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Abstract

We consider the tail behavior of the product of two independent nonnegative random
variables X and Y . Breiman (1965) has considered this problem, assuming that X is
regularly varying with index α and that E{Yα+ε} < ∞ for some ε > 0. We investigate
when the condition on Y can be weakened and apply our findings to analyze a class of
random difference equations.

Keywords: Regular variation; subexponential distribution; random difference equation

2000 Mathematics Subject Classification: Primary 60H25; 60J30; 60F10

1. Introduction

Suppose that X and Y are two independent nonnegative random variables such that P{X > x}
is regularly varying with index −α, α ≥ 0 (i.e. P{X > yx}/ P{X > x} → y−α as x → ∞),
and that E{Yα+ε} < ∞ for some ε > 0. Then

P{XY > x} ∼ E{Yα} P{X > x} as x → ∞, (1.1)

with f (x) ∼ g(x) denoting f (x) = g(x)(1+o(1)). This result was first stated by Breiman [2]
for α ∈ [0, 1], and is known as Breiman’s theorem; a more recent study containing a proof for
all α can be found in [5].

We are interested in extensions of (1.1), in particular, in relaxing the condition E{Yα+ε} < ∞.
Apart from its intrinsic interest, our motivation for this comes from the well-known random
affine equation

R
d= MR + Q, (1.2)

where ‘
d=’ denotes equality in distribution and M , Q, and R are random variables independent

of each other. This equation appears in many different applications, most notably in actuarial
and financial mathematics. If P(|M| > 1) > 0 then R typically has a power tail and this case
is fairly well understood; classical papers are [10] and [14]. Unfortunately, not many results
are available when Q is light tailed and |M| ≤ 1. Some partial results can be found in [11]
and [19]. A relatively clean case seems to be when eQ is regularly varying with index −α and
independent of M . After taking exponents in (1.2), we may wonder whether the application of
Breiman’s theorem is justified, i.e. whether P{R > x} ∼ E{eαMR} P{Q > x}. If |M| < 1 − δ
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1032 D. DENISOV AND B. ZWART

almost surely (a.s.) for some δ > 0 then we can show that E{exp((α + ε)MR)} < ∞ for some
ε > 0, so that Breiman’s theorem (1.1) can indeed be applied. However, assuming the existence
of such a δ > 0 is not very natural; we are interested in the extent to which the tail equivalence
between R and Q remains true without invoking such an assumption. To obtain an answer to
this question, the conditions under which Breiman’s theorem remains true need to be relaxed
along the lines mentioned above.

We now proceed with an informal presentation of our results. If X is regularly varying with
index −α, the most general conditions on Y under which (1.1) holds would be

E{Yα} < ∞ and P{Y > x} = o(P{X > x}). (1.3)

We show that this set of conditions on Y is in general not enough for (1.1) to hold. To obtain
sufficient conditions, we mainly focus on invoking additional assumptions on the slowly varying
function L in the representation P{X > x} = L(x)x−α . In particular, we consider the following
three different cases.

1. If L(x) is bounded away from 0 (in a sense we make precise later on) then (1.3) implies
(1.1) without any further assumptions.

2. If L(x) is eventually decreasing to 0 then, for large enough x, L(ex) = P{U > x} for
some long-tailed random variable U . It turns out that the additional condition U ∈ S∗
is crucial for (1.1) to hold if U has a finite mean. A similar type of assumption has to be
made if L(x) oscillates at ∞; we review S∗ and other classes of distributions in Section 2.

3. If the condition E{U} < ∞ in the previous case does not hold (which is the case when
E{Xα} = ∞ and limx→∞ xα P{X > x} = 0) then we also need to invoke an additional
condition to ensure the validity of (1.1).

These three cases are respectively covered by Propositions 2.1–2.3 in Section 2. The necessity
of several of the additional regularity conditions is illustrated by a number of counterexamples
in Section 3.

The results of the present paper are related to several existing results in the literature.
Several researchers independently showed that (1.1) always holds if P{X > x} ∼ cx−α and
E{Yα} < ∞; see, e.g. [12, Lemma 2.1] and [19, Lemma 5.1]. Our Proposition 2.1 is an
extension of these results. Embrechts and Goldie [7] showed that XY is regularly varying with
index −α if both X and Y are regularly varying with index −α, without providing explicit
asymptotics. Cline [3] contains a property of the class S(γ ) which is strongly related to the
second case discussed above; we come back to this in Section 2. In addition, Cline [3] invest-
igated the asymptotic behavior of P{XY > x} in various cases where P{XY > x}/ P{X > x}
→ ∞.

This paper is organized as follows. In Section 2 we give a number of sufficient conditions
on L in order for (1.1) to hold under (1.3). Counterexamples are provided in Section 3. In
Section 4 we apply our results to obtain the tail behavior of R in the random difference equation
mentioned above. Some concluding remarks are given in Section 5.

