) be a countable abelian group and let d , m ∈ N. Every �̃∗
m

set in Gd is an ˜IP∗
set.
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Proof. Let E ⊆ Gd be a �̃∗
m set and let D ⊆ Gd be an ĨP set. By Lemma 5.3, we have

that D contains a �̃m set and hence E ∩ D 	= ∅. Since D was arbitrary, this shows that E
is an ĨP

∗
set.

5.2. Any �̃∗
m set in Gd has uniform density one. We start with defining the notions of

upper density and uniform density one in countable abelian groups.

Definition 5.6. Let (G, +) be a countable abelian group, let E ⊆ G and let (Fk)k∈N be a
Følner sequence in G. (A sequence (Fk)k∈N of non-empty finite subsets of G is a Følner
sequence if, for any g ∈ G,

lim
k→∞

|(g + Fk) ∩ Fk|
|Fk| = 1,

where, for a finite set A, |A| denotes its cardinality. It is well known that every countable
abelian group contains a Følner sequence.) The upper density of E with respect to (Fk)k∈N
is defined by

d(Fk)(E) = lim sup
k→∞

|E ∩ Fk|
|Fk| .

A set E ⊆ G has uniform density one if, for every Følner sequence (Fk)k∈N, d(Fk)(E) = 1.

Sets of uniform density one are intrinsically connected with weakly mixing
measure-preserving systems. Recall that a measure-preserving action (Tg)g∈G on a
probability space (X, A, μ) is called weakly mixing if the diagonal action (Tg × Tg)g∈G

on X × X is ergodic. When G is an amenable group, the notion of weak mixing can
be equivalently defined with the help of strong Césaro limits along Følner sequences.
Namely, (Tg)g∈G is weakly mixing if and only if, for any Følner sequence (Fk)k∈N and
any A0, A1 ∈ A,

lim
k→∞

1
|Fk|

∑
g∈Fk

|μ(A0 ∩ TgA1) − μ(A0)μ(A1)| = 0.

It follows that (Tg)g∈G is weakly mixing if and only if the sets

Rε(A0, A1) = {g ∈ G | |μ(A0 ∩ TgA1) − μ(A0)μ(A1)| < ε}
have uniform density one. The reader will find a few more equivalent forms of weak mixing
in Proposition 6.8 below.

In order to derive the main result of this subsection, namely the fact that every �̃∗
m set

has uniform density one, we need first to prove two auxiliary propositions.

PROPOSITION 5.7. Let (G, +) be a countable abelian group, let d ∈ N and let (Fk)k∈N
be a Følner sequence in Gd . For any E ⊆ Gd with d(Fk)(E) > 0 and any ˜IP set D ⊆ Gd ,
there exists a sequence (gk)k∈N = (g

(1)
k , . . . , g

(d)
k ) in Gd such that (a) {gα | α ∈ F} ⊆ D,

(b) for any distinct i, j ∈ {1, . . . , d}, (5.2) and (5.3) hold, and (c) for any α ∈ F ,

d(Fk)

( ⋂
β⊆α, β 	=∅

(E − gβ)

)
> 0. (5.6)
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In other words, for each α ∈ F , the set Eα = {h ∈ Gd | for all β ⊆ α, β 	= ∅, h +
gβ ∈ E} satisfies d(Fk)(Eα) > 0.

Proof. Let D = {hα | α ∈ F} be an ĨP set in Gd generated by the sequence (hk)k∈N =
(hk,1, . . . , hk,d)k∈N. We claim that, for any M ∈ N with M > 1/d(Fk)(E), there exist
L, R ∈ N, L < R ≤ M , for which d(Fk)(E ∩ (E − h{L+1,L+2,...,R})) > 0. To see this,
suppose for the sake of contradiction that, for any distinct R, L ∈ {1, . . . , M}, R > L,
d(Fk)(E ∩ (E − h{L+1,...,R})) = 0. Since d(Fk) is translation invariant and for any L, R ∈
{1, . . . , M}, L < R, h{L+1,...,R} = h{1,...,R} − h{1,...,L}, we have that

d(Fk)(E ∩ (E − h{L+1,...,R})) = d(Fk)((E − h{1,...,L}) ∩ (E − h{1,...,R})) = 0.

It follows that

d(Fk)

( M⋃
R=1

(E − h{1,...,R})
)

=
M∑

R=1

d(Fk)(E − h{1,...,R}) = Md(Fk)(E) > 1,

a contradiction. Thus, there exist L, R ∈ N with L < R ≤ M such that d(Fk)(E ∩ (E −
h{L+1,...,R})) > 0. We will let γ1 = {L + 1, . . . , , R}.

Now let E1 = E ∩ (E − hγ1). Repeating the above argument, we find L′, R′ ∈ N, R <

L′ < R′, such that γ2 = {L′ + 1, . . . , R′} satisfies d(Fk)(E1 ∩ (E1 − hγ2)) > 0. It follows
that γ1 < γ2 and that hγ1∪γ2 = hγ1 + hγ2 . Hence,

d(Fk)(E ∩ (E − hγ1) ∩ (E − hγ2) ∩ (E − hγ1∪γ2)) > 0.

Continuing in this way, we can find a sequence (γk)k∈N with γk < γk+1 for each k ∈ N and
the property that, for any α ∈ F ,

d(Fk)

( ⋂
β⊆α, β 	=∅

(E − h⋃
k∈β γk

)

)
> 0.

For each k ∈ N, let gk = hγk
and, for each α ∈ F , let gα = ∑

j∈α gj = h⋃
j∈α γj

.
Observe that the sequence (gα)α∈F satisfies (5.6). Let D′ = {gα | α ∈ F}. Clearly
D′ ⊆ D. To finish the proof observe that

(gα)α∈F = (gα,1, . . . , gα,d)α∈F = (h(
⋃

k∈α γk),1, . . . , h(
⋃

k∈α γk),d)α∈F

satisfies (5.2) and (5.3). Indeed, in view of Remark 5.2, for any j ∈ {1, . . . , d},
lim

α→∞ gα,j = lim
α→∞ h(

⋃
k∈α γk),j = ∞

and, for i 	= j ,

lim
α→∞(gα,j − gα,i ) = lim

α→∞(h(
⋃

k∈α γk),j − h(
⋃

k∈α γk),i ) = ∞.

PROPOSITION 5.8. Let (G, +) be a countable abelian group, let d , m ∈ N and let (Fk)k∈N
be a Følner sequence in Gd . Any E ⊆ Gd with d(Fk)(E) > 0 contains a �̃m set. Namely,
there exist non-degenerated and essentially distinct sequences
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(g(j)
k ) = (g

(j)

k,1 , . . . , g
(j)
k,m)k∈N, j ∈ {1, . . . , d},

in Gm with the property that {(g(1)
α , . . . , g

(d)
α ) | α ∈ N

(m)} ⊆ E.

