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Abstract In order to study integral points of bounded log-anticanonical height on weak del Pezzo surfaces,
we classify weak del Pezzo pairs. As a representative example, we consider a quartic del Pezzo surface of
singularity type A1 +A3 and prove an analogue of Manin’s conjecture for integral points with respect
to its singularities and its lines.
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1. Introduction

Del Pezzo surfaces over Q often contain infinitely many rational points. Over the past 20
years, Manin’s conjecture [16, 22] for the asymptotic behavior of the number of rational

points of bounded anticanonical height has been confirmed for some smooth and many

singular del Pezzo surfaces (see [4, 5, 6] for some milestones and [1, § 6.4.1] for many
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1260 U. Derenthal and F. Wilsch

further references), in most cases using universal torsors, often combined with advanced

analytic techniques.

In recent years, a conjectural framework for the density of integral points has emerged
in the work of Chambert-Loir and Tschinkel [7]. The purpose of this paper is to initiate

a systematic investigation of integral points of bounded height on del Pezzo surfaces.

Only a few of them are covered by general results for equivariant compactifications
of vector groups [8] or the incomplete work on toric varieties [9] (see also [25]); most

del Pezzo surfaces are out of reach of this harmonic analysis approach since they are

not equivariant compactifications of algebraic groups [13, 14]. Del Pezzo surfaces are
inaccessible to the circle method, which gives asymptotic formulas for integral points

only on high-dimensional complete intersections [3], [7, § 5.4]. Therefore, we adapt the

universal torsor method to integral points in order to confirm new cases of an integral

analogue of Manin’s conjecture. See also [24] for a three-dimensional example.
As rational and integral points coincide on a projective variety X, the study of the

latter becomes interesting on its own on an integral model of the complement X \Z of an

appropriate boundary Z. Our first result (Theorem 10 in Section 2) is a general treatment
of possible boundaries on singular del Pezzo surfaces of low degree. For singular cubic

surfaces, Z must be an A-singularity; for singular quartic del Pezzo surfaces, Z must

be an A-singularity or a line passing only through A-singularities. Furthermore, A1-
singularities behave differently than other A-singularities.

Therefore, a good starting point seems to be a quartic del Pezzo surface that contains

an A1- and an A3-singularity and three lines, which is neither toric [12, Remark 6] nor a

compactification of G2
a [13]. For each boundary Z admissible in the sense of Theorem 10,

we get an associated counting problem and prove an asymptotic formula of the shape

cB(logB)b−1

(Theorem 1), encountering a range of different phenomena when dealing with the
different types of boundary. These asymptotic formulas admit a geometric interpretation

(Theorem 2). In particular, the leading constant c consists of Tamagawa numbers as

defined in [7] and combinatorial constants (analogous to the constant α defined by Peyre
for rational points) as defined in [9] for toric varieties and studied in greater generality in

[25]; this is the first result applying this combinatorial construction in a nontoric setting.

1.1. The counting problem

Let S ⊂ P4
Q be the quartic del Pezzo surface defined by

x2
0+x0x3+x2x4 = x1x3−x2

2 = 0 (1)

over Q, with an A1-singularity Q1 = (0 : 1 : 0 : 0 : 0) and an A3-singularity Q2 = (0 : 0 : 0 :

0 : 1). Let S ⊂ P4
Z be its integral model defined by the same equations over Z.

The closure of every rational point P ∈ S(Q) is an integral point P ∈ S(Z); both are
represented (uniquely up to sign) by coprime (x0, . . . ,x4)∈Z5 \{0} satisfying the defining

equations (1). Recall that studying integral points becomes interesting only when we

choose a boundary Z to consider integral points on S \Z, and that the types of boundaries
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Integral points on singular del Pezzo surfaces 1261

in Theorem 10 for our case are the singularities and the lines; we start with the former.
To do so, let Z1 =Q1, Z2 =Q2; in addition to these, we study the boundary Z3 =Q1∪Q2,

which goes beyond the setting of weak del Pezzo pairs described in the beginning of the

following section. Let Zi = Zi and Ui = S \Zi. Hence, P lies in U3(Z), say, if and only if
it is does not reduce to one of the singularities modulo any prime p. In other words, a

representative (x0, . . . ,x4) of a point in Ui(Z) satisfies the integrality condition

gcd(x0,x2,x3,x4) = 1, if i= 1,

gcd(x0,x1,x2,x3) = 1, if i= 2, or

gcd(x0,x2,x3,x4) = 1 and gcd(x0,x1,x2,x3) = 1, if i= 3.

(2)

Since the sets Ui(Z) of integral points are clearly infinite, we consider integral points of

bounded height. We work with the height functions

H1(P ) = max{|x0|, |x2|, |x3|, |x4|},
H2(P ) = max{|x0|, |x1|, |x2|, |x3|}, and

H3(P ) = max{|x0|, |x2|, |x3|,min{|x1|, |x4|}}
(3)

because they can be interpreted as log-anticanonical heights on a minimal desingulariza-
tion, as we shall see below (Lemma 14).

It turns out that the number of integral points of bounded height is dominated by the

integral points on the three lines

L1 = {x0 = x2 = x3 = 0}, L2 = {x0 = x1 = x2 = 0}, L3 = {x0+x3 = x1 = x2 = 0}; (4)

in fact, there are infinitely many integral points of height 1 on some of them. Therefore, we
count integral points only in their complement V = S \{x2 = 0}. Hence, we are interested
in the asymptotic behavior of

Ni(B) = #{P ∈ Ui(Z)∩V (Q) |Hi(P )≤B}, (5)

the number of integral points of bounded log-anticanonical height that are not contained

in the lines. Explicitly, this is

Ni(B) = #{(x0, . . . ,x4) ∈ Z5 \{0} | (1), (2), x2 > 0, Hi(x0 : · · · : x4)≤B}. (6)

Recall that the second type of boundary is a line, resulting in Z4 = L1,Z5 = L2,Z6=L3

with the notation in equation (4). Let Zi = Zi in S and Ui = S \ Zi for i = 4,5,6.
Analogously to the first three cases, a point (x0 : · · · : x4) ∈ S with coprime x0, . . . ,x4 ∈ Z

lies in Ui(Z) if and only if

gcd(x0,x2,x3) = 1, if i= 4,

gcd(x0,x1,x2) = 1, if i= 5, or

gcd(x0+x3,x1,x2) = 1, if i= 6.

(7)
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We work with the heights

H4(P ) = max{|x0|,|x2|,|x3|},
H5(P ) = max{|x0|,|x1|,|x2|}, and

H6(P ) = max{|x0+x3|,|x1|,|x2|},

which will again turn out to be log-anticanonical on a minimal desingularization. Let
Ni(B) for i= 4,5,6 be defined as in equation (5). They satisfy descriptions as in equation

(6), with the integrality condition (2) replaced by condition (7).

Our second result consists of asymptotic formulas for these counting problems.

Theorem 1. As B →∞, we have

N1(B) =
13

4320

(∏
p

(
1− 1

p

)5(
1+

5

p

))
B(logB)5+O(B(logB)4 log logB),

N2(B) =
1

32

(∏
p

(
1− 1

p

)3(
1+

3

p

))
B(logB)4+O(B(logB)3 log logB),

N3(B) =
1

8

(∏
p

(
1− 1

p

)2(
1+

2

p
− 1

p2

))
B(logB)3+O(B(logB)2 log logB),

N4(B) = 2

(∏
p

(
1− 1

p

)(
1+

1

p

))
B(logB)2+O(B logB log logB), and

N5(B) =N6(B) =
7

24

(∏
p

(
1− 1

p

)2(
1+

2

p

))
B(logB)3+O(B(logB)2 log logB).

Cases 5 and 6 are symmetric: the involutive automorphism

(x0,x1,x2,x3,x4) 	→ (x0+x3,−x1,x2,−x3,x4) (8)

of S exchanges the lines L2 and L3 and the height functions H5 and H6, while leaving

V = S \{x2 = 0} invariant, whence N5(B) =N6(B).

1.2. The expected asymptotic formula

Similarly to the case of rational points [2, 22], our asymptotic formulas for the number

of integral points of bounded height should be interpreted on a desingularization ρ : S̃ →
S. Here, S̃ is a weak del Pezzo surface, that is, a smooth projective surface whose

anticanonical bundle ω∨
˜S
is big and nef (but not ample in our case).

To interpret the number of points on Ui =S\Zi, we study a desingularization Ũi = S̃\Di

of Ui, where Di = ρ−1(Zi) is a reduced effective divisor with strict normal crossings. In
the context of integral points, the log-anticanonical bundle ω

˜S(Di)
∨ assumes the role of

the anticanonical bundle. From this point of view, Theorem 1 can be interpreted in the

framework described in [7].
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The minimal desingularization ρ : S̃ → S is an iterated blowup of P2
Q in five points. The

analogous blowup of P2
Z results in an integral model ρ : S̃ → S (see section Section 3 for

more details). Then D1, D2 are the divisors above Q1,Q2, respectively, and D3 =D1+D2

is the one over both; see Figure 1 for their dual graph (Dynkin diagram). Our discussion

is simplified by the fact that the pairs (S̃,Di) are split, in the sense that Pic S̃ →Pic S̃Q is
an isomorphism and [18, Definition 1.6] holds, and by the fact that we are working over Q.

Let Ũi,Ũi be the complement of Di,Di in S̃,S̃, respectively, where Di is the Zariski closure

of Di in S̃. The preimage of the complement V of the lines on S is the complemenent Ṽ
of all negative curves on S̃.

This leads to the reinterpretation of our counting problem as

Ni(B) = #{P ∈ Ũi(Z)∩ Ṽ (Q) |Hi(ρ(P ))≤B}

on the minimal desingularization, and we prove in Lemma 14 that Hi ◦ ρ is a log-
anticanonical height function on Ũi(Z)∩ Ṽ (Q). Note that the log-anticanonical bundle

ω
˜S(Di)

∨ is big and nef for i = 1,2,4,5,6 but big and not nef for i = 3 (Lemma 12); the

unusual shape of H3 is clearly related to this.
From the shape of asymptotic formulas in previous results [9, 8, 23, 24] and the study

of volume asymptotics in [7], we expect that

Ni(B)∼ ci,finci,∞B(logB)bi−1,

where the leading constant can be decomposed into a finite part ci,fin and an Archimedean
part ci,∞ that we shall describe and determine in Section 6 precisely.

The finite part

ci,fin =
∏
p

(
1− 1

p

)rkPic ˜Ui

τ(˜S,Di),p
(Ũi(Zp)), (9)

which behaves similarly as in the case of rational points, is defined as an Euler product

of convergence factors and p-adic Tamagawa numbers. We compute the latter as p-adic
integrals over Ũi(Zp) (Lemma 24); they turn out to be simply #Ũi(Fp)/p

dimS . This reflects

the fact that integral points should be distributed evenly in the set Ũi(Zp), which has

positive and finite volume with respect to the modified Tamagawa measure τ(˜S,Di),p

defined in [7]. (However, we do not prove such an equidistribution result here.)

On the other hand, 100% of the integral points are arbitrarily close to the boundary

with respect to the real-analytic topology, ordered by height. This makes the analysis of

ci,∞ much more delicate than for rational points. More precisely, the points close to the
minimal strata of the boundary—that is, the intersection of a maximal set of intersecting

components of Di—should dominate the counting function. These strata are encoded in

the (analytic) Clemens complex Can
R (Di). For a split surface, the vertices of this Clemens

complex correspond to the irreducible components of the boundary divisor Di, and there

is an edge for each intersection point of two divisors. The Archimedean constant

ci,∞ =
∑
A

αi,Aτi,DA,∞(DA(R)) (10)
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A1 A2

Figure 1. The Clemens complex of D3 is the disjoint union of those of D1 (left) and D2 (right). It is the

Dynkin diagram of the A1- and A3-singularities Q1,Q2.