2. Extensions of Breiman’s theorem

In this section we investigate which assumptions, in addition to (1.3), are needed to guarantee
(1.1). To make the paper self contained, we first give a quick review of the classes of heavy-tailed
distribution functions which are considered in this section.
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On a theorem of Breiman and a class of random difference equations 1033

A function L is slowly varying if L(ax)/L(x) → 1 for any a > 0 as x → ∞. A random
variable X has a regularly varying distribution tail if there exists a slowly varying function L

and a constant α ≥ 0 such that P{X > x} = L(x)x−α . We often summarize this as X being
regularly varying with index −α.

A random variable X is long tailed (we write X ∈ L) if P{X > x} ∼ P{X > x + y} as x

tends to ∞ for any y. Note that the function P{X > log x} is slowly varying if X is long tailed.
An additional class of densities is defined as follows. A nonnegative function f is in the

class Sd (and in this case we call f a subexponential density) if it satisfies the property

lim
x→∞

∫ x

0

f (x − y)

f (x)
f (y) dy = 2

∫ ∞

0
f (u) du < ∞.

If f (x) = P{U > x} for some random variable U , we say that U ∈ S∗. Both classes Sd and
S∗ have been introduced by Klüppelberg [15], [16].

Finally, recall that a nonnegative random variable T is in the class S(γ ), γ ≥ 0, if, as
x → ∞,

P{T > x + y}
P{T > x} → e−γy and

P{T + T ′ > x}
P{T > x} → 2 E{eγ T } < ∞,

with T ′ an independent and identically distributed (i.i.d.) copy of T . If γ = 0, we recover the
class S of subexponential distributions. The class S∗ is a subclass of S. In [16] it was shown
that, for γ > 0, T ∈ S(γ ) if and only if eγ x P{T > x} is in Sd . A recent interesting paper on
these classes of distributions is [9]. Finally, a function f is of dominated variation if

0 < lim inf
x→∞

f (2x)

f (x)
< lim sup

x→∞
f (2x)

f (x)
< ∞.

For more background on heavy tails, we refer the reader to [8].
As a preliminary we give a representation of slowly varying functions in terms of long-tailed

distribution functions. Throughout the rest of the paper, we use various properties of regularly
varying functions which all appear in the monograph [1].

Lemma 2.1. Let L be slowly varying. Then L admits precisely one of the following four
representations:

(i) L(x) = c(x),

(ii) L(x) = c(x)/ P{V > log x},
(iii) L(x) = c(x) P{U > log x},
(iv) L(x) = c(x) P{U > log x}/ P{V > log x}.

In all representations, c(x) is a function converging to a constant c ∈ (0, ∞). Here U and V

are two independent long-tailed random variables with hazard rates converging to 0.

Throughout this paper, the random variables U and V appearing in Lemma 2.1 will be
referred to as auxiliary random variables.
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1034 D. DENISOV AND B. ZWART

Proof of Lemma 2.1. By the representation theorem for slowly varying functions we can
write, for some function c(x) → c ∈ (0, ∞) and h(x) → 0,

L(x) = c(x) exp

(∫ x

1

h(u)

u
du

)
.

Write h(u) = h+(u)−h−(u), with h+(u) denoting the positive part of h(u) and h−(u) denoting
the negative part of h(u). Both h+(u) and h−(u) converge to 0. A first issue to consider is
whether

∫ x

1 hi(u)/u du converges, where i = +, −. If this would be the case, then this can
be incorporated in the function c(x), so without loss of generality, we can assume that either
hi(u) = 0 or the corresponding integral diverges. This leads to the four cases of Lemma 2.1.

Now suppose that
∫ x

1 h+(u)/u du diverges. Then there exists a long-tailed random variable
V such that

exp

(
−

∫ x

1

h+(u)

u
du

)
= exp

(
−

∫ log x

0
h+(ev) dv

)
= P{V > log x}.

A similar argument can be made for h−.

Proposition 2.1, below, states our first sufficient condition for (1.1), and its assumption on
L covers cases (i) and (ii) of Lemma 2.1.

Proposition 2.1. Assume that, in addition to (1.3), lim supx→∞ sup1≤y≤x L(y)/L(x) < ∞.
Then (1.1) holds.

Proof. The assumption on L implies that it is bounded away from 0, which implies that
α > 0. By replacing X and Y with Xα and Yα , respectively, if α 	= 1, we can assume that
α = 1. We can also assume, without loss of generality, that P{Y = 0} = 0. Note that the
asymptotic lower bound

lim inf
x→∞

P{XY > x}
P{X > x} ≥ E{Y }

always holds in view of Fatou’s lemma. To obtain an upper bound, write

P{XY > x} =
4∑

i=1

P{XY > x; Y ∈ Ai},

with A1 = [0, ε), A2 = [ε, M), A3 = [M, g(x)x), and A4 = [g(x)x, ∞). Here, g(x) ↓ 0 is
chosen such that P{Y > g(x)x} = o(P{X > x}) and g(x)x → ∞. Number the four terms as
I1, . . . , I4. Then

I1 ≤ P

{
X >

x

ε

}
∼ ε P{X > x}.

