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Abstract. In this note, we give an alternate proof of the Farrell–Jones isomorphism conjecture for
the affine Artin groups of type B̃n .

In [4], Flechsig pointed out an error in [6, Proposition 4.1], which was needed to
deduce the Farrell–Jones isomorphism conjecture for the affine Artin groups AB̃n

(n ≥ 3) of type B̃n .
In this note, we give an alternate argument to prove the conjecture.

Theorem 0.1 The Farrell–Jones isomorphism conjecture wreath product with finite
groups (FICwF) is true for AB̃n

(n ≥ 3).

Proof Consider the following hyperplane arrangement complement.

W = {w ∈ Cn ∣ w i ≠ ±w j , for all i ≠ j; wk ≠ ±1, for all k}.

In [2, Section 3], the following homeomorphism was observed. Let C∗ = C − {0}.

C
∗ ×W ≃ X ∶= {x ∈ Cn+1 ∣ x i ≠ ±x j , for all i ≠ j; x1 ≠ 0}.

(λ, w1 , w2 , . . . , wn) ↦ (λ, λw1 , . . . , λwn).

In [2, Lemma 3.1], it was then proved that the hyperplane arrangement complement
X is simplicial, in the sense of [3].

From [5], it follows that FICwF is true for π1(X), since X is a finite real simplicial
arrangement complement. Hence, FICwF is true for π1(W), as π1(W) is a subgroup
of π1(X) and FICwF has hereditary property (see [6]).

Next, note that there are the following two finite sheeted orbifold covering maps:

W →PBn(Z) ∶= {z ∈ Zn ∣ z i ≠ z j , for all i ≠ j}
(w1 , w2 , . . . , wn) ↦ (w2

1 , w2
2 , . . . , w2

n)
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and PBn(Z) → Bn(Z) ∶= PBn(Z)/Sn . Here, Z = C(1, 1; 2) (see [6]) is the orbifold
whose underlying space isC − {1}, and 0 is an order 2 cone point. And, the symmetric
group Sn is acting on PBn(Z) by permuting coordinates.

Therefore, π1(W) embeds in πorb
1 (Bn(Z)) as a finite index subgroup. Hence,

FICwF is true for πorb
1 (Bn(Z)), since FICwF passes to finite index overgroups (see

[6]). Next, recall that in [1] Allcock showed that AB̃n
is isomorphic to a subgroup

of πorb
1 (Bn(Z)), and hence FICwF is true for AB̃n

by the hereditary property of
FICwF. ∎
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