Figure 2. Integral points on ˜U1 of height ≤ 90. The boundary divisor is the central vertical line. Some

horizontal and diagonal lines look accumulating, but in fact are not: They contain ∼ c′B points, which

is less than the cB(logB)5 points on U ; the constants c′ can however be up to 2, while the constant c in

our main theorem is numerically ≈ 0.0003.

is a sum over the faces A of maximal dimension of the Clemens complex, which correspond

to the minimal strata DA of Di. For each maximal-dimensional face A, we have a
product of a rational factor αi,A and an Archimedean Tamagawa number τi,DA,∞(DA(R))

coming from a residue measure as defined in [7]. This measure can be interpreted as

a real density, which is supported on DA(R) and should measure the distribution of
points in neighborhoods of open subsets of DA(R). From another point of view, the set

S̃(R) has infinite volume with respect to a modified measure τ(˜S,Di),∞ as above, and

τi,DA,∞(DA(R)) appears in the leading constant of the asymptotic volume of height balls

with respect to said measure (cf. [7, Propositions 2.5.1, 4.2.4]).
In the first case, the Clemens complex consists of only one vertex corresponding to

the boundary divisor above the A1-singularity Q1, and integral points accumulate near

it (Figure 2). In the second and third case, the maximal-dimensional faces A1,A2 of
the Clemens complex correspond to the two intersection points DA1

,DA2
of the divisors

above theA3-singularity, and ‘most’ integral points are very close to these two intersection

points (Figure 3). Correspondingly, the Archimedean Tamagawa number is the volume
of the boundary divisor in the first case, and it is the volume of the two intersection

points in the second and third cases. In the remaining cases, it similarly is a volume of

intersection points (Lemma 25).
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Figure 3. Integral points on ˜U2 of height ≤ 60 in neighborhoods of DA1
(left) and DA2

(right). Most

points are close to the three boundary divisors, which are the central horizontal line and two vertical

lines here.

The rational factor αi,A is particularly interesting in our examples. It is introduced in
[9] for toric varieties and generalized in [25] to be

αi,A = vol{x ∈ (Eff Ũi,A)
∨ | 〈x,ω

˜S(Di)
∨|

˜Ui,A
〉= 1}, (11)

where Ũi,A is the subvariety consisting of Ũi and the divisors corresponding to A. For

vector groups [8] and wonderful compactifications [23], the effective cone is generated by

the boundary divisors and simplicial, which makes the treatment of this factor easy. In
[24], it behaves similarly as Peyre’s α for projective varieties since the boundary has just

one component; it is also much simpler since the Picard number is 2. Our second and

following cases behave in a different way since the Clemens complex is not a simplex,

providing the first nontrivial treatment of this factor for a nontoric variety. Here, it turns
out that the resulting polytopes for the different maximal faces fit together to one polytope

whose volume appears in the leading constant of the counting problem (Lemma 28). In

case 4, one of the polytopes has volume 0, making this an example for the obstruction
[25, Theorem 2.4.1 (i)] to the existence of integral points near the corresponding minimal

stratum of the boundary (Remark 27).

The exponent of logB is expected to be bi−1, where

bi = rkPic Ũi− rkQ[Ui]/Q
×+dimCan

R (Di)+1. (12)

Here, dimCan
R (Di) + 1 is the maximal number of components of the boundary divisor

Di that meet in the same point, and Q[Ui]
× = Q× in each case. While the obstruction

described in [25] can lead to this number being smaller than expected if it affects all
maximal-dimensional faces of the Clemens complex, this does not happen in our fourth

case as there are three unobstructed faces remaining.

We can reformulate Theorem 1 as follows.
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Theorem 2. For i ∈ {1, . . . ,6}, we have

Ni(B) = ci,∞ci,finB(logB)bi−1(1+o(1)) (13)

as B →∞, where the constants ci,∞, ci,fin and bi are as in equations (9), (10) and (12),

respectively.

This confirms the expectations extracted from [7, 9, 25].

1.3. Strategy of the proof

In Section 2, we define and classify weak del Pezzo pairs (S̃,D), which have big and nef

log-anticanonical bundle ω
˜S(D)∨ (Theorem 10).

In Section 3, we describe a universal torsor on the minimal desingularization of S, we
show that our height functions are log-anticanonical, and we describe them in terms of

Cox coordinates. This leads to a completely explicit counting problem on the universal

torsor (Lemma 15), with a (2rkPic ˜Ui : 1)-map to our set of integral points of bounded
height: roughly, the torsor variables corresponding to the boundary divisors must be ±1,

and in the case of a big and base point free (whence nef) log-anticanonical class, the

height function Hi is given by monomials in the Cox ring of log-anticanonical degree.

The third case seems to be one of the first examples of the universal torsor method with
respect to a height for a divisor class that is big and not nef.

In Section 4, we estimate the number of points in our counting problem on the universal

torsor using analytic techniques. Here, we approximate summations over the torsor
variables by real integrals Vi,0(B); the coprimality conditions lead to an Euler product

that agrees with ci,fin (Lemmas 16 and 17). This step is similar to the case of rational

points treated in [11]; hence, we shall be very brief.
In Section 5, to complete the proof of Theorem 1, our goal is to transform Vi,0(B) into

2rkPic ˜UiCiB(logB)bi−1, where Ci is the product of the volume of a polytope (which turns

out to be
∑

αi,A) and a real density (which agrees with the Archimedean Tamagawa

numbers τi,DA,∞(DA(R))), up to a negligible error term. In the first case, there is a
complication due to an inhomogeneous expression (with respect to the grading by the

Picard group) in the domain of V1,0 (Lemma 18 and more importantly Lemma 19); here,

a subtle estimation is necessary. In the third case, we modify the height function H3 to
H ′

3 (which coincides essentially with H2) as in Lemma 20. These extra complications have

never appeared in the universal torsor method for rational points; we believe that they

are typical for integral points and nonnef heights.
In Section 6, we prove Theorem 2 by explicitly computing the expected constants

discussed in Section 1.2.

2. Classification of weak del Pezzo pairs

For us, a weak del Pezzo pair (S̃,D) consists of a smooth projective surface S̃ with a

reduced effective divisor D with strict normal crossings such that the log-anticanonical

bundle ω
˜S(D)∨ is big and nef. The aim of this section is to study the possible choices of
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divisors D on a weak del Pezzo surface S̃ that render the pair (S̃,D) weak del Pezzo in

this sense.

Remark 3. Considering pairs (X,D) is standard when studying integral points: While

rational and integral points coincide on complete varieties as a consequence of the

valuative criterion for properness, the study of integral points becomes a distinct problem

on an integral model U of a noncomplete variety U. Then one passes to a compactification,
more precisely, a smooth projective variety X containing U such that the boundary

D = X \U is a reduced effective divisor with strict normal crossings. In particular, the

pair (X,D) is smooth and divisorially log terminal.
The goal is then to count the number of points on U of bounded log-anticanonical height

(that is, with respect to ωX(D)∨), excluding any strict subvarieties (or, more generally,

thin subsets) whose points would contribute to the main term. SettingD=0 then recovers
the setting of Manin’s conjecture on rational points.

Remark 4. In its original form [16, 21], Manin’s conjecture makes a prediction about

the number of rational points on smooth Fano varieties : smooth projective varieties
whose anticanonical bundle is ample. These conditions can be relaxed—for example,

only requiring that the anticanonical be big and nef, viz. to weak Fano varieties and

the two-dimensional varieties thereof, weak del Pezzo surfaces. Weak del Pezzo surfaces
S̃ are precisely the smooth del Pezzo surfaces S̃ = S and the minimal desingularizations

ρ : S̃ → S of del Pezzo surfaces with only ADE-singularities [10].

Since ρ is a crepant resolution—that is, ω
˜S = ρ∗ωS—counting points on S of bounded

anticanonical height amounts to counting points on S̃ of bounded anticanonical height

after excluding points on the exceptional locus. By [2, 22], an asymptotic formula for
the number of rational points on S should be interpreted in terms of its minimal

desingularization S̃; for example, the Picard rank ρ of S̃ appears in the expected

asymptotic formula. The number of rational points of bounded height has been shown
to conform to the same prediction as in Manin’s conjecture for many weak del Pezzo

surfaces (see the references in [1, § 6.4.1]).
Generalizing the question even further, it suffices to assume that the anticanonical

bundle is big to guarantee that the number of rational points of bounded anticanonical
height outside a suitable divisor is finite. Adding some conditions that make Peyre’s

constant well-defined leads to the notion of an almost Fano variety [22, Définition 3.1],

for which it makes sense to ask whether Manin’s conjecture holds. While this is known
to be the case for some of them, Lehmann, Sengupta, and Tanimoto showed that one

cannot expect the conjecture to be true in general in this widest setting [19, Remark 1.1,

Example 5.17].

To simplify the exposition, let S̃ be a weak del Pezzo surface whose degree d is at

most 7. Let D =
∑

α∈ADα ⊂ S̃ be a reduced and effective divisor with strict normal

crossings and irreducible components Dα.

Lemma 5. The log-anticanonical bundle ω
˜S(D)∨ is nef if and only if all of the following

conditions hold:
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(i) If E is a (−2)-curve and Dα.E > 0 for some α ∈ A, then E ⊂D.

(ii) If E is an arbitrary negative curve meeting two different Dα,Dβ or one Dγ ⊂ D

with multiplicity Dγ .E ≥ 2 (with α,β,γ ∈ A), then E ⊂D.

(iii) If E is a negative curve, then ∑
α∈A
Dα �=E

Dα.E ≤ 2.

Proof. Recall that a divisor is nef if its intersection with all negative curves is
nonnegative. If E is a (−2)-curve, then

(−K−D).E =−K.E−D.E = 0+2δE⊂D−
∑
α∈A
Dα �=E

Dα.E,

and this number is nonnegative if and only if (i) and (iii) hold for E. If E is a (−1)-curve,
then

(−K−D).E =−K.E−D.E = 1+ δE∈D−
∑
α∈A
Dα �=E

Dα.E,

and this number is nonnegative if and only if (ii) and (iii) hold for E.

Remark 6. If ρ : S̃ → S is the minimal desingularization of a singular del Pezzo surface,

then Lemma 5 shows: If one of the (−2)-curves above a singularity Q ∈ S is in D, then

by Lemma 5 (i) all curves above this singularity must be in D. Similarly, if a (−1)-curve
whose image in S contains a singularity Q is in D, then all (−2)-curves above Q must be

in D. By Lemma 5 (iii), Q must be an A-singularity in both cases.

The surface S̃ can be described by a sequence of r = 9−deg S̃ blowups

S̃ = S̃(r) πr−→ S̃(r−1) → ·· · → S̃(1) π1−→ S̃(0) = P2,

where πi is the blowup in a point pi that does not lie on a (−2)-curve on S̃(i−1). Let

π : S̃ → P2 be their composition. Let 
0 = π∗
, where 
 is the class of a line on P2, and

for 1 ≤ i ≤ r, let 
i = (πi+1 · · ·πr)
∗E(i), where E(i) is the exceptional divisor of the ith

blowup πi. Then the Picard group of S̃ is freely generated by the classes 
0, . . . ,
r. The

intersection form is given by 
i.
j = 0 for i �= j, 
20 = 1, and 
2i =−1 for i≥ 1. Let P be the

image of an exceptional divisor of one of the the blowups in P2 and nP be the number of
exceptional curves mapped to P. Then these negative curves form a chain, the first nP −1

of which are (−2)-curves whose classes have the form 
i1 −
i2 , . . ., 
is−1
−
is followed by a

(−1)-curve whose class has the form 
is . The anticanonical class is 3
0− 
1−·· ·− 
r, and
we fix an anticanonical divisor −K. Denote by [F ] the class of a divisor or line bundle F

in the Picard group. For L1,L2 ∈ Pic(S̃)R, we write L1 ≤ L2 if their difference L2−L1 is

in the effective cone.
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Lemma 7. Let L ∈ Pic(S̃).