Proof. Fix d ∈ N and let D be an ĨP set in Gd . Let (hk)k∈N = (h
(1)
k , . . . , h

(d)
k )k∈N be a

sequence in Gd with D = {hα | α ∈ F}. Invoking Proposition 5.7 and passing, if needed,
to a sub-ĨP set in D, we can assume that, for any α ∈ F ,

d(Fk)

( ⋂
β⊆α, β 	=∅

(E − hβ)

)
> 0 (5.7)

and that (hk)k∈N satisfies (5.2) and (5.3).
Let m = 1. There exists a sequence (αk)k∈N in F such that, for each k ∈ N, αk < αk+1

and such that, for any distinct k, k′ ∈ N and any distinct i, j ∈ {1, . . . , d},
h(j)

αk
	= h(j)

αk′ and h(j)
αk

− h(i)
αk

	= h(j)
αk′ − h(i)

αk′ . (5.8)

Pick a sequence (Ak)k∈N of finite subsets of G with the properties that, for each k ∈ N,
(a) |Ak| = k, (b) Ak ⊆ Ak+1, and (c)

⋃
k∈N Ak = G. By (5.7), for each k ∈ N we can

find bk = (bk,1, . . . , bk,d) in Gd such that, for any t ∈ {1, . . . , kd2 + 1}, bk + hαt ∈ E.
By (5.8), for any k ∈ N and any j ∈ {1, . . . , d}, there exist at most k natural numbers t
for which bk,j + h

(j)
αt ∈ Ak . Similarly, for any distinct i, j ∈ {1, . . . , d}, one has (bk,j −

bk,i ) + (h
(j)
αt − h

(i)
αt ) ∈ Ak for at most k natural numbers t.

We claim that there exists t ∈ {1, . . . , kd2 + 1} such that, for any j ∈ {1, . . . , d},
bk,j + h

(j)
αt 	∈ Ak and, for any i 	= j , (bk,j − bk,i ) + (h

(j)
αt − h

(i)
αt ) 	∈ Ak . Suppose for con-

tradiction that this is not the case. Since there are d2 − d pairs (i, j) with distinct i, j ∈
{1, . . . , d}, there exist at least k + 1 natural numbers t for which, say, bk,1 + h

(1)
αt ∈ Ak , a

contradiction.
Thus, there exists a sequence (kt )t∈N in N for which the sequences

(bt ,j + h(j)
αkt

)t∈N, j ∈ {1, . . . , d}
are non-degenerated and essentially distinct, and

{(bt ,1 + h(1)
αkt

, . . . , bt ,d + h(d)
αkt

) | t ∈ N} ⊆ E.

Now let m > 1. By Lemma 5.3 there exist non-degenerated and essentially distinct
sequences (f(j)

k )k∈N = (f
(j)

k,1 , . . . , f
(j)

k,m−1)k∈N, j ∈ {1, . . . , d}, with the property that

{(f (1)
α , . . . , f

(d)
α ) | α ∈ N

(m−1)} ⊆ D. For each k ∈ N, let

Ek =
⋂

α⊆{1,...,k+m−1}, |α|=m−1

(E − (f (1)
α , . . . , f (d)

α )). (5.9)

By (5.7), for each k ∈ N, d(Fk)(Ek) > 0. It follows from the case m = 1 that there exist
sequences

(gk,j )k∈N, j ∈ {1, . . . , d},
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with the properties that (a) for any k ∈ N, (gk,1, . . . , gk,d) ∈ Ek , (b) for any j ∈
{1, . . . , d}, limk→∞ gk,j = ∞, and (c) for any distinct i, j ∈ {1, . . . , d}, limk→∞ gk,i −
gk,j = ∞. For each j ∈ {1, . . . , d}, form the sequence

(g(j)
k )k∈N = (f

(j)

k,1 , . . . , f
(j)

k,m−1, gk,j ) = (g
(j)

k,1 , . . . , g
(j)
k,m).

By (5.9) and (a), we have that, for any k ∈ N and any α ⊆ {1, . . . , k − 1} with |α| =
m − 1, (gk,1, . . . , gk,d) + (f

(1)
α , . . . , f

(d)
α ) ∈ E and hence

{(f (1)
{k1,...,km−1} + gkm,1, . . . , f

(d)
{k1,...,km−1} + gkm,d) | k1 < · · · < km−1 < km} ⊆ E.

By (b) and (c), the sequences (g(1)
k )k∈N, . . . ,(g(d)

k )k∈N are non-degenerated and essentially
distinct. We are done.

COROLLARY 5.9. Let (G, +) be a countable abelian group and let d , m ∈ N. Every �̃∗
m

set in Gd has uniform density one.

Proof. We will assume that D ⊆ Gd does not have uniform density one and show that
D is not a �̃∗

m set. Indeed, if D does not have uniform density one, then there exists
a Følner sequence (Fk)k∈N in Gd for which d(Fk)(D) < 1. Let E = Gd \ D and note
that d(Fk)(E) > 0. By Proposition 5.8, E contains a �̃m set. This implies that D is not
a �̃∗

m.

5.3. The ubiquity of �̃∗
m sets. In this subsection we will show that there exists a broad

class of subgroups of Gd with the property that, for each group H from this class, any �̃∗
m

set in Gd has a large intersection with H. In fact, we will show that either a subgroup H
belongs to this class or Gd \ H is a �̃∗

m set for any m ∈ N.

Definition 5.10. Let (G, +) be a countable abelian group, let d ∈ N and let H be
a subgroup of Gd . We say that H is an admissible subgroup of Gd if there exist
non-degenerated and essentially distinct sequences (g

(1)
k )k∈N, . . . ,(g(d)

k )k∈N in G such that

{(g(1)
k , . . . , g

(d)
k ) | k ∈ N} ⊆ H .

Example 5.11. Let (G, +) be a countable abelian group and let H = {(g, h, 0) | g,
h ∈ G} ⊆ G3. Clearly, H is not an admissible subgroup of G3.

Example 5.12. Let (G, +) be a countable abelian group with an element g of infinite order.
For any d ∈ N and any distinct a1, . . . , ad ∈ Z \ {0}, the set {(ka1g, ka2g, . . . , kadg) |
k ∈ Z} is an admissible subgroup of Gd .

