Corrigendum: A certain structure of Artin groups and the isomorphism conjecture

S.K. Roushon®

DOI: https://doi.org/10.4153/S0008414X2000036X. Published by Cambridge University Press, 21 May 2020.

Abstract. In this note, we give an alternate proof of the Farrell-Jones isomorphism conjecture for the affine Artin groups of type \widetilde{B}_{n}.

In [4], Flechsig pointed out an error in [6, Proposition 4.1], which was needed to deduce the Farrell-Jones isomorphism conjecture for the affine Artin groups $\mathcal{A}_{\widetilde{B}_{n}}$ $(n \geq 3)$ of type \widetilde{B}_{n}.

In this note, we give an alternate argument to prove the conjecture.
Theorem 0.1 The Farrell-Jones isomorphism conjecture wreath product with finite groups (FICwF) is true for $\mathcal{A}_{\widetilde{B}_{n}}(n \geq 3)$.
Proof Consider the following hyperplane arrangement complement.

$$
W=\left\{w \in \mathbb{C}^{n} \mid w_{i} \neq \pm w_{j}, \text { for all } i \neq j ; w_{k} \neq \pm 1 \text {, for all } k\right\} .
$$

In $\left[2\right.$, Section 3], the following homeomorphism was observed. Let $\mathbb{C}^{*}=\mathbb{C}-\{0\}$.

$$
\begin{gathered}
\mathbb{C}^{*} \times W \simeq X:=\left\{x \in \mathbb{C}^{n+1} \mid x_{i} \neq \pm x_{j}, \text { for all } i \neq j ; x_{1} \neq 0\right\} . \\
\left(\lambda, w_{1}, w_{2}, \ldots, w_{n}\right) \mapsto\left(\lambda, \lambda w_{1}, \ldots, \lambda w_{n}\right) .
\end{gathered}
$$

In [2, Lemma 3.1], it was then proved that the hyperplane arrangement complement X is simplicial, in the sense of [3].

From [5], it follows that $F I C w F$ is true for $\pi_{1}(X)$, since X is a finite real simplicial arrangement complement. Hence, $F I C w F$ is true for $\pi_{1}(W)$, as $\pi_{1}(W)$ is a subgroup of $\pi_{1}(X)$ and $F I C w F$ has hereditary property (see [6]).

Next, note that there are the following two finite sheeted orbifold covering maps:

$$
\begin{aligned}
W \rightarrow & P B_{n}(Z):=\left\{z \in Z^{n} \mid z_{i} \neq z_{j}, \text { for all } i \neq j\right\} \\
& \left(w_{1}, w_{2}, \ldots, w_{n}\right) \mapsto\left(w_{1}^{2}, w_{2}^{2}, \ldots, w_{n}^{2}\right)
\end{aligned}
$$

[^0]and $P B_{n}(Z) \rightarrow B_{n}(Z):=P B_{n}(Z) / S_{n}$. Here, $Z=\mathbb{C}(1,1 ; 2)$ (see [6]) is the orbifold whose underlying space is $\mathbb{C}-\{1\}$, and 0 is an order 2 cone point. And, the symmetric group S_{n} is acting on $P B_{n}(Z)$ by permuting coordinates.

Therefore, $\pi_{1}(W)$ embeds in $\pi_{1}^{o r b}\left(B_{n}(Z)\right)$ as a finite index subgroup. Hence, $F I C w F$ is true for $\pi_{1}^{o r b}\left(B_{n}(Z)\right)$, since FICwF passes to finite index overgroups (see [6]). Next, recall that in [1] Allcock showed that $\mathcal{A}_{\widetilde{B}_{n}}$ is isomorphic to a subgroup of $\pi_{1}^{\text {orb }}\left(B_{n}(Z)\right)$, and hence $F I C w F$ is true for $\mathcal{A}_{\widetilde{B}_{n}}$ by the hereditary property of FICwF.

References

[1] D. Allcock, Braid pictures of Artin groups. Trans. Amer. Math. Soc. 354(2002), no. 9, 3455-3474.
[2] F. Callegaro, D. Moroni, and M. Salvetti, The $K(\pi, 1)$ problem for the affine Artin group of type \widetilde{B}_{n} and its cohomology. J. Eur. Math. Soc. (JEMS) 12(2010), 1-22.
[3] P. Deligne, Les immeubles des groupes de tresses généralisés. Invent. Math. 17(1972), 273-302.
[4] J. Flechsig, Braid groups and mapping class groups for 2-orbifolds. Preprint, 2023, arXiv:2305.04273.
[5] J. Huang and D. Osajda, Helly meets Garside and Artin. Invent. Math. 225(2021), no. 2, 395-426.
[6] S. K. Roushon, A certain structure of Artin groups and the isomorphism conjecture. Canad. J. Math. 73(2021), no. 4, 1153-1170.

School of Mathematics, Tata Institute, Homi Bhabha Road, Mumbai, India
e-mail: roushon@math.tifr.res.in

[^0]: Received by the editors August 10, 2023; accepted February 19, 2024.
 Published online on Cambridge Core February 23, 2024.
 AMS subject classification: 19B99, 19G24, 20F36, 57R67, 57 N 37 .
 Keywords: Artin group, isomorphism conjecture, Whitehead group, reduced projective class group, surgery obstruction group, Waldhausen A-theory.