(i) If L≤
∑

1≤j≤r aj
j for some a1, . . . ,ar ∈ Z, then L is not big.

(ii) If L≤ 
0− 
i for some i≥ 1, then L is not nef or not big.

Proof. For the first statement, we just have to note that −ε
0 +
∑

1≤j≤k aj
j is not

effective for any ε > 0. Turning to the second statement, assume for contradiction that L

is big and nef. Note that 
0− 
i has nonnegative intersection with all (−1)-curves.
If 
0− 
i has (strictly) negative intersection with a (−2)-curve E, then this curve needs

to have class [E] = 
i−
j for some j �= i (cf. [20, Theorem 25.5.3]). Writing 
0−
i =L+[F ]

with effective F, we get F.E < 0, so E⊂F , and L≤ 
0−
i− [E] = 
0−
j . The only negative
curves that could have negative intersection with 
0− 
j have class 
j − 
k. As curves of

classes 
i−
j , 
j−
k, etc., are contracted to a single point by π, we can eventually find an


i′ with L≤ 
0− 
i′ and such that 
0− 
i′ has nonnegative intersection with all negative

curves. Then 
0− 
i′ is nef. But (
0− 
i′)
2 = 0, whence it cannot be big.

Proposition 8. Assume that deg S̃ ≤ 4. If ω
˜S(D)∨ is big and nef, then D is contained

in the union of all negative curves.

Proof. Assume for contradiction that D contains a nonnegative curve C, but that−K−D

is big and nef. In particular, −K−D′ is big for all D′ ⊂D. Since C is nonnegative, it is

the strict transform of a curve C0 on P2. Then

[C] = d
0−
r∑

i=1

ai
i,

where d= degC0 and ai = C.
i.

We first reduce to the case of C0 being a line. If d ≥ 3, then [−K−C] ≤
∑

1≤i≤r ai
i,

which is not big by Lemma 7 (i). If C0 is a nondegenerate conic, then a1, . . . ,ar ≤ 1 since
C0 has multiplicity ≤ 1 in all images of the exceptional divisors. Moreover, since C2 ≥ 0,

at most four of the ai are nonzero. It follows that [−K−C]≤ 
0− 
j , so −K−D is not

big or not nef by Lemma 7 (ii).
Let C0 be a line. As the self-intersection of C is nonnegative, [C] = 
0−
j for some j or

[C] = 
0. In the first case, C0 contains the center P = π1 · · ·πj(pj) of a blowup. If nP > 1,

then π−1(P ) contains (−2)-curves. Appealing to Lemma 5 (i), the first (−2)-curve must

be contained in D, as must the remaining (−2)-curves by repeated applications. Let E0

be the sum of these (−2)-curves. Then C ′ = C+E0 ⊂D is of class [C ′] = 
0− 
j′ , where


j′ is the class of the final (−1)-curve in the chain. If nP = 1 or [C] = 
0, set E0 = 0 and

C ′ = C; in the first case, set j′ = j; in the latter case, fix an arbitrary j′ and note that
[C]≤ 
0− 
j′ . Then C ′ satisfies the conditions in Lemma 5 for all negative curves in the

preimage of P by this construction, and it does the same for all other curves contracted

by π as it does not meet them. For what remains, we distinguish three cases.
Case 1. The curve C does not meet any of the remaining (−2)-curves, and C.E ≤ 1

for all remaining (−1)-curves. Then (−K −C ′) is nef by Lemma 5. But (−K −C ′)2 ≤
4− (r−1)≤ 0, so it cannot be big.
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Case 2. The curve C meets one of the remaining (−2)-curves E. Then E ⊂ D by

Lemma 5 (i). Since E is the strict transform of a curve in P2, its class satisfies [E] =

l0 − li1 − li2 − li3 for some pairwise different i1,i2,i3 or [E] ≥ 2
0+
∑

ai
i for some ai ∈
Z. In the first case, [−K −C −E] ≤ 
0 − 
k for k �= ii,i2,i3,j, and in the second case,

[−K−C−E] ≤
∑

1≤i≤r ai
i. In both cases, −K−D is not big or not nef by Lemma 7

(ii) or (i), respectively.
Case 3. The curve C meets a (−1)-curve E with C.E ≥ 2. By Lemma 5 (ii), E ⊂D. As

E is the strict transform of a curve on P2, its class verifies [E]≥ [F ] for a (−2)-class [F ]

of the same shape as in the previous case; hence, −K−D is not big or not nef.

Remark 9. The assumption deg S̃ ≤ 4 in Proposition 8 is necessary: Let S̃ be a smooth
del Pezzo surface of degree at least 5 that is a blowup of P2 in at most 4 points in general

position. Then the strict transform D of a line that meets precisely one of these points is

an example of a nonnegative curve such that ω
˜S(D)∨ is big and nef.

Theorem 10. Let S̃ be a weak del Pezzo surface of degree d≤ 4. Precisely the following
choices of a reduced effective divisor D make (S̃,D) a weak del Pezzo pair.

(i) The divisor D can be zero.

(ii) If 3 ≤ d ≤ 4, then D can consist of all (−2)-curves corresponding to one A-

singularity.

(iii) If d = 4, then D can consist of a (−1)-curve and all (−2)-curves corresponding

to all singularities on its image in the anticanonical model, provided that those

singularities are A-singularities and all curves in D form a chain.

Proof. Let D be a reduced effective divisor such that −K −D is big and nef. By

Proposition 8, D =
∑

Ei has to be supported on negative curves. Consider the complete

subgraph G of the Dynkin diagram on the vertices corresponding to components of D.
By Lemma 5 (iii), each of its connected components is a path or a cycle. Let N1 be the

number of (−1)-curves in D, and N2 be the number of (−2)-curves. Then v =N1+N2 is

the number of vertices of G, and denote by e its number of edges.
The self-intersection of the log-anticanonical divisor is

(−K−D)2 =K2+
∑
i

E2
i +2
∑
i

Ei.K+2
∑
i<j

Ei.Ej .

As −K.E is zero for (−2)-curves and 1 for (−1)-curves, we get

(−K−D)2 = d+2(e−v)−N1. (14)

Since −K−D is big and nef, this self-intersection must be positive.
If G is connected and not a cycle, then e= v−1, so d−2−N1 > 0. In case d= 4, this

leaves us with N1 ≤ 1, in case d = 3 with N1 = 0, and in case d ≤ 2 with an immediate

contradiction. In each case, the resulting divisors satisfy the asserted description using
Remark 6 and that the graph is a path.

It remains to prove that G has to be connected and not a cycle. If G is not connected

and does not contain a cycle, then (−K−D)2 = d− 4−N1 ≤ 0, so −K−D cannot be

https://doi.org/10.1017/S1474748022000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000482


Integral points on singular del Pezzo surfaces 1271

big, leaving only the case of graphs G containing a cycle, in which case d−N1 > 0 for
−K−D to be big.

For N1 = 0, we note that only Dynkin diagrams of type A, D, and E appear as

intersection graphs of (−2)-curves, and these do not contain double edges nor more general
cycles.

If N1 = 1, then d ≥ 2. The sum E2 of the (−2)-curves in D forms a (−2)-class since

E2
2 =−2N2+2(s−1) =−2 and −K.E2 = 0. As the Weyl group acts transitively on (−1)-

curves and leaves the intersection pairing invariant, we can assume that [E1] = 
1. Now

1.[E2]≥ 2, and so the (−2)-class needs to have the form 3
0−2
1−
2−·· ·−
8. But such

a class does not exist if d≥ 2 (cf. [20, Theorem 25.5.3]).

If N1 = 2, then d≥ 3. In this case, the anticanonical model contracts (−2)-curves and
maps (−1)-curves to lines. The resulting two lines then need to intersect with multiplicity

2, an impossibility.

Finally, if N1 = 3, then d = 4. In this case, the anticanonical model φ : S̃ → S = Q1 ∩
Q2 ⊂ P4 is a (possibly singular) intersection of two quadrics, still contracting all (−2)-

curves and mapping all (−1)-curves to lines. The resulting three lines need to intersect

pairwise. If they were contained in a plane P, this plane would intersect Q1 in three

lines, an impossibility. So the three lines intersect in a point Q. The tangent space at Q
needs to contain each plane containing two of these lines, whence Q is singular. Then

S̃ → S factors through the blowup Y of P4 in Q. The strict transforms of the lines do

not intersect on Y, and thus the (−1)-curves on S̃ do not intersect. It follows that each
of them intersects a (−2)-curve above Q. Hence, the (−2)-curves are contained in D, and

at least one of them needs to intersect three other negative curves in D. Now, Lemma 5

(iii) implies that −K−D cannot be nef.
Conversely, if D is one of the divisors in the statement, then it is nef by Lemma 5, and

its self-intersection is positive by equation (14); hence, it is also big.

3. Passage to a universal torsor

As in the introduction, let S ⊂ P4
Q be the singular quartic del Pezzo surface defined by

the equations (1). By [12, 15] (but using the notation and numbering of [11, Section 8]),

a Cox ring of its minimal desingularization S̃ is

R=Q[η1, . . . ,η9]/(η1η9+η2η8+η4η
3
5η

2
6η7) (15)

with grading

degη1 = 
5, degη2 = 
4, degη3 = 
0− 
1− 
4− 
5,

degη4 = 
1− 
2, degη5 = 
3, degη6 = 
2− 
3,

degη7 = 
0− 
1− 
2− 
3, degη8 = 
0− 
4, degη9 = 
0− 
5

(16)

for a certain basis 
0, . . . ,
5 of Pic S̃. See Figure 4 for the dual graph of the divisors Ei

corresponding to ηi.

The minimal desingularization S̃ can be described as a certain sequence of five iterated

blowups of P2
Q in rational points [11]: first blow up three points P1, P2, P4 on a line l3,
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E8

E9

E7 E5 E6 E4 E3

E1

E2

A6

A5

A4 A3 A2 A1

Figure 4. Configuration of the divisors Ei and the faces Ai of the Clemens complexes. The (−1)-curves

are represented by squares and the (−2)-curves by circles.

resulting in exceptional curves E1, E2 and E′
4; then blow up the intersection of E′

4 with

a line l7, resulting in an exceptional curve E′
6; then blow up the intersection of E′

6 with

the strict transform of l7, resulting in an exceptional curve E5. With this description, E3

is the strict transform of l3, E4 that of E′
4, E6 that of E′

6, E7 that of l7, E8 that of a

general line through P2 and E9 that of a line through P1 such that E7,E8,E9 meet in one

point, recovering the above grading using a basis as before Lemma 7.
With a point of view coming from S, the divisor D1 =E7 is the (−2)-curve on S̃ above

the singularity Q1 on S, the divisor D2 = E3 +E4 +E6 is the sum of the (−2)-curves

above Q2, the divisor D3 =D1+D2 =E3+E4+E6+E7 is the sum of all (−2)-curves, and

E5,E2,E1 are the (−1)-curves that are the strict transforms of the three lines L1,L2,L3

on S as in equation (4), respectively, while E8 and E9 correspond to the two further

generators of the Cox ring. The divisors

D4 = E3+ · · ·+E7, D5 = E2+E3+E4+E6, and D6 = E1+E3+E4+E6

lie above the lines L1, L2 and L3, respectively. Since V ⊂ S is the complement of the lines,
which contain the singularities, its preimage Ṽ ⊂ S̃ is the complement of the negative

curves E1, . . . ,E7.