Furthermore, by the uniform convergence theorem for slowly varying functions we obtain

I2 ∼ E{Y ; ε < Y < M} P{X > x}.
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The fourth term can be upper bounded as follows:

I4 ≤ P{Y > g(x)x} = o(P{X > x}).
Thus, it remains to consider

I3 = P{X > x}
∫ g(x)x

M

L(x/y)

L(x)
y dP{Y ≤ y}.

We have, for C(x) = supy∈[1,x] L(y)/L(x) = supy∈[1,x] L(x/y)/L(x),

I3 ≤ P{X > x} sup
y∈[1,x]

L(x/y)

L(x)
E{Y ; Y > M} ∼ C(x) P{X > x} E{Y ; Y > M}.

Putting everything together, we obtain

lim sup
x→∞

P{XY > x}
P{X > x} ≤ ε + E{Y ; ε < Y < M} + C(∞) E{Y ; Y > M},

with C(∞) := lim supx→∞ C(x). The result now follows by noting that C(∞) < ∞ and by
letting ε ↓ 0 and M → ∞.

Note that the assumption on L was used only in the estimate of term I3; the estimates of
all other terms hold under (1.3). We now investigate what happens in cases (iii) and (iv) of
Lemma 2.1. It turns out that the situation is more complicated in these cases. In particular, we
need to rely on properties of the classes Sd and S∗ to estimate I3.

Proposition 2.2. Assume, in addition to (1.3), that α > 0 and that L admits representation
(iii) or (iv) of Lemma 2.1. If either L(ex) ∈ Sd or the auxiliary random variable U ∈ S∗ and
P{Y > y} = o(y−α P{U > log y}) then (1.1) holds.

Note that the condition P{Y > y} = o(y−α P{U > log y}) holds in case (iii) of Lemma 2.1.

Proof of Proposition 2.2. If L(ex) ∈ Sd then, according to Theorem 2.1 of [16], log X ∈
S(γ ) and the result then follows from [3]; see the discussion below Theorem 1 of [3].

For the other case, we proceed similarly as in the proof of Proposition 2.1. We again assume,
without loss of generality, that α = 1. After this transformation, the auxiliary random variables
U and V in the representation of L are replaced by αU and αV , respectively, which causes
no additional complications, for example, αU ∈ S∗ if and only if U ∈ S∗. It remains to
estimate I3. Define c∗(x) = supy∈[M,g(x)x] c(x/y)/c(x). Note that c∗(x) is bounded since
c(x) converges in (0, ∞). Observe that

I3 = P{X > x}
∫ g(x)x

M

L(x/y)

L(x)
y dP{Y ≤ y}

≤ P{X > x}c∗(x)

∫ g(x)x

M

P{U > log x − log y}
P{U > log x} y dP{Y ≤ y}.

It suffices to show that

lim
M→∞ lim sup

x→∞

∫ g(x)x

M

P{U > log x − log y}
P{U > log x} y dP{Y ≤ y} = 0. (2.1)
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1036 D. DENISOV AND B. ZWART

Let s(x) = P{Y > x}/x−1 P{U > log x} → 0. Integrating by parts, we obtain

∫ g(x)x

M

P{U > log x − log y}y dP{Y ≤ y}
= − P{Y > g(x)x} P{U > − log g(x)}xg(x) + P{Y > M}M P{U > log x − log M}

+
∫ xg(x)

M

P{U > log x − log y} P{Y > y} dy

+
∫ xg(x)

M

P{Y > y}y dy P{U > log x − log y}.

We continue by bounding all terms on the right-hand side of this expression. The first term
is nonpositive and can therefore be discarded. To bound the second term, note that, since
U ∈ S∗ ⊂ L,

lim
x→∞

P{Y > M}M P{U > log x − log M}
P{U > log x} = P{Y > M}M.

For the third term, we have

lim sup
x→∞

∫ xg(x)

M
P{U > log x − log y} P{Y > y} dy

P{U > log x}
≤ lim sup

x→∞
sup
y≥M

s(y)

∫ x

M
P{U > log x − log y} P{U > log y} d log y

P{U > log x}
≤ sup

y≥M

s(y)2 E{U},

since U ∈ S∗. Finally we have, for the fourth term,

lim sup
x→∞

∫ xg(x)

M
P{Y > y}y dy P{U > log x − log y}

P{U > log x}
≤ lim sup

x→∞
sup
y≥M

s(y)

∫ x

M
P{U > log y} dy P{U > log x − log y}

P{U > log x}
≤ 2 sup

y≥M

s(y),

since U ∈ S∗, and therefore U is subexponential. Putting everything together, we see that

lim sup
x→∞

∫ g(x)x

M

P{U > log x − log y}
P{U > log x} y dP{Y ≤ y}

≤ P{Y > M}M + sup
y≥M

s(y)2 E{U} + 2 sup
y≥M

s(y).