Example 5.13. Let (G, +) be a countable abelian torsion group (that is, each of
its elements has finite order). There exist a sequence (gk)k∈N in G and a nested
sequence of finite subgroups (GN)N∈N with the following properties: (i) GN is
generated by {g1, . . . , gN }; (ii) for each k ∈ N, gk+1 	∈ Gk . Then, for any d ∈ N and
any distinct a1, . . . , ad ∈ N, the group generated by the set {(ga1k , ga2k , . . . , gadk) |
k ∈ N} is an admissible subgroup of Gd . Indeed, note that, for any k ∈ N and any
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a, b ∈ N with a < b, gak 	∈ Gak−1 and (gbk − gak) 	∈ Gak . So limk→∞ gak = ∞ and
limk→∞(gbk − gak) = ∞.

The following proposition provides a useful characterization of admissible subgroups.

PROPOSITION 5.14. Let (G, +) be a countable abelian group, let d ∈ N and let H be a
subgroup of Gd . The following statements are equivalent.
(i) H is an admissible subgroup of Gd .
(ii) There exist an m ∈ N and a �̃m set E ⊆ Gd such that E ⊆ H .
(iii) For any m ∈ N, there exists a �̃m set E ⊆ Gd such that E ⊆ H .
(iv) There exists an ˜IP set E ⊆ Gd such that E ⊆ H .
(v) For any j ∈ {1, . . . , d}, πj (H) is infinite and, for any i 	= j , (πj − πi)(H)

is also infinite, where for each j ∈ {1, . . . , d}, πj : H → G is defined by
πj (g1, . . . , gd) = gj .

Proof. It is not hard to see that (i) and (ii) are equivalent. The implications (i) �⇒ (iii),
(iii) �⇒ (iv) and (iv) �⇒ (v) are trivial. We will now prove (v) �⇒ (i).

Let P = {πj | j ∈ {1, . . . , d}} ∪ {πj − πi | i, j ∈ {1, . . . , d}, i 	= j} and let M be
the largest non-negative integer for which there exist an F ⊆ P with |F | = M and a
sequence (gk)k∈N in H such that, for any π ∈ F , limk→∞ π(gk) = ∞. Since |P | = d2,
we have M ≤ d2. Also, since, for each π ∈ P , π(H) is infinite, M ≥ 1. If M = d2, then
(i) holds. So, assume for contradiction that M < d2.

By the definition of M, there exist a set F0 ⊆ P with |F0| = M and a sequence
(gk)k∈N in H such that if π ∈ F0, limk→∞ π(gk) = ∞ and if π ∈ (P \ F0), then there
exists a finite set Aπ ⊆ G such that {π(gk) | k ∈ N} ⊆ Aπ . By passing, if needed, to a
subsequence, we can assume that, for each π ∈ (P \ F0), there exists a gπ ∈ G such that
limk→∞ π(gk) = gπ . Let π0 ∈ (P \ F0). By (v), there exists a sequence (g′

k)k∈N in H such
that limk→∞ π0(g′

k) = ∞. Note that, for any finite set A ⊆ H , any π ∈ F0 and any t ∈ N,
there exists a k ∈ N such that, for any k′ > k,

π(gk′ + g′
t ) = π(gk′) + π(g′

t ) 	∈ A.

Also, note that there exists a k0 ∈ N such that, for any k > k0, π0(gk) = gπ0 . It follows
that we can find an increasing sequence (kt )t∈N in N for which limt→∞ π(gkt

+ g′
t ) = ∞

for each π ∈ F0 ∪ {π0}. This contradicts the definition of M, completing the proof.

COROLLARY 5.15. Let (G, +) be a countable abelian group and let d ∈ N. A subgroup H
of Gd is either admissible or, for any m ∈ N, Gd \ H is a �̃∗

m set.

Proof. If H is not an admissible subgroup, Proposition 5.14(ii) implies that, for each
m ∈ N, H does not contain any �̃m set in Gd . Thus, Gd \ H is a �̃∗

m set for each
m ∈ N.

Before stating and proving one of the main results of this subsection which deals with
the ubiquity of �̃∗

m sets in admissible subgroups (Theorem 5.20 below), we need one more
definition and a technical lemma.
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Definition 5.16. Let (G, +) be a countable abelian group, let d , m ∈ N and let H ⊆ Gd

be an admissible subgroup. A set E ⊆ H is called an H-�̃∗
m set if it has a non-trivial

intersection with every �̃m set contained in H. Similarly, a set E ⊆ H is called an H-ĨP
∗

set if it has a non-trivial intersection with every ĨP set contained in H.

Remark 5.17. Let (G, +) be a countable abelian group, let d ∈ N and let H ⊆ Gd be an
admissible subgroup of Gd . It is useful to perceive H-�̃∗

m sets as relative versions of �̃∗
m

sets in Gd . Note that if H is a proper subgroup of Gd , H-�̃∗
m sets are not �̃∗

m. Indeed,
since, for each m ∈ N, any translation of a �̃m set in Gd is again a �̃m set, every coset
of H contains a �̃m set in Gd . It follows that Gd \ H contains a �̃m set for each m ∈ N.
Hence, no H-�̃∗

m set is a �̃∗
m set.

Remark 5.18. Let (G, +) be a countable abelian group, let d , m ∈ N, let H ⊆ Gd be an
admissible subgroup and let E be a �̃∗

m set in Gd . It follows from the definition that E ∩ H

is a H-�̃∗
m set. Indeed, let D ⊆ H be a �̃m set. We have (E ∩ H) ∩ D = E ∩ D 	= ∅. Note

also that, for any g ∈ Gd , E ∩ (g + H) is the translation of the H-�̃∗
m set (−g + E) ∩ H .

Thus, the cosets of H have a large intersection with E as well.

LEMMA 5.19. Let (G, +) be a countable abelian group, let d , m ∈ N, let H be an
admissible subgroup of Gd and let (Fk)k∈N be a Følner sequence in H. Any E ⊆ H with
d(Fk)(E) > 0 contains a �̃m set.

Proof. Since H is admissible, there exists an ĨP set D′ ⊆ H . The result in question follows
by replacing D by D′ in the proof of Proposition 5.8 and applying an adequate modification
of Proposition 5.7.

THEOREM 5.20. Let (G, +) be a countable abelian group, let d , m ∈ N and let H ⊆ Gd

be an admissible subgroup. Any H-�̃∗
m set is an H- ˜IP∗

set and has uniform density one
in H.

Proof. Let E′ ⊆ H be an H-�̃∗
m set. By Lemma 5.3, every ĨP set contains a �̃m set.

It follows that E′ is an H-ĨP
∗

set. By Lemma 5.19, we can argue as in the proof of
Corollary 5.9 to show that E′ has uniform density one in H.