The irrelevant ideal of R is Iirr =
∏
(ηi,ηj), where the product runs over all pairs i < j

such that there is no edge between Ei and Ej in Figure 4. The sections

L0 = {η2η3η4η5η6η7η8, η21η22η33η24η6, η1η2η23η24η25η26η7, η3η24η45η36η27, η7η8η9} (17)

have anticanonical degree and define the morphism ρ : S̃ → S.
As in [17, Proposition 4.1(i)], let S̃ be the integral model defined by the corresponding

sequence of blowups of P2
Z, and recall Ũi = S−Di. Consider the open subscheme Y of the

spectrum of

RZ = Z[η1, . . . ,η9]/(η1η9+η2η8+η4η
3
5η

2
6η7)

defined as the complement of V(Iirr∩RZ). By [17, Proposition 4.1(ii)], Y is a G6
m,Z-torsor

over S̃ via a morphism π : Y → S̃; here, the action of G6
m,Z on Y is given by the degrees of

the coordinates (η1, . . . ,η9) in Pic S̃ ∼= Z6 in equation (16); see [17, Construction 3.1] for

details. This torsor defines an explicit parametrization of integral points by lattice points.
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Lemma 11. Let i ∈ {1, . . . ,6}, and Yi = π−1(Ũi)⊂Y. Then π : Yi → Ũi is a G6
m,Z-torsor.

This morphism induces a 26-to-1-correspondence

Yi(Z)∩π−1(Ṽ )(Q)→ Ũi(Z)∩ Ṽ (Q),

and we have

Yi(Z)∩π−1(Ṽ )(Q) = {η ∈ Z9 | (18), (19), (20) hold, η1 · · ·η7 �= 0,},

where

η1η9+η2η8+η4η
3
5η

2
6η7 = 0, (18)

gcd(ηi,ηj) = 1 if Ei and Ej do not share an edge in Figure 4, and (19)

|ηj |= 1 if Ej ⊂ |Di| . (20)

Proof. Since π is a G6
m,Z-torsor so are its restrictions to the open subschemes Ũi. Integral

points η ∈ SpecRZ are lattice points (η1, . . . ,η9) ∈ Z9 satisfying the equation in the Cox
ring. Such a point is integral on the complement of V(Iirr) =

⋃
V(ηi,ηj)—the union

running over all i,j which do not share an edge in Figure 4—if it does not reduce to

any of the V(ηi,ηj) for any prime, that is, if the gcd-condition (19) holds.

Integral points on Y1 ⊂ Y are precisely those which do not reduce to π−1(E7) = V(η7)
at any place; that is, they are those points satisfying η7 ∈ {±1}. Analogously, integral
points on Y2 are those satisfying η3,η4,η6 ∈ {±1}, integral points on Y3 are those satisfying

η3,η4,η6,η7 ∈ {±1} and similarly for Y4,Y5,Y6. The preimage of Ṽ in the universal torsor
is the complement of η1 · · ·η7 = 0.

We now turn to studying the log-anticanonical bundles and the height functions

associated with them. Recall that the case D6 can be reduced to D5 by symmetry as

in (8).

Lemma 12. The only nonzero reduced effective divisors D ⊂ S̃ such that ω
˜S(D)∨ is big

and nef are Di for i ∈ {1,2,4,5,6}. Consider the sets

M1 = {η2η3η4η5η6η8,η1η2η23η24η25η26,η3η24η45η36η7,η8η9},
M2 = {η2η5η7η8,η21η22η23η4,η4η45η26η27},
M4 = {η2η8,η1η2η3η4η5η6,η4η35η26η7}, and

M5 = {η5η7η8,η21η2η23η4,η1η3η4η25η6η7}

of monomials in the Cox ring R of degree ω
˜S(Di)

∨ for i=1,2,4,5, respectively. For η ∈Z9

satisfying equation (19), none of these sets can vanish simultaneously modulo a prime p.

The respective log-anticanonical bundles are base point free.
The log-anticanonical bundle ω

˜S(D3)
∨ is big, but not nef, whence not base point free.

It has a representation ω
˜S(D3)

∨ ∼= L1⊗L∨
2 as a quotient of the nef bundles L1 and L2

whose sections are elements of degree 4
0− 
1− 
2 and 3
0− 
1− 
2− 
3 in the Cox ring,
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respectively. Consider the sets of Cox ring elements

L2 = η1η2L0∪{η24η65η46η37} of degree L2,

L3 = {η2η5η8,η1η2η3η4η25η6,η4η45η26η7} of degree ω
˜S(D3)

∨, and

L1 = L2L3∪{η31η32η23η4η8η9} of degree L1.

Then neither L1 nor L2 can vanish simultaneously modulo a prime p.

Proof. The first statement is a special case of Theorem 10.

For the first set, assume that p | η8η9 for a prime p. Then p � η3 · · ·η6, since the

corresponding divisors E3, . . . ,E6 share an edge with neither E8 nor E9 in Figure 4,

while at most one of η1,η2,η7 can be divisible by p. Hence, the second or third section is
not divisible by p.

For the second set, assume that p | η2η5η7η8. If p | η5η7, then p � η21η
2
2η

2
3η4; if p | η2η8 and

p � η7, then p � η4η
3
5η

2
6η7. Regarding the case i= 4, if p | η2η8, then p � η4η

3
5η

2
6η7. For i= 5,

assume p | η5η7η8. If p | η5η7, then p � η21η2η
2
3η4; if p | η8 and p � η7, then p � η1η3η4η

2
5η6η7.

Turning to L2, we know that the anticanonical sections in equation (17) cannot

be divisible by p simultaneously, so for all sections in L2 to be be divisible by p
simultaneously, p | η1η2. But then p � η24η

6
5η

4
6η

3
7 .

Lastly, assume that the monomials in L1 are divisible by p so that p in particular

divides all monomials in L2L3. Since p cannot divide all monomials in L2, it has to

divide all monomials in L3. If follows that p | η2η5η8. If p | η2, then the last monomial in
L3 cannot be zero modulo p. If p | η8, then p can divide only one of η2 or η7 but none of

the remaining variables in the latter two sections of L3, so one of those two sections is

nonzero modulo p. So p | η5. Now p can divide at most one of η6 and η7 but none of the
remaining variables, and so the last section of L1 is nonzero modulo p, a contradiction.

By the same arguments (replacing vanishing modulo p by vanishing over Q), the log-

anticanonical bundles ω
˜S(Di)

∨ for i= 1,2,4,5 and the bundles L1 and L2 are base point
free, whence nef. On the other hand, ω

˜S(D3)
∨ is not nef since its intersection number

with E5 is −1.

Lemma 13. For i ∈ {1, . . . ,5}, the morphism ρ : S̃ → S induces bijections

Ũi(Z)∩ Ṽ (Q)→Ui(Z)∩V (Q).

Proof. Consider the morphism f : Y → P4
Z defined by η 	→ (s0(η) : · · · : s4(η)) with the

anticanonical sections sj in equation (17). We only have to show that equation (19) holds

for η if and only if the corresponding gcd-condition in (2), resp. in (7), holds for f(η).
To this end, we note that η1η2η3η4η

2
5η6η7 is in the radical of the ideal generated by M2

as in Lemma 12, so the gcd-condition (2) can be rewritten as

|η7|gcd{m(η) |m ∈M1}= 1 and |η3η4η6|gcd{m(η) |m ∈M2}= 1.

By Lemma 12, these gcds are one, and so the claim follows for i ∈ {1,2}. Since U3 and
Ũ3 are the intersections of the respective open subschemes within the first two cases, the

assertion follows for i = 3. The cases i = 4 and i = 5 can be proved using an analogous

reformulation of the first two conditions in equation (7).
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These sets of sections define adelic metrics on line bundles isomorphic to ω
˜S(Di)

∨ for

i ∈ {1,2,4,5} and the line bundles L1 and L2, and the latter two metrics induce one

on L1⊗L∨
2
∼= ω

˜S(D3)
∨. The metrics on the bundles isomorphic to the log-anticanonical

bundles then induce log-anticanonical height functions H̃i for i ∈ {1, . . . ,5}.

Lemma 14. For η = (η1, . . . ,η9) ∈ R9 satisfying (18) and (20), let

Hi(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max{|η2η3η4η5η6η8|,|η1η2η23η24η25η26 |,|η3η24η45η36 |,|η8η9|}, i= 1;

max{|η2η5η7η8|,|η21η22 |,|η45η27 |}, i= 2;

max{|η2η5η8|,|η1η2η25 |,|η45 |,min{
∣∣η21η22∣∣,|η8η9|}}, i= 3;

max{|η2η8|,|η1η2|,1}, i= 4;

max{|η21 |,|η1η25η7|,|η5η7η8|}, i= 5.

For η ∈ Yi(Z)∩π−1(Ṽ )(Q), we have Hi(η) = H̃i(π(η)) = Hi(ρ(π(η))), where Hi is the
height in equation (3) and H̃i is the log-anticanonical height on S̃(Q) induced by the

sections in Lemma 12.

Proof. For i ∈ {1,2,4,5}, the metrics induce height functions H̃i(x) = HPNi (fi(x))

verifying fi(π(η)) = (m0(η) : · · · :mNi
(η)) for the sections m0, . . . ,mNi

∈Mi constructed
in Lemma 12, so

Hi(π(η)) =
∏
v

max
m∈Mi

{|m(η)|v}.

By the same lemma, the p-adic contributions to this product are 1, whence H̃i(π(η)) =

Hi(η).
To check that these height functions coincide with the ones defined in the intro-

duction, we note that, for example, for a point in Y1(Z) we have η7 ∈ {±1}, and

thus |η2η3η4η5η6η8| = |η2η3η4η5η6η7η8| = |x0|. We get analogous identities for the other
coordinates and cases. There is no section corresponding to x2 in the second height

function, but, for integral points on Y2, we have |x2|=
√

|η21η22 | |η45η27 |=
√

|x1x3|; hence,
it can never contribute to the maximum.

The case i= 3 is more complicated. The log-anticanonical height function H̃3 induced
by the metrics on L1 and L2 satisfies

H̃3(π(η)) =
maxs∈L1

|s(η)|
maxs∈L2

|s(η)| =max

{
max
s∈L3

|s(η)|,
∣∣η31η32η23η4η8η9∣∣
maxs∈L2

|s(η)|

}
by an analogous argument as in the previous cases. Now note that, for η ∈ Y3(Z)∩
π−1(Ṽ )(Q), we can simplify this to

H̃3(π(η)) = max{|η2η5η8|,
∣∣η1η2η25∣∣, ∣∣η45∣∣,min{

∣∣η21η22∣∣, |η8η9|}}. (21)

Indeed, η3,η4,η6,η7 have absolute value 1 and the remaining variables absolute value at

least one. Then ∣∣η31η32η23η4η8η9∣∣
maxs∈L2

|s(η)| ≤min{
∣∣η21η22∣∣, |η8η9|}

https://doi.org/10.1017/S1474748022000482 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000482


1276 U. Derenthal and F. Wilsch

follows from η31η
3
2η

4
3η

2
4η6,η1η2η7η8η9 ∈ L2. Now assume that η21η

2
2 is larger than the other

three terms in the maximum in equation (21); then the maximum over L2 can only be
attained by η31η

3
2η

4
3η

2
4η6 or η1η2η7η8η9, and the inverse inequality follows.

Finally, we note that |η3| = |η4| = |η6| = |η7| = 1 implies
∣∣η21η22∣∣ = |x1| and

|η8η9|= |x4|.

Lemma 15. For i ∈ {1, . . . ,5}, we have

Ni(B) =
1

26−#Di
#

{
(η1 . . . ,η9) ∈ Z9

∣∣∣∣∣ (18), (19) hold, ηj = 1 if Ej ⊂Di,

η1 · · ·η7 �= 0, Hi(η1, . . . ,η9)≤B

}
,

where #Di denotes the number of irreducible components of Di.