This converges to 0 if M tends to ∞, since our assumption on P{Y > y} implies that s(y) → 0.
We conclude that (2.1) holds.

Finally note that the two assumptions U ∈ S∗ and L(ex) ∈ Sd are equivalent if case (iii) of
Lemma 2.1 applies. However, in general, the two assumptions are not implied by one another.
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We continue by investigating a third case, which occurs when the auxiliary random variable
U has infinite mean, in which case U cannot be in S∗. Set

m(x) =
∫ x

0
tα dP{X ≤ t}.

It is clear that since E{Xα} = ∞ if E{U} = ∞, we have m(x) → ∞.

Proposition 2.3. Assume, in addition to (1.3), that α > 0 and that

P{Y > x}
P{X > x}m(x) → 0. (2.2)

Let L be such that

lim sup
x→∞

sup√
x≤y≤x

L(y)

L(x)
< ∞. (2.3)

Then (1.1) holds.

A sufficient condition for (2.3) to hold is that L(ex) is of dominated variation. The quantity√
x in (2.3) may be replaced by xβ , β < 1.

Proof of Proposition 2.3. By considering Xα and Yα when α 	= 1, it suffices to prove the
result for α = 1. We proceed similarly as in the proof of Proposition 2.2. It remains to
estimate I3:

I3 = P{X > x}
∫ g(x)x

M

L(x/y)

L(x)
y dP{Y ≤ y}.

Since P{Y > x} = o(P{X > x}), there exists a function g1(x) ↓ 0 such that P{Y > g1(x)x} =
o(P{X > x}). Set g(x) = max(2/

√
x, g1(x)) ≥ g1(x). Then g(x) ↓ 0 and

P{Y > g(x)x} ≤ P{Y > g1(x)x} = o(P{X > x}).
Therefore, we can assume that the function g in I3 has the properties g(x) ↓ 0 and g(x) > 1/

√
x.

In what follows, we split the integral in I3 into two integrals (according to the intervals
[M,

√
x] and [√x, g(x)x]) and estimate both of them separately.

For the first integral, we have

∫ √
x

M

L(x/y)

L(x)
y dP{Y ≤ y} ≤ sup√

x≤y≤x

L(y)

L(x)

∫ ∞

M

y dP{Y ≤ y}.

As M goes to infinity, the latter goes to 0, since E{Y } < ∞ and condition (2.3) holds. We
integrate the second integral by parts to obtain

∫ g(x)x

√
x

L

(
x

y

)
y dP{Y ≤ y} = − P{Y > g(x)x}L

(
1

g(x)

)
xg(x)

+ P{Y >
√

x}√xL(
√

x) +
∫ xg(x)

√
x

P{Y > y} dy

(
yL

(
x

y

))
.

The first term is nonpositive. For the second term, we have, owing to E{Y } < ∞ and (2.3),

lim
x→∞

P{Y >
√

x}√xL(
√

x)

L(x)
= 0.
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By (2.2), the third term satisfies

∫ xg(x)√
x

P{Y > y} d(yL(x/y))

L(x)
= o(1)

∫ xg(x)√
x

x(P{X > y}/m(y)) dP{X ≤ x/y}
L(x)

= o(1)

m(
√

x)

∫ xg(x)√
x

L(y)xy−1 dP{X ≤ x/y}
L(x)

= o(1)
1

m(
√

x)
sup√
x≤y≤x

L(y)

L(x)

∫ √
x

1/g(x)

t dP{X ≤ t}

= o(1)
m(

√
x) − m(1/g(x))

m(
√

x)
sup√
x≤y≤x

L(y)

L(x)

→ 0,

owing to condition (2.3).

Note that it is not sufficient to just assume that P{Y > x}/ P{X > x} → 0. This is illustrated
with a counterexample in Section 3.

For completeness, we finally state a well-known result for α = 0.

Proposition 2.4. (Embrechts and Goldie [7].) Suppose, in addition to (1.3), that α = 0 and
that, in particular, log X ∈ S. Then (1.1) holds.

The fact that it is difficult to remove the assumption log X ∈ S is illustrated in Section 3.2.

3. Counterexamples

In Section 2 we saw that Breiman’s theorem can be extended in a number of cases, but that
the minimal conditions, (1.3), were not achieved. The goal of the present section is to illustrate
that it is hard or even impossible to weaken the assumptions made in Propositions 2.2–2.4. In
the next three subsections we give a counterexample related to each of these three propositions.

3.1. A counterexample related to Proposition 2.2

In this subsection we construct independent nonnegative random variables X and Y such
that X is regularly varying and Y satisfies (1.3), but for which (1.1) fails.

Since α > 0, we can take α = 1 without loss of generality. Let a(x) be a distribution tail
which is long tailed, but not in S∗. Assume that

∫ ∞
0 a(x) dx < ∞ and that

lim sup
x→∞

∫ x

0

a(y)a(x − y)

a(x)
dy = ∞.

