
J. Appl. Prob. 45, 703–713 (2008)
Printed in England

© Applied Probability Trust 2008

OPTIMAL CO-ADAPTED COUPLING
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Abstract

Let X and Y be two simple symmetric continuous-time random walks on the vertices
of the n-dimensional hypercube, Z

n
2. We consider the class of co-adapted couplings of

these processes, and describe an intuitive coupling which is shown to be the fastest in this
class.
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1. Introduction

Let Z
n
2 be the group of binary n-tuples under coordinatewise addition modulo 2: this can

be viewed as the set of vertices of an n-dimensional hypercube. For x ∈ Z
n
2, we write x =

(x(1), . . . , x(n)), and define elements {ei}n0 by

e0 = (0, . . . , 0), ei(k) = 1[i=k], i = 1, . . . , n,

where 1[·] denotes the indicator function. For x, y ∈ Z
n
2, let

|x − y| =
n∑

i=1

|x(i) − y(i)|

denote the Hamming distance between x and y.
A continuous-time random walk X on Z

n
2 may be defined using a marked Poisson process

� of rate n, with marks distributed uniformly on the set {1, 2, . . . , n}: the ith coordinate of X

is flipped to its opposite value (0 or 1) at incident times of � for which the corresponding mark
is equal to i. We write L(Xt ) for the law of X at time t . The unique equilibrium distribution
of X is the uniform distribution on Z

n
2.

Suppose that we now wish to couple two such random walks, X and Y , starting from different
states.

Definition 1.1. A coupling of X and Y is a process (X′, Y ′) on Z
n
2 × Z

n
2 such that

X′ d= X and Y ′ d= Y,

where ‘
d=’ denotes equality in distribution. That is, viewed marginally, X′ behaves as a version

of X and Y ′ behaves as a version of Y .
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For any coupling strategy c, write (Xc
t , Y

c
t ) for the value at t of the pair of processes Xc and

Y c driven by strategy c, although this superscript notation may be dropped when no confusion
can arise. (We assume throughout that (Xc, Y c) is a coupling of X and Y .) We then define the
coupling time by

τ c = inf{t ≥ 0 : Xc
s = Y c

s for all s ≥ t}.
Note that, in general, this is not necessarily a stopping time for either of the marginal processes,
nor even for the joint process. For t ≥ 0, let

Uc
t = {1 ≤ i ≤ n : Xc

t (i) �= Y c
t (i)}

denote the set of unmatched coordinates at time t , and let

Mc
t = {1 ≤ i ≤ n : Xc

t (i) = Y c
t (i)}

be its complement. A simple coupling technique appears in [1, pp. 254–256], and may be
described as follows:

• if X(i) flips at time t , with i ∈ Mt , then also flip coordinate Y (i) at time t (matched
coordinates are always made to move synchronously);

• if |Ut | > 1 and X(i) flips at time t , with i ∈ Ut , then also flip coordinate Y (j) at time t ,
where j is chosen uniformly at random from the set Ut \ {i};

• else, if Ut = {i} contains only one element, allow coordinates X(i) and Y (i) to evolve
independently of each other until this final match is made.

This defines a valid coupling of X and Y for which existing coordinate matches are maintained
and new matches are made in pairs when |Ut | ≥ 2. It is also an example of a co-adapted
coupling.

Definition 1.2. A coupling (Xc, Y c) is called co-adapted if there exists a filtration (Ft )t≥0
such that

1. Xc and Y c are both adapted to (Ft )t≥0;

2. for any 0 ≤ s ≤ t ,

L(Xc
t | Fs) = L(Xc

t | Xc
s ) and L(Y c

t | Fs) = L(Y c
t | Y c

s ).

In other words, (Xc, Y c) is co-adapted if Xc and Y c are both Markov with respect to a
common filtration, (Ft )t≥0. Note, however, that this definition does not imply that the joint
process (Xc, Y c) is Markovian. If (Xc, Y c) is co-adapted then the coupling time is a randomised
stopping time with respect to the individual chains, and it suffices to study the first collision
time of the two chains (since it is then always possible to make Xc and Y c agree from this time
onwards).

In this paper we search for the best possible coupling of the random walks X and Y on Z
n
2

within the class C of all co-adapted couplings.

2. Co-adapted couplings for random walks on ZZZ
n
2

In order to find the optimal co-adapted coupling of X and Y , it is first necessary to be able to
describe a general coupling strategy c ∈ C. To this end, let �ij (0 ≤ i, j ≤ n) be independent
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unit-rate marked Poisson processes, with marks Wij chosen uniformly on the interval [0, 1].
We let (Ft )t≥0 be any filtration satisfying

σ

{⋃
i,j

�ij (s),
⋃
i,j

Wij (s) : s ≤ t

}
⊆ Ft for all t ≥ 0.

The transitions of Xc and Y c will be driven by the marked Poisson processes, and controlled
by a process {Qc(t)}t≥0 which is adapted to (Ft )t≥0. Here, Qc(t) = {qc

ij (t) : 1 ≤ i, j ≤ n} is
an n × n doubly substochastic matrix. Such a matrix implicitly defines the terms {qc

0j (t) : 1 ≤
j ≤ n} and {qc

i0(t) : 1 ≤ i ≤ n} such that

n∑
i=0

qc
ij (t) = 1 for all 1 ≤ j ≤ n and t ≥ 0,

and
n∑

j=0

qc
ij (t) = 1 for all 1 ≤ i ≤ n and t ≥ 0.