COROLLARY 5.21. Let (G, +) be a countable abelian group, let d ∈ N, let H be an
admissible subgroup of Gd and let (X, A, μ, (Tg)g∈G) be a strongly mixing system. For
any g ∈ Gd , each set of the form Rε(A0, . . . , A�) ∩ (g + H) is the translation of a set
with uniform density one in H.

Proof. This result follows from Theorem 3.1, Remark 5.18 and Theorem 5.20.

A natural class of admissible subgroups in Gd is provided by the one-parameter
subgroups of the form

Hφ1,...,φd
= {(φ1(g), . . . , φd(g)) | g ∈ G},

where φ1, . . . , φd : G → G are homomorphisms such that, for any j ∈ {1, . . . , d},
|ker(φj )| < ∞ and, for any i 	= j , | ker(φj − φi)| < ∞. The following proposition,
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alluded to in Remark 4.5, involves preimages of sets in Gd via the elements of Hφ1,...,φd

and provides an alternative proof of Theorem 4.4.

PROPOSITION 5.22. Let (G, +) be a countable abelian group, let d , m ∈ N and let
φ1, . . . , φd : G → G be homomorphisms such that, for any j ∈ {1, . . . , d}, ker(φj )

is finite and, for any i 	= j , ker(φj − φi) is also finite. If E ⊆ Gd is a �̃∗
m set, then

E′ = {g ∈ G | (φ1(g), . . . , φd(g)) ∈ E} is a �∗
m set in G.

Proof. Let D ⊆ G be the �m set in G generated by the non-degenerated sequence
(gk)k∈N = (gk,1, . . . , gk,m)k∈N in Gm (that is, D = {gα | α ∈ N

(m)}). We will show that
D ∩ E′ 	= ∅.

By our assumption on φ1, . . . , φd , for each j ∈ {1, . . . , m}, the sequences
(φ1(gk,j ))k∈N, . . . , (φd(gk,j ))k∈N are non-degenerated and essentially distinct. Thus, the
set D′ = {(φ1(gα), . . . , φd(gα)) | α ∈ N

(m)} is a �̃m set in Gd . Noting that D′ ∩ E 	= ∅,
we obtain D ∩ E′ 	= ∅.

So far we have been focusing on the massivity and ubiquity of general �̃∗
� sets.

However the ‘dynamical’ �̃∗
� sets Rε(A0, . . . , A�), are even more prevalent in G�. For

example, assuming for convenience that G = Z, one can show that the sets of the form
Rε(A0, . . . , A�) have an ample presence in ‘polynomial’ subsets of Z�. This is illustrated
by the following polynomial extension of Proposition 4.1 (which is proved in a companion
paper [9]).

THEOREM 5.23. Let � ∈ N and let p1, . . . , p� ∈ Z[x] be non-constant polynomials such
that, for any distinct i, j ∈ {1, . . . , �}, deg(pj − pi) > 0. There exists an m ∈ N such that,
for any strongly mixing system (X, A, μ, T ), any ε > 0 and any A0, . . . , A� ∈ A, the set

Rp1,...,p�
ε (A0, . . . , A�) =

{
n ∈ Z

∣∣∣∣
∣∣∣∣μ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T p�(n)A�) −

�∏
j=0

μ(Aj )

∣∣∣∣ < ε

}

(5.10)

is �∗
m.

The following proposition shows that, in general, �̃∗
� sets, unlike the sets of

the form Rε(A0, . . . , A�), can be disjoint from the polynomial sets Hp1,...,p�
=

{(p1(n), . . . , p�(n)) | n ∈ Z}, where p1, . . . , p� ∈ Z[x].

PROPOSITION 5.24. Let � ∈ N and let p1, . . . , p� ∈ Z[x] be non-constant polynomials
such that, for any distinct i, j ∈ {1, . . . , �}, deg(pj − pi) > 0. Suppose that deg(p1) > 1.
Then, for any m ≥ 2, Hp1,...,p�

contains no �̃m sets. Equivalently, Z� \ Hp1,...,p�
is a �̃∗

m

set for each m ≥ 2.

Proof. Since the projection onto the first coordinate of any �̃m set E ⊆ Z
� is a �m set

in Z, it suffices to show that the set {p1(n) | n ∈ Z} contains no �m sets. Suppose for
contradiction that {p1(n) | n ∈ Z} contains a �m set
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D = {n(1)
k1

+ · · · + n
(m)
km

| k1 < · · · < km},

where (n
(1)
k )k∈N, . . . ,(n(m)

k )k∈N are non-degenerated sequences in Z.
Choose t1, t2, t3 ∈ N to be such that n

(1)
t1

< n
(1)
t2

< n
(1)
t3

and let

I = {n(1)
t1

+ n
(2)
k2

+ · · · + n
(m)
km

| max{t1, t2, t3} < k2 < · · · < km}.

Clearly, I is an infinite subset of D. So, letting a = n
(1)
t2

− n
(1)
t1

and b = n
(1)
t3

− n
(1)
t1

, we
have a + I ⊆ D and b + I ⊆ D.

Let (nk)k∈N be an enumeration of the elements of I. One can find an increasing sequence
(kj )j∈N for which at least two of the sets {nkj

| j ∈ N}, {a + nkj
| j ∈ N} and {b +

nkj
| j ∈ N} are contained in at least one of the sets {p1(n) | n ∈ N} and {p1(−n) | n ∈ N}.

We will assume that {a + nkj
| j ∈ N} and {b + nkj

| j ∈ N} are contained in {p1(n) |
n ∈ N} (the other cases can be handled similarly). It follows that there exist infinitely many
pairs (n, m) ∈ N × N such that p1(n) − p1(m) = b − a. Since b > a, this contradicts the
fact that deg(p1) > 1.

6. Multiple recurrence for mildly and weakly mixing systems via R-limits
As we saw above, R-limits can be successfully used to characterize strong mixing and
establish higher-order mixing properties. In this section, we will show that R-limits can be
also useful in dealing with mildly and weakly mixing systems. In particular, we will obtain
analogues of Theorem 3.1 for mildly and weakly mixing systems.

6.1. Mildly mixing systems. In this subsection we will deal with mildly mixing systems
(see Definition 6.4 below) from the perspective of R-limits. The notion of mild mixing,
which lies between weak and strong mixing, was introduced by Walters in 1972 [32]
and rediscovered by Furstenberg and Weiss in 1978 [16]. Mild mixing has multiple
equivalent forms (see [3, 4, 14, 16]) and plays a fundamental role in IP ergodic theory
and its applications, including various refinements of the classical Szemerédi theorem
(see [5, 15]). The multiple recurrence theorems for mildly mixing systems (see [5, 14,
15]) utilize the notion of IP-limit which we will presently define. We will then establish a
connection between IP-limits and R-limits and, finally, prove an analogue of Theorem 3.1
for mildly mixing actions.