Proof. We combine Lemma 11 and Lemma 14. The #Di coordinates ηj belonging

to irreducible components Ej ⊂ Di satisfy |ηj | = 1. By symmetry, we can further
assume that ηj = 1, making the 26-to-1-correspondence from Lemma 11 a 26−#Di -to-1-

correspondence.

4. Counting

In our counting process, we treat η9 as a dependent variable using the torsor equation

from (15), which we regard as a congruence modulo the coefficient η1 of η9. First, we sum

over η8 and then over the remaining variables. Since this is similar to the case of rational
points in [11], we shall be brief.

In this section, we use the notation

η(i) = (ηj)j∈Ji
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(η1, . . . ,η6), i= 1;

(η1,η2,η5,η7), i= 2;

(η1,η2,η5), i= 3;

(η1,η2), i= 4;

(η1,η5,η7), i= 5

for (7−#Di)-uples indexed by

Ji = {j ∈ {1, . . . ,7} | Ej �⊂Di}. (22)

We write Hi(η
(i),η8) for Hi(η1, . . . ,η9), where ηj = 1 whenever Ej ⊂Di and where η9 is

expressed in terms of η1, . . . ,η8 using the torsor equation (18), assuming η1 �= 0.

Lemma 16. For i ∈ {1, . . . ,5}, we have

Ni(B) =
1

26−#Di

∑
η(i)∈Z

Ji
�=0

θ1(η
(i))Vi,1(η

(i);B)+O(B logB)

with

Vi,1(η
(i);B) =

∫
Hi(η(i),η8)≤B

dη8
|η1|
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and

θ1(η
(i)) =

∏
p

θ1,p(Ip(η
(i))),

where Ip(η
(i)) = {j ∈ Ji | p | ηj} and

θ1,p(I) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, I = ∅,{1},{2},{7};
1− 1

p, I = {4},{5},{6},{1,3},{2,3},{3,4};{4,6},{5,6},{5,7};
1− 2

p, I = {3};
0, otherwise.

Proof. The proof is as in [11, Lemma 8.4], with slightly different height functions and

some ηi = 1, which leads to different error terms. In the first case, using the second height
condition, the error term is

�
∑

η1,...,η6

2ω(η3)+ω(η3η4η5η6) �
∑

η2,...,η6

2ω(η3)+ω(η3η4η5η6)B

|η2η23η24η25η26 |
�B logB.

In the second case, using the second and the third height conditions, it is

�
∑

η1,η2,η5,η7

2ω(η5) �
∑
η1,η5

2ω(η5)B

|η1η25 |
�B logB.

In the third case, using the second height condition, it is

�
∑

η1,η2,η5

2ω(η5) �
∑
η1,η5

2ω(η5)B

|η1η25 |
�B logB.

The remaining cases are very similar.

Lemma 17. For i ∈ {1, . . . ,5}, we have

Ni(B) =
1

26−#Di

(∏
p

ωi,p

)
Vi,0(B)+O(B(logB)bi−2 log logB)

with

Vi,0(B) =

∫
|ηj |≥1 ∀j∈Ji

Vi,1(η
(i);B)dη(i)

and

ωi,p =

⎧⎪⎨⎪⎩
(
1− 1

p

)6−#Di
(
1+ 6−#Di

p

)
, i ∈ {1,2,4,5,6};(

1− 1
p

)2(
1+ 2

p −
1
p2

)
, i= 3.

Proof. In the first case, by equation (18), the last height condition is

|(η2η28 +η4η
3
5η

2
6η8)/η1| ≤B. (23)
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Hence, by [11, Lemma 5.1(4)],

V1,1(η1, . . . ,η6;B)� B1/2

|η1η2|1/2
=

B

|η1η2η3η4η5η6|

(
B

|η1η2η23η24η25η26 |

)−1/2

.

In the second case, we use

V2,1(η1,η2,η5,η7;B)� B

|η1η2η5η7|
.

In the third case, we use

V3,1(η1,η2,η5;B)� B

|η1η2η5|
.

Therefore, [11, Proposition 4.3, Corollary 7.10] gives the result in the first three cases.
The final cases are similar to the second and third cases.

5. Volume asymptotics

We must show that the real integrals Vi,0(B) in Lemma 17 grow of order B(logB)bi−1.

In the first and third case, this is more subtle than for rational points.

Lemma 18. We have |V ′
1,0(B)−V1,0(B)| �B(logB)4, where

V ′
1,0(B) =

∫
|η2|,...,|η6|≥1

H′
1(η1,...,η6,η8)≤B

dη1 . . .dη6dη8
|η1|

with

H′
1(η1, . . . ,η6,η8) = max

{
|η2η3η4η5η6η8|,|η1η2η23η24η25η26 |,
|η3η24η45η36 |,|η2η28/η1|,|η2η23η24η25η26 |

}
.

Proof. We must show that adding the condition |η2η23η24η25η26 | ≤ B, removing the

condition |η1| ≥ 1, and replacing equation (23) by |η2η28/η1| ≤B in the integration domain
changes the integral by �B(logB)4.

Adding the condition |η2η23η24η25η26 | ≤ B does not change V1,0(B) since this inequality

follows from |η1| ≥ B and the second height condition. Afterwards, we can remove the
condition |η1| ≥ 1 from V1,0(B) since this changes the integral by∫

|η1|≤1, |η2|,...,|η6|≥1
H1(η1,...,η6,η8)≤B

|η2η
2
3η

2
4η

2
5η

2
6 |≤B

dη1 . . .dη6dη8
|η1|

�
∫
|η1|≤1, |η2|,...,|η6|≥1

|η2η
2
3η

2
4η

2
5η

2
6 |≤B

B1/2dη1 . . .dη6
|η1η2|1/2

,

where we estimate the integral over η8 as in the proof of Lemma 17. Now we observe that

the new condition |η2η23η24η25η26 | ≤B together with |η2|, . . . ,|η6| ≥ 1 implies |η2|, . . . ,|η6| ≤B;

all these conditions and |η1| ≤ 1 allow us to bound the error as required.
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Finally, we must replace equation (23) by |η2η28/η1| ≤ B. A comparison of H1 in Cox

coordinates (Lemma 14) with H1 as in equation (3) motivates the transformation

η8 =
B

η2η3η4η5η6
x0, η1 =

B

η2η23η
2
4η

2
5η

2
6

x2, (24)

which turns dη1 dη8

|η1| into Bdx0 dx2

|x2η2η3η4η5η6| , and the transformation η3 =
B

η2
4η

4
5η

3
6
x3, which turns

dη3

|η3| into
dx3

|x3| . These transformations turn H1(η1, . . . ,η6,η8)≤B into

|x0|,|x2|,|x3|,|x0(x0+x3)/x2| ≤ 1.

Furthermore, they turn |η3| ≥ 1 and |η2η23η24η25η26 | ≤ B (which imply |η2η24η25η26 | ≤ B)

into a condition X3 ≤ |x3| ≤ X ′
3 for certain X3 and X ′

3, whose values (depending on
η2,η4,η5,η5,B) will not matter to us. Altogether, this shows that

V1,0(B) =

∫
|η2|,|η4|,|η5|,|η6|≥1

|η2η
2
4η

2
5η

2
6 |≤B

W (η2,η4,η5,η6,B)
Bdη2dη4dη5dη6

|η2η4η5η6|
+O(B(logB)4)

with

W (η2,η4,η5,η6,B) =

∫
|x0|,|x2|,|x3|,|x0(x0+x3)/x2|≤1

X3≤|x3|≤X′
3

dx0dx2dx3

|x2x3|
.

Now the following Lemma 19 shows that we can replace |x0(x0+x3)/x2| ≤ 1 by |x2
0/x2| ≤ 1

with an error of O(1). We plug this back into V1,0(B) and observe that the integral of

O(1) ·B/|η2η4η5η6| is �B(logB)4, while the inverse of our previous transformations turn

the main term into V ′
1,0(B) since they turn |x2

0/x2| ≤ 1 into |η2η28/η1| ≤ B and since we
can remove the condition |η2η24η25η26 | ≤B, which is implied by the others.

To complete the proof of Lemma 18, we show:

Lemma 19. We have W (η2,η4,η5,η6,B) =W ′(η2,η4,η5,η6,B)+O(1), where

W ′(η2,η4,η5,η6,B) =

∫
|x0|,|x2|,|x3|,|x2

0/x2|≤1

X3≤|x3|≤X′
3

dx0dx2dx3

|x2x3|
.

Proof. As a first step, we integrate over x2 to get

W (η2,η4,η5,η6,B) =

∫
|x0(x0+x3)|≤1
|x0|,|x3|≤1

X3≤|x3|≤X′
3

(−2log |x0|−2log |x0+x3|)
dx0dx3

|x3|
(25)

and shall integrate the two terms individually.

To determine the integral over the first one, we remove the condition |x0(x0+x3)| ≤ 1,
introducing an error of at most

|R1(η2,η4,η5,η6,B)| ≤ 4

∫
x0,|x3|≤1,x0≥0
|x0(x0+x3)|≥1

− logx0
dx0dx3

|x3|

by using the symmetry in the signs of x0 and x3. The last inequality implies that x3 has
a distance of at least 1/|x0| (which is ≥ 1) from −x0. Since x0 > 0 and x3 >−1, it cannot
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be smaller, and thus −x0+1/x0 ≤ x3 ≤ 1 holds. We thus get

|R1(η2,η4,η5,η6,B)| �
∫
0≤x0≤1

− logx0

(∫
−x0+

1
x0

≤x3≤1

dx3

|x3|

)
dx0

�
∫
0≤x0≤

√
5−1
2

∣∣∣∣logx0 log

(
−x0+

1

x0

)∣∣∣∣dx0 � 1.

We can now integrate the first term in equation (25) over x0 and get∫
|x0|,|x3|,|x0(x0+x3)|≤1

X3≤|x3|≤X′
3

−2log |x0|
dx0dx3

|x3|
=

∫
|x3|≤1

X3≤|x3|≤X′
3

4
dx3

|x3|
+O(1). (26)

To treat the second term, we begin with a change of variables x′
0 = x0+x3 and add the

condition |x′
0| ≤ 1, introducing an error of at most

|R2(η2,η4,η5,η6,B)| ≤
∫
|x′

0−x3|,|x3|,|x′
0(x

′
0−x3)|≤1

x′
0>1

4logx′
0

dx′
0dx3

|x3|
,

again using the symmetry of the integral. The third condition implies |x3−x′
0| ≤ 1/|x′

0|<
1—that is, x′

0−1/x′
0 < x3—and thus we get

|R2(η2,η4,η5,η6,B)| �
∫
x′
0>1

logx′
0

⎛⎝∫ 1

x′
0− 1

x′
0

dx3

|x3|

⎞⎠dx′
0

�
∫
1<x′

0≤2

logx′
0

∣∣∣∣log(x′
0−

1

x′
0

)∣∣∣∣dx′
0 � 1.

(For the second inequality, note that x′
0−1/x′

0 ≤ 1 implies x′
0 ≤ 2.) Thus, the second term

of equation (25) is∫
|x′

0(x
′
0−x3)|,|x′

0|,|x′
0−x3|,|x3|≤1

X3≤|x3|≤X′
3

−2log |x′
0|
dx′

0dx3

|x3|
+O(1).