(All known examples of distributions in L \ S satisfy this property.) Since a(x) is long tailed,
but not in S∗, there exists a function h(x) such that h(x) → ∞, a(x − h(x)) ∼ a(x), and

lim sup
x→∞

∫ x−h(x)

h(x)

a(y)a(x − y)

a(x)
dy = ∞.
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Now set L(x) = a(log x). From the previous considerations, it follows that there exists a func-
tion d(x) such that we have d(x) → ∞, d(x) = o(

√
x), L(x/d(x)) ∼ L(x),

∫ ∞
1 (L(x)/x) dx

< ∞, and

lim sup
x→∞

∫ x/d(x)

d(x)

L(y)L(x/y)

yL(x)
dy =: lim sup

x→∞
r(x) = ∞.

Let xn, n ≥ 1, be a sequence such that xn → ∞ and r(xn) → ∞.
We are now ready to define X and Y . Let X be a random variable with tail L(x)/x. Observe

that X has finite mean. Set, for x ≥ 0, s(x) = √
r(xn) when x ∈ [d(xn), d(xn+1)). Observe

that s(x) → ∞. Let g(x) = P{X > x}/xs(x) = L(x)/x2s(x) be the density of Y . Since
s(x) → ∞, it can be shown, by Karamata’s theorem, that P{Y > x} = o(P{X > x}).

Then

P{XY > x; d(x) < Y < x/d(x)}
P{X > x} =

∫ x/d(x)

d(x)

L(y)L(x/y)

ys(y)L(x)
dy

≥
∫ x/d(x)

d(x)

L(y)L(x/y)

ys(d(x))L(x)
dy

= r(x)

s(d(x))
.

This is at least
√

r(xn) at the points xn, n ≥ 1. We conclude that

lim sup
x→∞

P{XY > x; Y > d(x)}
P{X > x} = ∞,

implying that (1.1) does not hold. This illustrates that the condition U ∈ S∗ in Proposition 2.2
cannot be weakened in general. We would like to remark that in the above construction we
can additionally assume that both a(x) and

∫ ∞
x

a(u) du are subexponential, but for which
a(x) /∈ S∗; see [6] for an example of such a distribution tail.

3.2. A counterexample related to Proposition 2.4

We use the same notation as in the previous subsection, but now assume that α = 0. Let
a(x) be a distribution tail which is long tailed, but not in S. In addition, assume that

lim sup
x→∞

∫ x

0

a(x − y)

a(x)
da(y) = ∞.

(All known examples of distributions in L \ S satisfy this property; see Subsection 3.1.) Since
a(x) is long tailed, there exists a function h(x) such that h(x) → ∞, a(x − h(x)) ∼ a(x), and

lim sup
x→∞

∫ x−h(x)

h(x)

a(x − y)

a(x)
da(y) = ∞.

Now set L(x) = a(log x). From the previous considerations, it follows that there exists a
function d(x) such that we have d(x) → ∞, d(x) = o(

√
x), L(x/d(x)) ∼ L(x), and

lim sup
x→∞

∫ x/d(x)

d(x)

L(x/y)

L(x)
dL(y) =: lim sup

x→∞
r(x) = ∞.

Let xn, n ≥ 1, be a sequence such that xn → ∞ and r(xn) ↑ ∞.
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We are now ready to define X and Y . Let X be a random variable with tail L(x). Set, for
x ≥ 0, s(x) = √

r(xn) when x ∈ [d(xn), d(xn+1)). Let P{Y > x} = P{X > x}/s(x) =
L(x)/s(x). Since s(x) ↑ ∞, P{Y > x} = o(P{X > x}). Conditioning on values of X, we
obtain

P{XY > x; d(x) < X < x/d(x)}
P{X > x} =

∫ x/d(x)

d(x)

L(x/y)

s(x/y)L(x)
dL(y)

≥
∫ x/d(x)

d(x)

L(x/y)

s(d(x))L(x)
dL(y)

= r(x)

s(d(x))
.

This is at least
√

r(xn) at the points xn, n ≥ 1. We conclude that

lim sup
x→∞

P{XY > x; X > d(x)}
P{X > x} = ∞,

implying that (1.1) does not hold.