Definition 6.1. (Cf. [15, Definitions 1.1 and 1.3]) Let (X, d) be a compact metric space and
let (xα)α∈F be an F-sequence in X. A set F (1) ⊆ F is an IP-ring if there exists a sequence
(αk)k∈N in F with αk < αk+1, for each k ∈ N, for which

F (1) =
{ ⋃

j∈α

αj

∣∣∣∣ α ∈ F
}

.

For any IP-ring F (1), we write

IP-lim
α∈F (1)

xα = x
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if, for every ε > 0, there exists an α0 ∈ F (1) such that, for any α ∈ F (1) with α > α0,

d(xα , x) < ε.

It follows from a result of Hindman [17] that if (xα)α∈F is an F-sequence in a compact
metric space X, then, for any IP-ring F (1) ⊆ F , one can always find an x ∈ X and an
IP-ring F (2) ⊆ F (1) such that

IP-lim
α∈F (2)

xα = x (6.1)

(see [14, Theorem 8.14]). In particular, for any countable abelian group (G, +), any
sequence (gk)k∈N in G and any probability measure-preserving system (X, A, μ, (Tg)g∈G),
there exists an IP-ring F (1) for which

IP-lim
α∈F (1)

Tgα

exists in the weak operator topology of L2(μ). This implies (and is equivalent to) the fact
that for any A0, A1 ∈ A,

IP-lim
α∈F (1)

μ(A0 ∩ TgαA1)

exists.

THEOREM 6.2. Let (X, d) be a compact metric space, let (G, +) be a countable abelian
group, let (xg)g∈G be a sequence in X, let x0 ∈ X and let (gk)k∈N be a sequence in G. The
following statements are equivalent.
(i) For any IP-ring F (1) ⊆ F for which IP-limα∈F (1) xgα exists, one has

IP-lim
α∈F (1)

xgα = x0. (6.2)

(ii) For any IP-ring F (1) ⊆ F , there exist an m ∈ N and a sequence (hk,1, . . . , hk,m)k∈N
in Gm such that {hα | α ∈ N

(m)} ⊆ {gα | α ∈ F (1)} and

R-lim
α∈N(m)

xhα = x0. (6.3)

Proof. (i) �⇒ (ii): Let F (1) be an IP-ring. Since X is compact, we can assume (by
passing, if needed, to a sub-IP-ring) that IP-limα∈F (1) xgα exists. Thus, by (i), (6.2) holds.
It follows from the definition of an IP-limit that there exists a sequence (hk)k∈N in G such
that {hk | k ∈ N} ⊆ {gα | α ∈ F (1)} and limk→∞ xhk

= x0. This completes the proof of
(i) �⇒ (ii).

(ii) �⇒ (i): Let F (1) be an IP-ring for which IP-limα∈F (1) xgα = y for some y ∈ X.
Suppose for contradiction that there exists an ε > 0 for which d(y, x0) > ε. By the
definition of an IP-limit, there exists α0 ∈ F such that, for any α ∈ F (1) with α > α0,
d(xgα , x0) > ε. Since {α ∈ F (1) | α > α0} is an IP-ring, it follows from (ii) that there
exist an m ∈ N and a sequence (hk,1, . . . , hk,m)k∈N in Gm such that {hα | α ∈ N

(m)} ⊆
{gα | α ∈ F (1) and α > α0} and R-limα∈N(m)xhα = x0. In particular, there exists an
h ∈ {gα | α ∈ F (1) and α > α0} for which d(xh, x0) < ε, a contradiction.
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Remark 6.3. Theorem 6.2 shows that IP-limits can be attained via R-limits. The following
example demonstrates that this is not the case the other way around. Let G = Z, let X =
{0, 1}, let m ∈ N and consider the �m set E = {3k1 + · · · + 3km | k1 < · · · < km}. The set
E is comprised of all the elements of 3N whose base 3 expansion has exactly m non-zero
entries, all of which are 1. It follows that there are no a, b, c ∈ E for which a + b = c.
This, in turn, implies that E contains no IP sets and hence Z \ E is an IP∗ set. Let (nk)k∈N
be a sequence in Z and let F (1) ⊆ F be an IP-ring for which IP-limα∈F (1) 1E(nα) exists.
Since 0 	∈ E and Z \ E is IP∗, one has IP-limα∈F (1) 1E(nα) = 0. On the other hand, since
for any k1 < · · · < km, 1E(3k1 + · · · + 3km) = 1, one has that, for any infinite set S ⊆ N,

R-lim
{k1,...,km}∈S(m)

1E(3k1 + · · · + 3km) = 1.

Definition 6.4. Let (G, +) be a countable abelian group and let (X, A, μ, (Tg)g∈G) be a
measure-preserving system. (Tg)g∈G is mildly mixing if, for any sequence (gk)k∈N in G
for which limα→∞ gα = ∞, there exists an IP-ring F (1) such that, for any f ∈ L2(μ),

IP-lim
α∈F (1)

Tgαf =
∫

X

f dμ (6.4)

weakly.

We are now ready to state and prove the main theorem of this subsection. It can be
viewed as an analogue of Theorem 3.1 for mildly mixing actions. We remind the reader
that a sequence of measure-preserving transformations (Tk)k∈N of a probability space
(X, A, μ) has the mixing property if, for every A0, A1 ∈ A, limk→∞ μ(A0 ∩ T −1

k A1) =
μ(A0)μ(A1).

THEOREM 6.5. Let � ∈ N, let (G, +) be a countable abelian group and let (X, A, μ,
(Tg)g∈G) be a measure-preserving system. The following statements are equivalent.
(i) (Tg)g∈G is mildly mixing.
(ii) For any ˜IP set E ⊆ G� and any m ∈ N, there exist non-degenerated and essentially

distinct sequences (g(j)
k )k∈N = (g

(j)

k,1 , . . . , g
(j)
k,m)k∈N, j ∈ {1, . . . , �}, in Gm with the

following properties.
(a) {(g(1)

α , . . . , g
(�)
α ) | α ∈ N

(m)} ⊆ E.
(b) For any t ∈ {1, . . . , m} and any j ∈ {1, . . . , �}, (T

g
(j)
k,t

)k∈N has the mixing
property.

(c) For any t and any i 	= j , (T
g

(j)
k,t −g

(i)
k,t

)k∈N has the mixing property.