The condition |x′
0(x

′
0−x3)| ≤ 1 is implied by the second and third condition, so we can

remove it. Removing |x′
0−x3| ≤ 1 introduces an error of at most

|R3(η2,η4,η5,η6,B)| ≤
∫

x′
0,|x3|≤1

|x′
0−x3|>1

x′
0≥0

−2logx′
0

dx′
0dx3

|x3|

by the symmetry of the integral. The conditions imply −1≤ x3 ≤ x′
0−1 and thus

|R3(η2,η4,η5,η6,B)| �
∫
0≤x′

0≤1

− logx′
0

(∫ x′
0−1

−1

dx3

|x3|

)
dx′

0

�
∫
0≤x′

0≤1

logx′
0 log |x′

0−1|dx′
0 � 1.
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Thus, the integral of the second summand of equation (25) is∫
|x′

0|,|x3|≤1

X3≤|x3|≤X′
3

−2log |x′
0|
dx′

0dx3

|x3|
+O(1) =

∫
|x3|≤1

X3≤|x3|≤X′
3

4
dx3

|x3|
+O(1). (27)

Since ∫
|x0|,|x2|,|x2

0/x2|≤1

dx0dx2

|x2|
= 8, (28)

adding equations (26) and (27) yields the desired result.

Lemma 20. We have |V ′
3,0(B)−V3,0(B)| �B(logB)2, where

V ′
3,0(B) =

∫
|η1|,|η2|,|η5|≥1,

H′
3(η1,η2,η5,η8)≤B

dη1dη2dη5dη8
|η1|

with

H′
3(η1,η2,η5,η8) = max{|η2η5η8|,|η1η2η25 |,|η45 |,

∣∣η21η22∣∣}.
Proof. The difference that we must estimate is the integral over

|η2η5η8|,
∣∣η1η2η25∣∣, ∣∣η45∣∣, ∣∣(η2η28 +η35η8)/η1

∣∣≤B ≤
∣∣η21η22∣∣ .

Using the condition
∣∣(η2η28 +η35η8)/η1

∣∣≤B in [11, Lemma 5.1(4)], we have

|V ′
3,0(B)−V3,0(B)| �

∫
|η1|,|η2|,|η5|≥1

|η1η2η
2
5 |≤B

B1/2dη1dη2dη5
|η1η2|1/2

.

The remaining conditions imply |η1|,|η2| ≤B. Now the result follows by integrating first

over |η5| ≤ (B/|η1η2|)1/2 and then over 1≤ |η1|,|η2| ≤B.

Lemma 21. We have

V ′
1,0(B) = 25C1B(logB)5, V2,0(B) = 23C2B(logB)4, V ′

3,0(B) = 22C3B(logB)3,

V4,0(B) = 2C4B(logB)2, and V5,0(B) = 22C5B(logB)3

with

C1 = 8vol

{
(t2, . . . ,t6) ∈ R5

≥0

∣∣∣∣∣ t2+2t3+2t4+2t5+2t6 ≤ 1,

t3+2t4+4t5+3t6 ≤ 1

}
=

13

4320
,

C2 = 4vol{(t1,t2,t5,t7) ∈ R4
≥0 | 2t1+2t2 ≤ 1, 4t5+2t7 ≤ 1}= 1

32
,

C3 = 4vol{(t1,t2,t5) ∈ R3
≥0 | 2t1+2t2 ≤ 1, 4t5 ≤ 1}= 1

8
,

C4 = 4vol{(t1,t2) ∈ R2
≥0 | t1+ t2 ≤ 1}= 2, and

C5 = 4vol{(t1,t5,t7) ∈ R3
≥0 | 2t1 ≤ 1, t1+2t5+ t7 ≤ 1}= 7

24
.
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Proof. Again, we apply the coordinate change (24), which shows that

V ′
1,0(B) =

∫
|η2|,|η3|,|η4|,|η5|,|η6|≥1

|η3η
2
4η

4
5η

3
6 |,|η2η

2
3η

2
4η

2
5η

2
6 |≤B

Bdη2dη3dη4dη5dη6
|η2η3η4η5η6|

·
∫
|x0|,|x2|,|x2

0/x2|≤1

dx0dx2

|x2|
.

The integral over x0,x2 is 8 by equation (28). Restricting to positive ηi introduces a factor

of 25. Substituting ηi =Bti turns dηi/ηi into logBdti, and we thus arrive at

V ′
1,0(B) = 25

∫
t2,t3,t4,t5,t6≥0

t3+2t4+4t5+3t6≤1
t2+2t3+2t4+2t5+2t6≤1

8B(logB)5dt2dt3dt4dt5dt6.

This integral can be interpreted as the volume of a polytope, which we compute using
Magma.

For the second case, using the first height condition yields

V2,0(B) = 2

∫
|η1|,|η2|,|η5|,|η7|≥1, |η2

1η
2
2 |,|η4

5η
2
7 |≤B

Bdη1dη2dη5dη7
|η1η2η5η7|

.

We proceed as in the first case; here, we can compute the volume by hand. The final two

cases are analogous.

For the third case, we observe that |η1η2η25 | can be ignored in the definition of H′
3 since

it is the geometric average of |η21η22 | and |η45 |. Now the computation is very similar to the

second case.

Plugging this into Lemma 17 (after applying Lemma 18 and Lemma 20 in the first and

third cases) completes the proof of Theorem 1.

6. The leading constant

We show that Theorem 1 can be abstractly formulated as Theorem 2. Part of the leading

constants (9) are p-adic Tamagawa volumes τ(˜S,Di),p
(Ũi(Zp)) as defined in [7, §§ 2.1.10,

2.4.3]. These measures are similar to the usual Tamagawa volumes studied in the context
of rational points, except for factors ‖1Di

‖p that are constant and equal to 1 on the set

of p-adic integral points at almost all places (in fact, at all finite places in our cases).

Over the reals, the analogous volumes, when evaluated on the full space of real points,
would be infinite. Instead, residue measures τi,DA,∞ supported on minimal strata DA(R)

of the boundary divisors appear in the leading constant (10), cf. [7, § 2.1.12]. These

can be interpreted as a density function for the set of integral points (100% of which

are in arbitrarily small real-analytic neighborhoods of the boundary; hence, a density
function has to be supported on the boundary), cf. [8, 3.5.8], or the leading constant of

an asymptotic expansion of the volume of height balls with respect to τ(˜S,Di),∞, cf. [7,

Theorem 4.7].
In addition, we have to compute factors αi,A as in equation (11) (cf. [25]), similar to

Peyre’s in the case of rational points [22]. Again, there is one of these factors associated

with any minimal stratum A of the boundary.
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In order to compute the Tamagawa volumes, we work with the chart

f : V ′ = S̃ \V(η1η2η3η4η5η6)→ A2
Q,

(η1 : η2 : η3 : η4 : η5 : η6 : η7 : η8 : η9) 	→
(
η7 ·

η25η6
η1η2η3

,η8 ·
1

η1η3η4η5η6

)
and its inverse g : A2

Q → S̃,

(x,y) 	→ (1 : 1 : 1 : 1 : 1 : 1 : x : y :−x−y).

Note that the two elements

η7 ·
η25η6
η1η2η3

and η8 ·
1

η1η3η4η5η6

have degree 0 in the field of fractions of the Cox ring. The rational map they define is

thus invariant under the torus action and descends to S̃.

Lemma 22. The images of the sets of p-adic integral points are

f(Ũ1(Zp)∩V ′(Qp)) = {(x,y) ∈Q2
p | |x| ≥ 1 or |xy2| ≥ 1},

f(Ũ2(Zp)∩V ′(Qp)) = {(x,y) ∈Q2
p | |y| ≤ 1 or |xy2| ≤ 1 or |x+y| ≤ 1}

= {|y| ≤ 1}∪{|y|> 1, |xy2| ≤ 1}∪{|y|> 1, |x+y| ≤ 1},
f(Ũ3(Zp)∩V ′(Qp)) = f(Ũ1(Zp)∩V ′(Qp))∩f(Ũ2(Zp)∩V ′(Qp))

= {|y| ≤ 1, |x| ≥ 1}∪{|y|> 1, |xy2|= 1}∪{|y|> 1, |x+y| ≤ 1},
f(Ũ4(Zp)∩V ′(Qp)) = {|x| ≥ 1, |y| ≤ 1}∪{|y|> 1, |x+y| ≤ 1}, and

f(Ũ5(Zp)∩V ′(Qp)) = {|x|, |y| ≤ 1}∪{|y|> 1,
∣∣xy2∣∣≤ 1}∪{|y|> 1, |x+y| ≤ 1}.

Here, the unions are disjoint.

Proof. Consider the image (x,y) of an integral point π(η1, . . . ,η9) ∈ Ũ1(Zp). Assume
|x|< 1. Then η5 �∈Z×

p or η6 �∈Z×
p (since η7 ∈Z×

p ). In both cases, the coprimality conditions

imply η8 ∈ Z×
p , and thus |xy2|= |η7η28/η31η2η33η24η6| ≥ 1.

On the other hand, let us consider a point (x,y) in the above set and construct

an integral point (η1, . . . ,η9) on the torsor with f(π(η1, . . . ,η9)) = (x,y). If |x| < 1, we
distinguish two cases for |y|:

(i) If 1/|x|1/2 ≤ |y| < 1/|x|, let η5 = xy, η6 = 1/xy2, η9 = −1−x/y and the remaining
coordinates be 1. Then η9 ∈ −1+ pZp ⊂ Z×

p since |x/y| ≤ |x|1/2 < 1, and thus the

coprimality conditions are satisfied.

(ii) If 1/|x| ≤ |y|, let η4 =1/xy, η6 =x, η9 =−1−x/y, and let all the other coordinates be

1. Since |x/y| ≤ |x|2 < 1, we again have η9 ∈−1+pZp ⊂Z×
p , and thus the coprimality

conditions hold.

If |x| ≥ 1, we distinguish three cases for |y|.

(i) If |y|< 1, let η2 = 1/x, η8 = y, η9 =−1−y/x and the remaining coordinates be 1.

Then η9 ∈ −1+pZp ⊂ Z×
p since |y/x|< 1.
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(ii) If 1≤ |y|< |x|, let η3 = 1/y, η2 = y/x, η9 =−1−y/x and the remaining coordinates

be 1. Again, we have |y/x|< 1 so that η9 ∈ −1+pZp ⊂ Z×
p .

(iii) Finally, if |x| ≤ |y|, let η3 = 1/x, η4 = x/y, η1 = −1− x/y and the remaining
coordinates be 1. If |y| > |x|, we have η1 ∈ −1+ pZp ⊂ Z×

p ; if |x| = |y|, we have

η4 ∈ Z×
p . In both cases, the coprimality conditions on the torsor are satisfied.

We now turn to Ũ2. Let (x,y) be in the image of the set of integral points. If |y| > 1,
we have either |η5|< 1 or |η1|< 1. In the first case, we get |xy2|= |η7η28/η31η2|= |η7| ≤ 1

(since all other variables have to be units); for the second case, we note that

x+y =
η4η

3
5η

2
6η7+η2η8

η1η2η3η4η5η6
=− η1η9

η1η2η3η4η6
,

and thus |x+y|= |η9| ≤ 1 (since all other variables have to be units).

On the other hand, let (x,y) be in the set on the right-hand side in the statement of
the lemma. We want to construct an integral point on the torsor lying above (x,y). If

|y| ≤ 1 and |x| ≤ 1, let η8 = y, η7 = x, η9 = −x− y and the remaining variables be 1,

which satisfies the coprimality conditions. If |y| ≤ 1 and |x| > 1, let η8 = y, η2 = 1/x,
η9 =−1−y/x and the remaining variables be 1. Then η9 ∈−1−pZp ⊂ Z×

p , so (η1, . . . ,η9)

is integral. Let now |y| > 1. If |xy2| ≤ 1, let η5 = 1/y, η7 = xy2, η9 = −1−xy and the

remaining variables be 1; again, η9 ∈ Z×
p . Finally, if |x+y| ≤ 1, let η1 = 1/x, η9 =−x−y,

η8 =−η1η9−1 and the remaining variables be 1. Then η8 ∈ Z×
p , so (η1, . . . ,η9) is integral,

and, since η8/η1 = (−η1η9 − 1)/η1 = x+ y− x = y, it indeed lies above (x,y). For the

disjoint union description of Ũ2, we just have to observe that |y|> 1 and |xy2| ≤ 1 implies

|x|= |y|−2 < 1, while |y|> 1 and |x+y| ≤ 1 implies |x|= |y|> 1.
The third set consists of points that are integral with respect to both Q1 and Q2.