3.3. A counterexample related to Proposition 2.3

In this subsection we show that the condition P{Y > x} = o(P{X > x}/m(x)) in Proposi-
tion 2.3 cannot be weakened to the more appealing condition P{Y > x} = o(P{X > x}). To
construct a counterexample, we let

fX(x) = 1

x2 log x

be the density of X. In this case P{X > x} ∼ 1/x log x and P{U > x} ∼ 1/x. Furthermore,
let

fY (y) =

⎧⎪⎨
⎪⎩

fY (
√

xn+1), xn ≤ y <
√

xn+1,

1

y2 log y log log y
,

√
xn+1 ≤ y < xn+1,

be the density of Y . Here, xn = exp(exp(n2)). It is clear that

P{Y > x} =
∫ ∞

x

fY (y) dy

<

∫ ∞

x

1

y2 log y log log y
dy

∼ 1

x log x log log x

= o(P{X > x}).
Also,

E{Y } =
∞∑

n=0

(∫ √
xn+1

xn

+
∫ xn+1

√
xn+1

)
yfY (y) dy

=
∞∑

n=0

fY (
√

xn+1)
xn+1 − x2

n

2
+

∞∑
n=0

(log log log xn+1 − log log log
√

xn+1).
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The first sum can be bounded by

∑
fY (

√
xn+1)xn+1 =

∑ 1

log
√

xn+1 log log
√

xn+1
<

∑ 2

exp(n2)
< ∞.

To bound the second sum, note that

log log log xn+1 − log log log
√

xn+1 = log
n2

n2 − log 2
∼ log 2

n2 .

Thus, the second sum is finite as well, and we conclude that E{Y } < ∞. Summing up all these
facts, we have: U is a regularly varying random variable, P{Y > x} = o(P{X > x}), and
E{Y } < ∞. Now we will show that (1.1) does not hold.

It is sufficient to show that

lim
M→∞ lim inf

x→∞

∫ g(x)x

M

P{U > log x − log y}
P{U > log x} y dP{Y ≤ y} > 0. (3.1)

We have
∫ g(xn)xn

M

P{U > log xn − log y}
P{U > log xn} y dP{Y ≤ y}

>

∫ g(xn)xn

√
xn

P{U > log xn − log y}
P{U > log xn} y dP{Y ≤ y}

= log xn

∫ g(xn)xn

√
xn

1

log xn − log y

dy

y log y log log y

> log xn

∫ g(xn)xn

√
xn

1

log xn − log y

dy

y log xn log log xn

= 1

log log xn

∫ g(xn)xn

√
xn

1

log xn − log y

dy

y

= log log
√

xn − log log(1/g(xn))

log log xn

.

Now note that we can choose a g(x) which tends to 0 very slowly, e.g. g(x) > 1/ log x. In this
case

log log
√

xn − log log(1/g(xn))

log log xn

→ 1.

Therefore, (3.1) holds which implies that (1.1) does not hold.

4. Application to a random difference equation

Let R be a random variable satisfying (1.2), let 0 ≤ M ≤ 1, P{M = 1} = 0, and let Q

be independent of M . Throughout this section, we assume that P{Q > x} = g(x)e−αx , with
α > 0 and g(log x) slowly varying. Clearly this assumption implies that eQ is regularly varying
with index −α. Our main interest is in obtaining the tail behavior of R. Before we proceed
with our analysis, we mention some related work on this problem. Without dependence and
nonnegativity assumptions on Q and M , logarithmic asymptotics for R have been obtained
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in [11]. Precise asymptotics in the present setting, with Q exponentially distributed, have been
obtained in [19].

The goal of this section is to relax the assumption on Q made in [19], and to give an
illustration of the applicability of the results obtained in previous sections: in the next four
subsections we give applications of Propositions 2.1–2.4.

4.1. An application of Proposition 2.1

If the function g(x) is bounded away from 0, it is straightforward to obtain the tail behavior
of R, as shown by the following result.

Proposition 4.1. Assume that lim supx→∞ sup1≤y≤x g(y)/g(x) < ∞. Then

P{R > x} ∼ E{eαMR} P{Q > x}
if and only if E{eαMQ} < ∞.

Proof. The proof is similar to the proof of Theorem 5.1 of [19]. Along the lines of
Proposition 5.1 of that paper, it can be shown that E{eαMR} < ∞ if and only if E{eαMQ} < ∞.
Taking exponents on both sides in (1.2), we obtain eR d= eMReQ. We see that all conditions of
Proposition 2.1, with L(x) = g(log x), are satisfied, providing the result.

The above result covers the case where the limit of g(x) exists and is strictly positive
(possibly ∞). As we will see below, the case in which g(x) → 0 is more challenging to deal
with.

4.2. An application of Proposition 2.2

If g(x) → 0, the main difficulty is to show that MR is sufficiently light tailed. In the setting
of Proposition 2.2 this is possible under the following reasonable assumptions.

Proposition 4.2. Suppose that Q ∈ S(α), α > 0. Then E{eαMR} < ∞ and P{R > x} ∼
E{eαMR} P{Q > x}.

Proof. Since E{eαQ} < ∞ and R
d= MR + Q, the statement follows from Proposition 2.2

after we have verified that
P{MR > x} = o(P{Q > x}). (4.1)

For this, we first use a similar bounding procedure as in Proposition 5.1 of [19]. Let Mn, n ≥ 0,
and Qn, n ≥ 0, be mutually independent i.i.d. copies of M and Q, respectively. Then we can
write MR

d= ∑∞
k=1 Qk

∏k
i=1 Mi . Define the sequence of random times τ̄k , k ≥ 0, as follows.