(iii) For any ˜IP set E ⊆ G�, there exist an m ∈ N and non-degenerated and essen-
tially distinct sequences (g(1)

k )k∈N, . . . , (g(�)
k )k∈N in Gm with {(g(1)

α , . . . , g
(�)
α ) |

α ∈ N
(m)} ⊆ E and such that, for any A0, . . . , A� ∈ A,

R-lim
α∈N(m)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=0

μ(Aj ). (6.5)

(iv) Given sequences (g
(1)
k )k∈N, . . . ,(g(�)

k )k∈N in G such that, for any j ∈ {1, . . . , �},
limα→∞ g

(j)
α = ∞ and, for any i 	= j , limα→∞ g

(j)
α − g

(i)
α = ∞ (and so
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E = {(g(1)
α , . . . , g

(�)
α ) | α ∈ F} is an ˜IP set), there exists an IP-ring F (1) such

that, for any A0, . . . , A� ∈ A,

IP-lim
α∈F (1)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=1

μ(Aj ). (6.6)

(v) For any A0, . . . , A� ∈ A and any ε > 0, the set

Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}

is an ˜IP∗
set.

Proof. (i) �⇒ (ii): Let m ∈ N, let E ⊆ G� be an ĨP set and let the sequences
(h

(1)
k )k∈N, . . . , (h

(�)
k )k∈N in G be such that E = {(h(1)

α , . . . , h
(�)
α ) | α ∈ F}. By the

stipulation made in Remark 5.2, for any IP-ring F (1) ⊆ F , the set {(h(1)
α , . . . , h

(�)
α ) |

α ∈ F (1)} is again an ĨP set. Pick F (1) to be an IP-ring such that, for any A0, A1 ∈ A and
any i, j ∈ {1, . . . , �},

IP-lim
α∈F (1)

μ(A0 ∩ T
h

(j)
α

A1) and, if i 	= j , IP-lim
α∈F (1)

μ(A0 ∩ T
h

(j)
α −h

(i)
α

A1) (6.7)

exist. Let (αk)k∈N be the sequence in F generating F (1) (so, in particular, αk < αk+1

for each k ∈ N). It follows from (i) that each of the limits appearing in (6.7) equals
μ(A0)μ(A1) (otherwise, we would have a contradiction with formula (6.4)). Thus, for
any A0, A1 ∈ A and any i, j ∈ {1, . . . , �},

lim
k→∞ μ(A0 ∩ T

h
(j)
αk

A1)

= μ(A0)μ(A1) and, if i 	= j , lim
k→∞ μ(A0 ∩ T

h
(j)
αk

−h
(i)
αk

A1) = μ(A0)μ(A1).

For each j ∈ {1, . . . , �}, let (g(j)
k )k∈N = (h(j)

αk
, . . . , h(j)

αk
)︸ ︷︷ ︸

m times

. It is now easy to check that the

sequences (g(1)
k )k∈N, . . . ,(g(�)

k )k∈N are non-degenerated, essentially distinct, and satisfy
(a)–(c), completing the proof of (i) �⇒ (ii).

(ii) �⇒ (iii): This follows from Proposition 2.9.
(iii) �⇒ (iv): We will prove (iv) by applying Theorem 6.2 to the G�-sequence

x(g1,...,g�) = μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�
A�), (g1, . . . , g�) ∈ G�,

and the sequence (g
(1)
k , . . . , g

(�)
k )k∈N in G�.

Note that for any IP-ring F (2), {(g(1)
α , . . . , g

(�)
α ) | α ∈ F (2)} is an ĨP set. By

(iii), there exist an m ∈ N and non-degenerated and essentially distinct sequences
(h(1)

k )k∈N, . . . , (h(�)
k )k∈N in Gm with

{(h(1)
α , . . . , h(�)

α ) | α ∈ N
(m)} ⊆ {(g(1)

α , . . . , g(�)
α ) | α ∈ F (2)}
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for which (6.5) holds. Letting F (1) be an IP-ring for which the left-hand side of (6.6) exists
for any A0, . . . , A� ∈ A, we obtain by Theorem 6.2 that (6.6) holds.

(iv) �⇒ (v): This implication follows from the definition of ĨP
∗
.

(v) �⇒ (i): Let (gk)k∈N be a sequence in G with the property that limα→∞ gα = ∞.
It suffices to show that, for some IP-ring F (1) and any A0, A1 ∈ A,

IP-lim
α∈F (1)

μ(A0 ∩ TgαA1) = μ(A0)μ(A1).

By (6.1), there exists an IP-ring F (1) ⊆ F such that, for any A0, A1 ∈ A,

IP-lim
α∈F (1)

μ(A0 ∩ TgαA1) (6.8)

exists. Let (γk)k∈N be a sequence in F (1) with γk < γk+1, for each k ∈ N, and such
that the sequences (h

(j)
k )k∈N = (gγj+�k

)k∈N, j ∈ {1, . . . , �}, in G satisfy that (a) for any

j ∈ {1, . . . , �}, limα→∞ h
(j)
α = ∞, and (b) for any i 	= j , limα→∞ h

(j)
α − h

(i)
α = ∞. For

each α0 ∈ F , let

Eα0 = {(h(1)
α , . . . , h(�)

α ) | α ∈ F and α > α0}.
Since Eα0 is an ĨP set, (v) implies that, for any α0 ∈ F , any A0, A1 ∈ A and any ε > 0,

Eα0 ∩ Rε(A0, A1, X, . . . , X) 	= ∅.

Thus, for any α0 ∈ F , there exists an α > α0 such that h
(1)
α ∈ Rε(A0, A1). Note that

lim
α→∞ min

( ⋃
k∈α

γ1+�k

)
= ∞.

It follows that, for any β0 ∈ F , there is an α ∈ F such that h
(1)
α ∈ Rε(A0, A1) and such

that β = ⋃
k∈α γ1+�k ∈ F (1) satisfies β > β0. But gβ = g(

⋃
k∈α γ1+�k) = h

(1)
α , so

|μ(A0 ∩ Tgβ A1) − μ(A0)μ(A1)| < ε.

Since ε was arbitrary, for any A0, A1 ∈ A,

IP-lim
α∈F (1)

μ(A0 ∩ TgαA1) = μ(A0)μ(A1),

which completes the proof.