Therefore, we obtain it as the intersection of the previous two sets. For the description of

Ũ3 as a disjoint union, we start with the one of Ũ2 and intersect each set with Ũ1. Here,
|y| ≤ 1 implies |x| ≥ 1 since otherwise |xy2|< 1. Furthermore, |y|> 1 and |xy2| ≤ 1 implies

|x|< 1; hence, |xy2| ≥ 1 must hold. Finally, |y|> 1 and |x+y| ≤ 1 implies |x|= |y|> 1.

The final two cases are analogous.

Lemma 23. Let v be a place of Q. For the measures τ(˜S,Di),v
defined in [7, § 2.4.3], we

have

df∗τ(˜S,D1),v
=

1

|x|max{|y|,1,|x|,|y(y+x)|} dxdy,

df∗τ(˜S,D2),v
=

1

max{|xy|,1,|x2|} dxdy,

df∗τ(˜S,D3),v
=

1

|x|max{|y|,1,|x|,M(x,y)} dxdy,

df∗τ(˜S,D4),v
=

1

|x|max{|y|,1, |x|} dxdy, and

df∗τ(˜S,D5),v
=

1

max{|xy|,1, |x|} dxdy,
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where

M(x,y) = min

{
|y(x+y)|

|x3| ,
|x+y|
|x| , |y(x+y)|,

∣∣x−1
∣∣},

and all absolute values are |·|= |·|v.

Proof. In the first case, we have

df∗τ(˜S,D1),v
= ‖(dx∧dy)⊗1E7

‖−1
ω

˜S(D),v dxdy. (29)

To make sense of this, we need a metric on the log-canonical bundle, not just on a line
bundle isomorphic to it. To this end, we consider the isomorphism between the canonical

bundle ω
˜S and the line bundle whose meromorphic sections are elements of degree ω

˜S

of the field of fractions of the Cox ring that maps dx∧dy to 1/η21η
2
2η

3
3η

2
4η6; in addition,

we consider the isomorphisms between O(Ei) and the line bundles whose sections are

elements of the Cox ring mapping 1Ei
to ηi. Together, these induce an isomorphism from

each ω
˜S(D1) to the line bundle whose sections are functions of the Cox ring of degree

ω
˜S(D1), and we can pull back the adelic metric we constructed along this isomorphism

(and similarly for the log-canonical bundles in the remaining cases). In Cox coordinates,

the norm in equation (29) at a point η is

|η21η22η33η24η6|
|η7|max{|η2η3η4η5η6η8|,|η1η2η23η24η25η26 |,|η3η24η45η36η7|,|η8η9|}

. (30)

In the second case, we can analogously determine the norm

‖(dx∧dy)⊗1E3
⊗1E4

⊗1E6
‖−1
ω

˜S(D2),v

in Cox coordinates:

1

|η3η4η6|
|η21η22η33η24η6|

max{|η2η5η7η8|,|η21η22η23η4|,|η4η45η26η27 |}
. (31)

In the third case, the norm

‖(dx∧dy)⊗1E3
⊗1E4

⊗1E6
⊗1E7

‖−1
ω

˜S(D3),v

at a point η in Cox coordinates is

1

|η3η4η6η7|
|η21η22η33η24η6|

max{|η2η5η8|,|η1η2η3η4η25η6|,|η4η45η26η7|,M0(η)}
(32)

with

M0(η) =

∣∣η31η32η23η4η8η9∣∣
maxs∈B{|s(η)|}

.
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Then M0(g(x,y)) =M(x,y) as above after removing terms that can never contribute to

the minimum.

In the remaining two cases, the norms of interest are

1

|η3η4η5η6η7|
|η21η22η33η24η6|

max{η2η8,η1η2η3η4η5η6,η4η35η26η7}
and

1

|η2η3η4η6|
|η21η22η33η24η6|

max{|η5η7η8|, |η21η2η23η4|, |η1η3η4η25η6η7|}
,

respectively.

Lemma 24. Let p be a finite prime. Then

τ(˜S,Di),p
(Ũi(Zp)) =

{
1+ 6−#Di

p , i= 1,2,4,5;

1+ 2
p −

1
p2 , i= 3.

Proof. We compute

τ(˜S,Di),p
(Ũi(Zp)) =

∫
f(˜Ui(Zp)∩V ′(Qp))

df∗τ(˜S,Di),p
(33)

for i ∈ {1, . . . ,5}. For i= 1, the previous two lemmas transform this into∫
x,y∈Qp

|x|≥1 or |xy2|≥1

1

|x|max{|y|,1,|x|,|y(y+x)|} dxdy.

Subdividing the domain of integration into the regions with |x|> |y|, |x|= |y|, and |x|< |y|
in order to simplify the denominator, we get∫

|y|<|x|
|x|≥1

1

|x|max{|x|,|xy|} dxdy+
∫
|y|=|x|
|x|≥1

1

|x|max{|x|,|y(y+x)|} dxdy

+

∫
|x|<|y|
|xy2|≥1

1

|xy2| dxdy
(34)

after simplifying the description of the domains (|x| < 1 would imply |xy2| ≤ |x|3 < 1 in

the first two cases; |y|2 < 1/|x| would imply |y|2 < 1/|x| ≤ 1≤ |x|2 < |y|2 in the third case).

The first of the integrals in equation (34) is∫
|x|≥1

1

|x|2
∫
|y|<|x|

1

max{1,|y|} dydx=

∫
|x|≥1

1

|x|2

(
1

p
+

∫
1≤|y|<|x|

1

|y| dy
)
dx

=

∫
|x|≥1

1

|x|2
(
1

p
+

(
1− 1

p

)
|v(x)|

)
dx=

1

p
+
∑
δ≥0

(
1− 1

p

)2
δ

pδ
=

2

p
, (35)

while the second integral is∫
|y+x|≤ 1

p

|x|≥1

1

|x|2 +
∫

|y+x|≥1
|x|≥1,|y|=|x|

1

|xy(x+y)| . (36)
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The first integral in equation (36) is 1
p

∫
|x|≥1

1
|x|2 dx = 1

p . Turning to the second one, we

note that |x| = |y| is implied by the ultrametric triangle inequality if |x+ y| < |x|. The
set of y ∈ Qp with |x+ y| = |x| and |y| = |x| has volume |x| − 2|x|/p since the two sets

{y | |y−0|< |x|} and {y | |y+x|< |x|} have volume |x|/p and are disjoint (because |y|< |x|
implies |y+x|= |x|). We thus get

∫
|x|≥1

1

|x|2

⎛⎝ ∑
0≤δ<|v(x)|

(
1− 1

p

)
pδ

pδ
+

(
1− 2

p

)
|x|
|x|

⎞⎠dx

=

∫
|x|≥1

1

|x|2
((

1− 1

p

)
|v(x)|+

(
1− 2

p

))
dx=

1

p
+1− 2

p
= 1− 1

p
,

computing the integral over x similarly as in equation (35). The second integral in

equation (34) thus evaluates to 1. Finally, the third integral in equation (34) is∫
1

|y|2
∫
1/|y|2≤|x|<|y|

1

|x| dxdy =
∫
|y|≥1

1

|y|2
∑

−2|v(y)|≤δ<|v(y)|

(
1− 1

p

)
dy

=

∫
|y|≥1

(
1− 1

p

)
3|v(y)|
|y|2 =

3

p
,

again computed analogously to the previous ones. Adding the three terms in equation

(34), we arrive at our claim for i= 1.
For i= 2, we get∫

|y|≤1, |xy2|≤1, or |x+y|≤1

1

|x|max{|y|,|x−1|,|x|} dxdy

=

∫
|y|≤1

1

max{1,|x2|} dxdy+
∫

|y|>1
|x+y|≤1

1

|y2| dxdy+
∫

|y|>1

|x|≤1/|y|2
dxdy

for the integral (33) (since |x|= |y| in the second case). The first integral is then

1+

∫
|x|>1

1

|x2| dx= 1+
1

p
,

while the other two integrals are ∫
|y|>1

1

|y2| dy =
1

p
.

For i= 3, we compute the integral on the right hand side of equation (33) to be∫
f(˜U3(Zp)∩V ′(Qp))

1

|x|max{|y|,1,|x|,M(g(x,y))} dxdy

=

∫
|y|≤1, |x|≥1

1

|x2| dxdy+
∫

|y|>1
|x+y|≤1

1

|y2| dxdy+
∫

|y|>1

|x|=1/|y|2
dxdy
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(again using that |x|= |y| in the second case). The first integral is then∫
|x|≥1

1

|x2| dx= 1,

while the second one is ∫
|y|>1

1

|y2| dy =
1

p
,

and the third one is (
1− 1

p

)∫
|y|>1

1

|y2| dy =
1

p
− 1

p2
.

The final two cases are similar: for i=4, the integrals over the two disjoint sets in Lemma

22 are 1 and p−1, respectively, while, for i = 5, the integrals over the three disjoint sets
are 1, p−1 and p−1, respectively.

The remaining parts of the constant are associated with maximal faces of the Clemens

complex. Recall from Section 1.2 and Figure 1 that the Clemens complex of the

geometrically irreducible divisor D1 consists of just one vertex E7. For D2, we have
three vertices corresponding to its components, and two 1-simplices A1 = {E3,E4} and

A2 = {E4,E6} between the intersecting exceptional curves (Figures 1 and 4). The Clemens

complex for D3 =D1+D2 is the disjoint union of the previous two cases; its maximal-

dimensional faces are again A1 and A2. For D4, they are A1, . . . ,A4, and for D5, they are
A1,A2,A5 (Figure 4).

For a face A of the Clemens complexes associated with Di, we set DA =
⋂

E∈AE

and Δi,A = Di −
∑

E∈AE. For a maximal-dimensional face A of a Clemens complex,
the adjunction isomorphism and a metric on the log-canonical bundle ω

˜S(Di) induce a

metric on the bundle ωDA
⊗O

˜S(Δi,A)|DA
on DA. Since A is maximal, the canonical

section 1Δi,A
does not have a pole on DA, so since DA(R) is compact, the norm∥∥1Δi,A

|DA

∥∥
O

˜S(Δi,A)|DA
,∞ is bounded on DA(R) for any metric. Hence,

∥∥ω⊗1Δi,A
|O

˜S

∥∥−1

ωDA
⊗O

˜S(Δi,A)|DA
,∞ |ω|=

∥∥1Δi,A
|DA

∥∥
O

˜S(Δi,A)|DA
,∞ τDA,∞

(where the equality holds for any choice of metrics on ωDA
and O

˜S(Δi,A)|DA
compatible

with the one on their tensor product) defines a finite measure on DA(R), independent of

the choice of a form ω ∈ωDA
. We further normalize this measure with a factor c#A

R =2#A,

call it residue measure and denote it by τi,DA,∞. See [7, §§ 2.1.12, 4.1] for details on this
construction.

Lemma 25. We have

τ1,E7,∞(E7(R)) = 8 and τi,DA,∞(DA(R)) = 4

for i ∈ {2, . . . ,5} and every maximal-dimensional face A of the Clemens complex for Di.
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Proof. Following [7, 2.1.12], we can compute the unnormalized Tamagawa volume of E7

by integrating

‖dy‖−1
ωE7

,∞ = lim
x→0

(
|x|‖(dx∧dy)⊗1E7

‖−1
ω

˜S(E7),∞

)
.

Again evaluating equation (30) in the image of (x,y), we get the volume

τ ′1,E7,∞(E7(R)) =

∫
R

lim
x→0

|x|
|x|max{1,|x|,|y|,|y(y+x)|} dy

=

∫
R

1

max{1,|y2|} dy = 4,

which we normalize by multiplying with cR = 2.