Let τ̄0 = 0 and, for k ≥ 1,
τ̄k = inf{n > τ̄k−1 : Mn ≤ η}.

Take η > 0 small enough so that P{M > η} E{eαQ} < 1, and write

MR
d=

∞∑
k=1

Qk

k∏
i=1

Mi =
∞∑

k=1

τ̄k∑
n=τ̄k−1+1

Qn

n∏
i=1

Mi ≤ M1

∞∑
k=1

ηk−1
τ̄k∑

n=τ̄k−1+1

Qn. (4.2)

Set Ck = ∑τ̄k

n=τ̄k−1+1 Qn. The sequence {Ck, k ≥ 1} is i.i.d., and since Qn ∈ S(α), we have,
using a well-known result on geometric random sums (see, e.g. [4]),

P{Ck > x} ∼ cη P{Q > x},
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with cη a finite constant. Set Rη = ∑∞
k=1 ηk−1Ck . Observe that R is stochastically dominated

by Rη and that Rη
d= ηRη + C1. This is an equation similar to the original equation (1.2), but

with Q replaced by C1 and M replaced by η. We see that

E{exp(sRη)} =
∞∏

n=1

E{exp(sηn−1Cn)},

from which it simply follows that there exists a δ > 0 such that E{exp((α + δ)ηRη)} < ∞.
Consequently, by the classical version of Breiman’s theorem we obtain

P{Rη > x} ∼ E{exp(αηRη)} P{C1 > x} ∼ E{exp(αηRη)}cη P{Q > x}.
Since M < 1 a.s. and since P{Q > x/ζ } = o(P{Q > x}), we conclude, from the tail
asymptotics for Rη, that, for any ζ < 1,

P{MRη > x} ≤ P{M > ζ } P{Rη > x} + P

{
Rη >

x

ζ

}

= o(P{Q > x}) as ζ ↑ 1.

Since R is stochastically dominated by Rη, we arrive at (4.1).

4.3. An application of Proposition 2.3

To check the sufficient condition of Proposition 2.3 requires more work. We therefore focus
on a special case. To save space, we leave out some of the details which are straightforward or
which overlap with similar arguments given before.

Proposition 4.3. Assume that P{1 − M ≤ x} = h(1/x)xγ for some γ > 0 and a function
h which is slowly varying at ∞. Assume, in addition, that P{Q > x} ∼ 	(x)x−βe−αx ,
with 	 a slowly varying function and β ∈ (0, 1). Then E{eαMR} < ∞ and P{R > x} ∼
E{eαMR} P{Q > x} if β + γ > 1.

The proof of this proposition relies on the following lemma.

Lemma 4.1. Under the assumptions of Proposition 4.3, for any η ∈ [0, 1),

P{MQ > x | M > η} ∼ 1

P{M > η}
(1 + γ )(α)−γ h(x)	(x)x−γ−βe−αx.

Proof. Note that the tail 1/(1 − M) is regularly varying at ∞ with index −γ . Therefore,

P

{
1

1 − M
> x

}
∼ P

{
1

1 − M
> x + 1

}
= P

{
M

1 − M
> x

}
for x → ∞.

Consequently, if we define Y = (1 − M)/M then P{Y ≤ x} ∼ P{1 − M ≤ x} = h(1/x)xγ as
x ↓ 0. Let w(s) be the Laplace–Stieltjes transform of Y . By Fellers Tauberian theorem (see
[1, Theorem 1.7.1]) we obtain, as s → ∞,

w(s) ∼ 
(1 + γ )h(s)s−γ . (4.3)

We see that M = 1/(Y + 1), so that

P{MQ > x} = P{Q > x(Y + 1)}
= e−αxx−β	(x)

∫ ∞

0

	(x(y + 1))

	(x)
(y + 1)−βe−αxy dP{Y ≤ y}.
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We say that X
d≤ Y if P(X > t) ≤ P(Y > t) for all t ∈ R. Now, note that, for some ε > 0,

∫ ∞

0

	(x(y + 1))

	(x)
(y + 1)−βe−αxy dP{Y ≤ y}

∼
∫ 1

0

	(x(y + 1))

	(x)
(y + 1)−βe−αxy dP{Y ≤ y} + o(e−εx)

∼
∫ 1

0
(y + 1)−βe−αxy dP{Y ≤ y} + o(e−εx)

∼
∫ ∞

0
(y + 1)−βe−αxy dP{Y ≤ y} + o(e−εx).

In the first step we used the fact that the contribution of the integral from the interval [1, ∞) is
exponentially small, and in the second step we applied the uniform convergence theorem for
slowly varying functions. From (4.3) we obtain, as x → ∞,


(1 + γ )h(x)(αx)−γ ∼ w(αx)

=
∫ ∞

0
e−αxy dP{Y ≤ y}

∼
∫ ∞

0
(y + 1)−βe−αxy dP{Y ≤ y}.