Remark 6.6. We saw in §4 that the versatility of R-limits allows one to obtain from
the multiparameter Theorem 3.1 some interesting results of diagonal nature. Similarly,
one can obtain diagonal results from Theorem 6.5. For example, let G = Z and assume
that (X, A, μ, T ) is a mildly mixing system. Then, by Theorem 6.5(iv), for any strictly
increasing sequence (nk)k∈N in Z, any non-zero and distinct integers a1, . . . , a� and any
IP-ring F (1) ⊆ F , there exists an IP-ring F (2) ⊆ F (1) such that, for any A0, . . . , A� ∈ A,

IP-lim
α∈F (2)

μ(A0 ∩ T a1nαA1 ∩ · · · ∩ T a�nαA�) =
�∏

j=0

μ(Aj ) (6.9)

(cf. [14, Theorem 9.27] and [15, Theorem 5.4].)
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6.2. Weakly mixing systems. This subsection is devoted to weakly mixing systems
(which were introduced in §5.2) and has a similar structure to that of §6.1. We will first
establish a technical lemma which connects R-limits with Césaro convergence. We will
then prove an analogue of Theorem 3.1 (see Theorem 6.10 below) for weakly mixing
systems and derive a corollary which has diagonal nature.

LEMMA 6.7. Let (G, +) be a countable abelian group, let (X, d) be a compact metric
space, let (xg)g∈G be a sequence in X, let x0 ∈ X, let (Fk)k∈N be a Følner sequence in G
and let E ⊆ G be such that d(Fk)(E) > 0. The following statements are equivalent.
(i)

lim
k→∞

1
|Fk|

∑
g∈Fk

1E(g)d(xg , x0) = 0. (6.10)

(ii) For any D ⊆ E with d(Fk)(D) > 0, there exist an m ∈ N and a sequence
(gk,1, . . . , gk,m)k∈N in Gm for which {gα | α ∈ N

(m)} ⊆ D and

R-lim
α∈N(m)

xgα = x0. (6.11)

Proof. (i) �⇒ (ii): Let D ⊆ E be such that d(Fk)(D) > 0. It follows from (6.10) that

lim
k→∞

1
|Fk|

∑
g∈Fk

1D(g)d(xg , x0) = 0.

Let ε > 0. There exist infinitely many g ∈ D such that d(xg , x0) < ε (otherwise, we would
have lim supk→∞(1/|Fk|) ∑

g∈Fk
1D(g)d(xg , x0) > 0). Thus, for each k ∈ N, there is a

gk ∈ D with d(xgk
, x0) < 1/k. It follows now that

R-lim
{k}∈N(1)

xg{k} = lim
k→∞ xgk

= x0.

(ii) �⇒ (i): It suffices to show that, for any given ε > 0, d(Fk)(Dε) = 0, where

Dε = {g ∈ E | d(xg , x0) > ε}.
(This will imply that, for each ε > 0,

lim sup
k→∞

1
|Fk|

∑
g∈Fk

1E(g)d(xg , x0)

≤ lim sup
k→∞

(
1

|Fk|
∑
g∈Fk

ε1E\Dε (g) + 1
|Fk|

∑
g∈Fk

1Dε (g)d(xg , x0)

)
≤ ε.)

Fix ε > 0 and suppose for contradiction that d(Fk)(Dε) > 0. It follows from (ii) that there
exist an m ∈ N and a sequence (gk,1, . . . , gk,m)k∈N in Gm with {gα | α ∈ N

(m)} ⊆ Dε

for which (6.11) holds. In particular, for some g ∈ Dε , d(xg , x0) < ε, which gives us the
desired contradiction.
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We collect in the following proposition some equivalent definitions of weak mixing
which will be needed for the proof of Theorem 6.10. The proof is totally analogous to the
classical case G = Z and is omitted.

PROPOSITION 6.8. Let (G, +) be a countable abelian group and let (X, A, μ, (Tg)g∈G)

be a measure-preserving system. The following statements are equivalent.
(i) (Tg)g∈G is weakly mixing.

(ii) For any ergodic probability measure-preserving system (Y , B, ν, (Sg)g∈G), the
system

(X × Y , A ⊗ B, μ ⊗ ν, (Tg × Sg)g∈G)

is ergodic.
(iii) For any Følner sequence (Fk)k∈N in G there exists a set B ⊆ G with d(Fk)(B) = 0

such that, for any A0, A1 ∈ A,

lim
g→∞, g 	∈B

μ(A0 ∩ TgA1) = μ(A0)μ(A1).

(iv) There exists a sequence (gk)k∈N in G with limk→∞ gk = ∞ such that, for any
A0, A1 ∈ A,

lim
k→∞ μ(A0 ∩ Tgk

A1) = μ(A0)μ(A1).

Remark 6.9. It follows from (ii) that, for any two weakly mixing systems (X, A, μ,
(Tg)g∈G) and (Y , B, ν, (Sg)g∈G), (Tg × Sg) is again weakly mixing.

THEOREM 6.10. Let � ∈ N, let (G, +) be a countable abelian group and let
(X, A, μ, (Tg)g∈G) be a measure-preserving system. The following statements are
equivalent.

(i) (Tg)g∈G is weakly mixing.
(ii) For any Følner sequence (Fk)k∈N in G�, any set E ⊆ G� with d(Fk)(E) > 0 and any

m ∈ N, there exist non-degenerated and essentially distinct sequences (g(j)
k )k∈N =

(g
(j)

k,1 , . . . , g
(j)
k,m)k∈N, j ∈ {1, . . . , �}, in Gm with the following properties.

(a) {(g(1)
α , . . . , g

(�)
α ) | α ∈ N

(m)} ⊆ E.
(b) For any t ∈ {1, . . . , m} and any j ∈ {1, . . . , �}, (T

g
(j)
k,t

)k∈N has the mixing
property.

(c) For any t and any i 	= j , (T
g

(j)
k,t −g

(i)
k,t

)k∈N has the mixing property.

(iii) For any Følner sequence (Fk)k∈N in G� and any set E ⊆ G� with d(Fk)

(E) > 0, there exist an m ∈ N and sequences (g(1)
k )k∈N, . . . , (g(�)

k )k∈N in Gm

with {(g(1)
α , . . . , g

(�)
α ) | α ∈ N

(m)} ⊆ E and such that, for any A0, . . . , A� ∈ A,

R-lim
α∈N(m)

μ(A0 ∩ T
g

(1)
α

A1 ∩ · · · ∩ T
g

(�)
α

A�) =
�∏

j=0

μ(Aj ).

(iv) For any A0, . . . , A� ∈ A and any ε > 0, the set
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Rε(A0, . . . , A�)

=
{
(g1, . . . , g�) ∈ G�

∣∣∣∣
∣∣∣∣μ(A0 ∩ Tg1A1 ∩ · · · ∩ Tg�

A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ < ε

}

has uniform density one.

Proof. (i) �⇒ (ii): For each j ∈ {1, . . . , �}, let πj : G� → G be defined by πj (g1, . . . ,
g�) = gj . Note that (Tπj (g))g∈G� is a weakly mixing action and, for any i 	= j ,
(T(πj −πi)(g))g∈G� is also weakly mixing. Moreover (see Remark 6.9),

(Sg)g∈G� =
( �∏

j=1

Tπj (g) ×
∏
i 	=j

T(πj −πi)(g)

)
g∈G�

is a weakly mixing G�-action on the probability space

(
X�2

,
�2⊗

j=1

A, ν

)
,

where ν = μ × · · · × μ︸ ︷︷ ︸
�2 times

.