For the second and third cases, we work in neighborhoods of the two intersection points
DA1

= E3∩E4 and DA2
= E4∩E6. The Tamagawa measures on these points are simply

real numbers. In order to compute them, we consider the charts

g′ : A2
Q → S̃, (a,b) 	→ (1 : 1 : a : b : 1 : 1 : 1 : 1 :−1− b) and

g′′ : A2
Q → S̃, (c,d) 	→ (1 : 1 : 1 : c : 1 : d : 1 : 1 :−1− cd).

We have x= 1/a= d, y = 1/ab= 1/cd for these charts. Since

‖dx∧dy‖= |det(Jf◦g′)|‖da∧db‖,

we can use equation (31) to compute the norms

‖(da∧db)⊗1E3
⊗1E4

⊗1E6
‖ω

˜S(D2),∞ =max{|a3b2|,|ab|,|ab2|} and

‖(dc∧dd)⊗1E3
⊗1E4

⊗1E6
‖ω

˜S(D2),∞ =max{|c2d|,|cd|,|c2d3|}.

Analogously to the first case, we now arrive at

τ ′2,DA1
,∞ = lim

(a,b)→(0,0)

|ab|
max{|a3b2|,|ab|,|ab2|} = 1,

and, similarly, τ ′2,DA2
,∞ = 1 for the unnormalized measures on the points DAi

(R), which

we multiply with c2R = 4.

In the third case, using the same change of variables and the description (32) of the
metric in Cox coordinates, we get

‖(da∧db)⊗1E3
⊗1E4

⊗1E6
⊗1E7

‖ω
˜S(D3),∞ = |ab|max{1, |ab|, |b|,M0(g

′(a,b))}

with M0(g
′(ab))→ 0, as (a,b)→ (0,0), whence τ ′3,DA1

,∞ =1 for the unnormalized measure.

Finally,

‖(dc∧dd)⊗1E3
⊗1E4

⊗1E6
⊗1E7

‖ω
˜S(D3),∞ = |cd|max{1, |cd|,

∣∣cd2∣∣,M0(g
′′(c,d))},

where again M0(g
′′(c,d)) → 0, and we get τ ′3,DA2

,∞ = 1 for the unnormalized measure.

Again, we multiply both measures with c2R = 4.

The computations in the cases i= 4,5 are analogous.
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These Tamagawa numbers are multiplied with rational numbers αi,A, where A is a
maximal-dimensional face of the Clemens complex for Di, depending on the geometry of

certain effective cones, as in equation (11). Following [25, § 2.2],

Ũi,A =X \
⋃

Ej⊂Di,
Ej �∈A

Ej (37)

is the complement of all boundary components not belonging to A, and Eff Ũi,A ⊂
(Pic Ũi,A)R is its effective cone; all volume functions are normalized as in [25, Remark

2.2.9 (iv)].

Lemma 26. We have

α1,E7
= vol

{
(t2, . . . ,t6) ∈ R5

≥0

∣∣∣∣∣ t2+2t3+2t4+2t5+2t6 ≤ 1

t3+2t4+4t5+3t6 ≤ 1

}
=

13

34560
,

α2,A1
= vol{(t1,t2,t5,t7) ∈ R4

≥0 | t1+ t2 ≤ 2t5+ t7, 4t5+2t7 ≤ 1}= 1/256,

α2,A2
= vol{(t1,t2,t5,t7) ∈ R4

≥0 | t1+ t2 ≥ 2t5+ t7, 2t1+2t2 ≤ 1}= 1/256,

α3,A1
= vol{(t1,t2,t5) ∈ R3

≥0 | t1+ t2 ≤ 2t5, 4t5 ≤ 1}= 1/96,

α3,A2
= vol{(t1,t2,t5) ∈ R3

≥0 | t1+ t2 ≥ 2t5, 2t1+2t2 ≤ 1}= 1/48,

α4,A1
= 0,

α4,A2
= vol{(t1,t2) ∈ R2

≥0 | t1+ t2 ≤ 1/2}= 1/8,

α4,A3
= vol{(t1,t2) ∈ R2

≥0 | 1/2≤ t1+ t2 ≤ 2/3}= 7/72,

α4,A4
= vol{(t1,t2) ∈ R2

≥0 | 2/3≤ t1+ t2 ≤ 1}= 5/18,

α5,A1
= vol{(t1,t5,t7) ∈ R3

≥0 | t1 ≤ 2t5+ t7, 4t5+2t7 ≤ 1}= 1/48,

α5,A2
= vol{(t1,t5,t7) ∈ R3

≥0 | t1 ≥ 2t5+ t7, 2t1 ≤ 1}= 1/96, and

α5,A5
= vol{(t1,t5,t7) ∈ R3

≥0 | t1+2t5+ t7 ≤ 1, 4t5+2t7 ≥ 1}= 1/24.

Proof. To compute αi,A, we choose j0 ∈ {1, . . . ,7} such that Ej0 ∈ A and such that the

classes of Ej for j ∈ {1, . . . ,7} \ {j0} form a basis of Pic S̃. The latter holds for j0 ∈
{1,2,3,6,7} since the data in [12] show that Pic S̃ has rank 6 and is generated by the

classes of the negative curves E1, . . . ,E7, where

E1+E2+E3−2E5−E6−E7 (38)

is a principal divisor. An inspection of Figure 4 shows that Ej0 ∈A for some j0 ∈ {3,6,7}.
Hence, there are unique linear combinations

∑
j �=j0

ajEj of class ω
˜S(Di)

∨ and∑
j �=j0

bjEj of the same class as Ej0 ; the coefficients aj,bj ∈ Z can be computed using
equation (38) and the fact that 2E1+2E2+3E3+2E4+E6 has anticanonical class by

equation (17). For the following computations, it is useful to know that

2E4+4E5+3E6+2E7, 2E1+2E2+3E3+2E4, E1+E2+2E3+2E4+2E5+2E6

(39)

have class ω
˜S(Ej0)

∨ for j0 = 3,6,7, respectively (expressed without using Ej0).
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Let J = {j ∈ {1, . . . ,7} | Ej ⊂Di, Ej /∈ A} and J ′ = {1, . . . ,7}\ (J ∪{j0}). By definition

(37),

Pic Ũi,A = (Pic S̃)/〈Ej | j ∈ J〉;

hence, a basis is given by the classes of Ej for j ∈ J ′ modulo the classes of Ej for j ∈ J ,
and its effective cone is generated by the classes of Ej for j ∈ J ′∪{j0} modulo the classes

of Ej for j ∈ J . Working with the dual basis, we obtain

αi,A = vol

⎧⎨⎩(tj) ∈ RJ ′

≥0 |
∑
j∈J ′

ajtj = 1,
∑
j∈J ′

bjtj ≥ 0

⎫⎬⎭ .

If A= {Ej0,Ej1} is a 1-simplex, then j1 ∈ J , and the next step is to eliminate the variable

tj1 using the equation, which gives a description of αi,A as the volume of a polytope in
RJi

≥0 with Ji as in equation (22) defined by two inequalities.

In the first case, we have Ũ1,E7
= S̃ and corresponding effective cone Eff S̃, whose dual

is the nef cone of S̃. Working with the dual basis of the classes of E1, . . . ,E6 and using

descriptions (38) and (39) for E7 and ω
˜S(D1)

∨, we obtain

α1 = vol

{
(t1, . . . ,t6) ∈ R6

≥0

∣∣∣∣∣ t1+ t2+ t3−2t5− t6 ≥ 0

t1+ t2+2t3+2t4+2t5+2t6 = 1

}
and eliminate t1.

In the second case, there are two constants α2,Ai
associated with the maximal faces

A1 = {E3,E4} and A2 = {E4,E6} of the Clemens complex. The subvarieties used in their
definition are Ũ2,A1

= S̃ \E6 and Ũ2,A2
= S̃ \E3. In the first case, we have J = {6}, choose

j0 = 3 and obtain J ′ = {1,2,4,5,7}. Therefore, the Picard group of ŨA1
is (Pic S̃)/〈E6〉

with a basis is given by the classes of E1,E2,E4,E5,E7 modulo E6, and its effective cone
is generated by the classes of E1, . . . ,E5,E7 modulo E6. Since E3 has the same class as

−E1−E2+2E5+E6+E7 in Pic S̃ by equation (38), while E4+4E5+2E6+2E7 has class

ω
˜S(D2)

∨ by equation (39), we obtain (working modulo E6)

α2,A1
= vol

{
(t1,t2,t4,t5,t7) ∈ R5

≥0

∣∣∣∣∣ − t1− t2+2t5+ t7 ≥ 0

t4+4t5+2t7 = 1

}
and eliminate t4.
The computation of α2,A2

is similar. Here, we choose j0 = 6, and our basis is given

by the classes of E1,E2,E4,E5,E7 modulo E3. The divisor E6 has the same class as

E1+E2+E3−2E5−E7, while 2E1+2E2+2E3+E4 has class ω
˜S(D2)

∨. Therefore,

α2,A2
= vol

{
(t1,t2,t4,t5,t7) ∈ R5

≥0

∣∣∣∣∣ t1+ t2−2t5− t7 ≥ 0

2t1+2t2+ t4 = 1

}
;

again, we eliminate t4.

The further cases are analogous. The only exceptional case is the computation of α4,A1
.

Working with J = {5,6,7}, j0 = 3 and J ′ = {1,2,4}, a similar computation as for α2,A1
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shows

α4,A1
= vol

{
(t1,t2,t4) ∈ R5

≥0

∣∣∣∣∣ − t1− t2 ≥ 0,

t4 = 1

}
,

which clearly has volume 0 in the hyperplane t4 = 1.

Remark 27. This last phenomenon α4,A1
= 0 is an instance of the obstruction described

in [25, Theorem 2.4.1 (i)]: The regular function

s=
η1η2η3
η5η6η7

on Ũ4 is also regular on Ũ4,A1
. On the one hand, this regular function induces the relation

[E1]+ [E2] = 0 in Pic(Ũi,A4
), while both classes on the left are nonzero; this makes the

pseudo-effective cone fail to be strictly convex, and the resulting polytope has volume 0.

On the other hand, s vanishes on D4,A1
= {η3 = η4 = 0} so that |s| < 1 on a sufficiently

small real-analytic neighborhood W of D4,A1
; but W is integral on Ũ4(Z) and nonzero on

V = S̃ \ (E1+ · · ·+E7), so |s| ≥ 1 on the set V (Q)∩Ũ4(Z) counted by N4. It follows that

any sufficiently small analytic neighborhood of D4,A1
(R) cannot contribute to N4, which

is reflected by the vanishing of the corresponding part of the expected leading constant.

Lemma 28. For i ∈ {1, . . . ,5}, the Archimedean contributions to the expected constants

are

ci,∞ =
∑
A

αi,Aτi,DA,∞(DA(R)) = Ci,

where the sum runs through the maximal faces A of the Clemens complex, with Ci as in

Lemma 21.

Proof. This follows from Lemma 25 and Lemma 26. For i = 2, . . . ,6, we observe that
the polytopes of volumes αi,A in Lemma 26 fit together to the one appearing in the

description of Ci in Lemma 21.

We conclude by noting that the classes of E3,E4,E6,E7 in Pic S̃ are linearly independent;
hence, rkPic Ũi =rkPic S̃−#Di (with #Di as in Lemma 15). This observation, Lemma 24

and Lemma 28 allow us to reformulate Theorem 1 as Theorem 2 for i ∈ {1, . . . ,5}. For
the final case, we equip the log-anticanonical bundle ω

˜S(D6)
∨ with the metric pulled

back from ω
˜S(D5)

∨ along the isomorphism 8; since all constructions in this section are

invariant under metric-preserving isomorphisms, the theorem follows for i= 6.
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