The last equivalence can be obtained by noting that the main contribution to the asymptotics
of the integral comes from y ∈ [0, δ], with arbitrarily small δ, implying that (y + 1)−β can be
made arbitrary close to 1 for y ∈ [0, δ]. Combining these results, we obtain the statement of
the lemma for η = 0. The extension to general η is straightforward.

Proof of Proposition 4.3. Let Mη be a random variable distributed as M | M > η. Since
c	(x)h(x)x−γ−β ∈ Sd for any constant c > 0, we find, by Theorem 2.1 of [16] and Lemma 4.1,
that MηQ ∈ S(α) for any η < 1. Now we proceed similarly, but slightly differently as in the
proof of Proposition 4.2; the notation introduced in that proof is used here as well. We can
bound MR in a similar but slightly more precise way, as in (4.2), to obtain

MR
d=

∞∑
k=1

Qk

k∏
i=1

Mi =
∞∑

k=1

τ̄k∑
n=τ̄k−1+1

Qn

n∏
i=1

Mi ≤
∞∑

k=1

ηk−1
τ̄k∑

n=τ̄k−1+1

MnQn.

Define C̄k = ∑τ̄k

n=τ̄k−1+1 MnQn. It is clear that C̄k , k ≥ 1, is an i.i.d. sequence. Let Mη
i , i ≥ 1,

be an i.i.d. sequence independent of everything else such that M
η
1

d= M1 | M1 > η. Then, we
see that

C̄1
d≤

τ̄1∑
n=1

Mη
nQn.

Since M
η
nQn ∈ S(α), we can proceed as in the proof of Proposition 4.2. Since τ̄1 is independent

of the sequence (M
η
n ), C̄1 has the same tail behavior as M

η
1 Q1. As before, R is stochastically

smaller than Rη = ∑∞
n=1 ηn−1C̄n, and as before we can show that Rη has the same tail

behavior as C̄1. We conclude that P{MR > x} = O(P{MQ > x}). This enables us to apply
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Proposition 2.3. Define X = eQ. Then, integrating by parts,

m(x) =
∫ x

0
tα−1 P{X > t} dt − xα P{X > x}

=
∫ x

0
t−1	(log t)(log t)−β dt − (1 + o(1))(log x)−β	(log x)

∼
∫ log x

log t=0
	(log t)(log t)−β d log t − (1 + o(1))(log x)−β	(log x)

∼ 1

1 − β
(log x)1−β	(log x),

where we applied Karamata’s theorem in the last step. Thus, m(x)/ P{X > x} ∼
(1/(1 − β))xα log x. Writing Y = eMR , we see that, as x → ∞,

P{Y > x} = O(P{eMQ > x})
= O(x−α(log x)−γ−β	(log x)h(log x)),

which implies condition (2.2), since γ + β > 1. We thus conclude, from Proposition 2.3, that
(1.1) holds for our choice of X and Y , which implies our assertion.

4.4. An application of Proposition 2.4

If α = 0, Q is heavy tailed. Results for regularly varying Q can be found in [13], [17], and
[20]. Here we focus on the case in which the tail of Q is lighter than any power tail.

Proposition 4.4. If Q ∈ S and in the domain of attraction of the Gumbel law then

P{R > x} ∼ P{Q > x}.
This result is fundamentally different from the case in which Q is regularly varying with

index −α, in which case it is known, from the above references, that P{R > x} ∼
(1/(1 − E{Mα})) P{Q > x}.

Proof of Proposition 4.4.. Using the same arguments as in Proposition 4.2 (note that Q ∈
S(0)), we obtain P{R > x} ≤ P{Rη > x}, with Rη = ∑∞

n=1 ηn−1Cn, with P{C1 > x} ∼
c(η) P{Q > x}. This implies that C1 is subexponential and in the domain of attraction of the
Gumbel distribution as well. This allows us to apply LemmaA3.27 of [8] to obtain P{Rη > x} ∼
P{C1 > x}. Thus, P{MR > x} is asymptotically smaller than c(η) P{MQ > x}. Since Q is in
the domain of attraction of the Gumbel law, the tail of Q is also of rapid variation, implying that
P{MQ > x} = o(P{Q > x}). Hence, P{MR > x} = o(P{Q > x}) also. The proof is now
completed by applying Proposition 2.4.

5. Concluding remarks

In this paper we derived several extensions of Breiman’s theorem, by introducing specific
assumptions on the slowly varying function L. An interesting question which we did not
resolve is whether the condition that the slowly varying function L is also of �-variation (see
[1, Chapter 3]) would be sufficient for (1.1) to hold. That the assumptions on L are in some sense
necessary was illustrated in Section 3. In Section 4 we applied our results from Section 2 to
analyze the equation R

d= MR + Q. We assumed that Q and M were independent, which may
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be too restrictive in some applications. It would therefore be interesting to extend Breiman’s
theorem to the case where X and Y are dependent. A partial result in this direction has recently
been obtained in [18].
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