By Proposition 6.8(iii), there exists a set B ⊆ G� with d(Fk)(B) = 0 such that, for any

A0, A1 ∈ ⊗�2

j=1 A,

lim
g→∞, g	∈B

ν(A0 ∩ SgA1) = ν(A0)ν(A1). (6.12)

We start with proving (ii) for m = 1. Let E ⊆ G� with d(Fk)(E) > 0. By Proposition 5.8
(applied to d = �, m = 1 and the set (E \ B) ⊆ G�) there exist non-degenerated and
essentially distinct sequences (g

(1)
k )k∈N, . . . , (g

(�)
k )k∈N in G with the property that, for

each k ∈ N, gk = (g
(1)
k , . . . , g

(�)
k ) ∈ E \ B. It follows now from (6.12) that (Sgk

)k∈N has
the mixing property and hence, for any j ∈ {1, . . . , �}, (T

g
(j)
k

)k∈N has the mixing property
and, for any i 	= j , (T

g
(j)
k −g

(i)
k

)k∈N has the mixing property as well.

Assume now that m > 1. Let (g
(1)
k )k∈N, . . . ,(g(�)

k )k∈N be non-degenerated and essen-
tially distinct sequences in G such that, for any distinct i, j ∈ {1, . . . , �}, (T

g
(j)
k

)k∈N
and (T

g
(j)
k −g

(i)
k

)k∈N have the mixing property. Let (hk)k∈N = (h
(1)
k , . . . , h

(�)
k )k∈N be a

subsequence of (g
(1)
k , . . . , g

(�)
k )k∈N such that, for any i, j ∈ {1, . . . , �},

lim
α→∞ h(j)

α = ∞ and, if i 	= j , lim
α→∞(h(j)

α − h(i)
α ) = ∞. (6.13)

Observe that, by (6.13), {(h(1)
α , . . . , h

(�)
α ) | α ∈ F} is an ĨP set. It follows from our choice

of (g
(1)
k )k∈N, . . . , (g

(�)
k )k∈N, that, for any M ∈ N, any non-empty set α ⊆ {1, . . . , M}, any

A0, A1 ∈ A and any j ∈ {1, . . . , �},
lim

k→∞ μ(T−h
(j)
α

A0 ∩ T
h

(j)
k

A1) = μ(A0)μ(A1), (6.14)
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and, for any i 	= j ,

lim
k→∞ μ(T−(h

(j)
α −h

(i)
α )

A0 ∩ T
h

(j)
k −h

(i)
k

A1) = μ(A0)μ(A1). (6.15)

Passing, if needed, to a subsequence of (hk)k∈N, we can derive now from (6.14) and (6.15)
the following equations

IP-lim
α∈F

μ(A0 ∩ T
h

(j)
α

A1) = μ(A0)μ(A1)

and, if i 	= j ,

IP-lim
α∈F

μ(A0 ∩ T
h

(j)
α −h

(i)
α

A1) = μ(A0)μ(A1).

We can conclude now the proof of (i) �⇒ (ii) by arguing as in the proof of Proposition 5.8
and imitating the constructions in the proofs of Proposition 5.7 and Lemma 5.3.

(ii) �⇒ (iii): This follows from Proposition 2.9.
(iii) �⇒ (iv): Let E = G� \ Rε(A0, . . . , A�). It suffices to show that, for any Følner

sequence (Fk)k∈N in G�, d(Fk)(E) = 0. To see this, note that if this was not the case, (iii)
would imply that E ∩ Rε(A0, . . . , A�) 	= ∅, a contradiction.

(iv) �⇒ (i): This implication is trivial and is omitted.

We conclude this section with a corollary of Theorem 6.10 which has diagonal nature
(this corollary can also be obtained from the main result in [6]).

COROLLARY 6.11. Let (G, +) be a countable abelian group, let (X, A, μ, (Tg)g∈G) be
a measure-preserving system and let φ1, . . . , φ� : G → G be homomorphisms with the
property that, for any j ∈ {1, . . . , �}, (Tφj (g))g∈G is weakly mixing and, for any i 	= j ,
(T(φj −φi)(g))g∈G is also weakly mixing. For any Følner sequence (Fk)k∈N in G and any
A0, . . . , A� ∈ A,

lim
k→∞

1
|Fk|

∑
g∈Fk

∣∣∣∣μ(A0 ∩ Tφ1(g)A1 ∩ · · · ∩ Tφ�(g)A�) −
�∏

j=0

μ(Aj )

∣∣∣∣ = 0. (6.16)

Proof. By Lemma 6.7, in order to prove (6.16), it suffices to show that for any E ⊆ G with
d(Fk)(E) > 0, there exists a non-degenerated sequence (gk)k∈N = (gk,1, . . . , gk,�)k∈N in
G� with {gα | α ∈ N

(�)} ⊆ E such that

R-lim
α∈N(�)

μ(A0 ∩ Tφ1(gα)A1 ∩ · · · ∩ Tφ�(gα)A�) =
�∏

j=0

μ(Aj ). (6.17)

By Theorem 6.10(ii), applied to the weakly mixing G-action

(Sg)g∈G =
( �∏

j=1

Tφj (g) ×
∏
i 	=j

T(φj −φi)(g)

)
g∈G

,

there exists a non-degenerated sequence (gk,1, . . . , gk,�)k∈N in G, with {gα | α ∈ N
(�)} ⊆

E, and such that, for any t ∈ {1, . . . , �}, the sequence (Sgk,t )k∈N has the mixing property.
It follows that for any t ∈ {1, . . . , �} and any j ∈ {1, . . . , �}, (Tφj (gk,t ))k∈N has the mixing
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property and, for any t and i 	= j , (T(φj −φi)(gk,t ))k∈N has the mixing property as well. The
result now follows from Proposition 2.9.

Remark 6.12. Taking in Corollary 6.11 G = Z, one obtains the following classical result
due to Furstenberg (cf. [14, Theorem 4.11]).

For any weakly mixing system (X, A, μ, T ), any non-zero and distinct integers
a1, . . . , a� and any A0, . . . , A� ∈ A,

lim
N−M→∞

1
N − M

N∑
n=M+1

∣∣∣∣μ(A0 ∩ T a1nA1 ∩ · · · ∩ T a�nA�) −
�∏

j=0

μ(Aj )

∣∣∣∣ = 0.
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