For convenience, we also define qc
00(t) = 0 for all t ≥ 0.

Note that any co-adapted coupling (Xc, Y c) must satisfy the following three constraints, all
of which are due to the marginal processes Xc(i) (i = 1, . . . , n) being independent unit-rate
Poisson processes (and similarly for the processes Y c(i)).

1. At any instant, the number of jumps by the process (Xc, Y c) cannot exceed two (one on
Xc and one on Y c).

2. All single and double jumps must have rates bounded above by 1.

3. For all i = 1, . . . , n, the total rate at which Xc(i) jumps must equal 1.

A general co-adapted coupling for X and Y may therefore be defined as follows: if there is
a jump in the process �ij at time t ≥ 0 and the mark Wij (t) satisfies Wij (t) ≤ qij (t), then set
Xc

t = Xc
t− +ei (mod 2) and Y c

t = Y c
t− +ej (mod 2). Note that if i or j equals 0 then Xc

t = Xc
t−

or, respectively, Y c
t = Y c

t−, since e0 = (0, . . . , 0).
From this construction, it directly follows that Xc and Y c both have the correct marginal

transition rates to be continuous-time simple random walks on Z
n
2 as described above, and are

co-adapted.

3. Optimal coupling

Our proposed optimal coupling strategy, ĉ, is very simple to describe, and depends only
upon the number of unmatched coordinates of X and Y . Let Nt = |Ut | denote the value of this
number at time t . Strategy ĉ may be summarised as follows:

• matched coordinates are always made to move synchronously (thus, Nĉ is a decreasing
process);

• if N is odd, all unmatched coordinates of X and Y are made to evolve independently
until N becomes even;
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• if N is even, unmatched coordinates are coupled in pairs—when an unmatched coordinate
on X flips (thereby making a new match), a different, uniformly chosen, unmatched
coordinate on Y is forced to flip at the same instant (making a total of two new matches).

Note the similarity between ĉ and the coupling of Aldous [1] described in Section 1: if N is
even, these strategies are identical; if N is odd however, ĉ seeks to restore the parity of N as
fast as possible, whereas Aldous’s coupling continues to couple unmatched coordinates in pairs
until N = 1.

Definition 3.1. The matrix process Q̂ corresponding to the coupling ĉ is as follows:

• q̂ii (t) = 1 for all i ∈ Mt and all t ≥ 0;

• if Nt is odd, q̂i0(t) = q̂0i (t) = 1 for all i ∈ Ut ;

• if Nt is even, q̂i0(t) = q̂0i (t) = q̂ii (t) = 0 for all i ∈ Ut , and

q̂ij = 1

|Ut | − 1
for all distinct i, j ∈ Ut .

The coupling time under ĉ, when (X0, Y0) = (x, y), can thus be expressed as follows:

τ̂ = τ ĉ =
{

E0 + E1 + E2 + · · · + Em−1 + Em if |x − y| = 2m,

E0 + E1 + E2 + · · · + Em−1 + Em + E2m+1 if |x − y| = 2m + 1,
(3.1)

where {Ek}k≥0 form a set of independent exponential random variables, with Ek having rate
2k. (Note that E0 ≡ 0: it is included merely for notational convenience.)

Now define
v̂(x, y, t) = P[τ̂ > t | X0 = x, Y0 = y]

to be the tail probability of the coupling time under ĉ. The main result of this paper is the
following.

Theorem 3.1. For any states x, y ∈ Z
n
2 and time t ≥ 0,

v̂(x, y, t) = inf
c∈C

P[τ c > t | X0 = x, Y0 = y]. (3.2)

In other words, τ̂ is the stochastic minimum of all co-adapted coupling times for the pair (X, Y ).

It is clear from the representation in (3.1) that v̂(x, y, t) depends only on (x, y) through
|x − y|, and so we shall usually simply write

v̂(k, t) = P[τ̂ > t | N0 = k],
with the convention that v̂(k, t) = 0 for k ≤ 0. Note, again from (3.1), that v̂(k, t) is strictly
increasing in k. For a strategy c ∈ C, define the process Sc

t by

Sc
t = v̂(Xc

t , Y
c
t , T − t),

where T > 0 is some fixed time. This is the conditional probability of X and Y not having
coupled by time T , when strategy c has been followed over the interval [0, t] and ĉ has then
been used from time t onwards. The optimality of ĉ will follow by Bellman’s principle (see,
for example, [8, pp. 2–7]) if it can be shown that Sc

t∧τ c is a submartingale for all c ∈ C, as
demonstrated in the following lemma. (Here and throughout, s ∧ t = min{s, t}.)
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Lemma 3.1. Suppose that, for each c ∈ C and each T ∈ R+, (Sc
t∧τ c )0≤t≤T is a submartingale.

Then (3.2) holds.

Proof. Note that, with (X0, Y0) = (x, y), Sc
0 = v̂(x, y, T ) and Sc

T ∧τ c = 1[T <τc]. If Sc·∧τ c is
a submartingale, it follows, by the optional sampling theorem, that

P[τ c > T ] = E[Sc
T ∧τ c ] ≥ Sc

0 = v̂(x, y, T ) = P[τ̂ > T ],
and, hence, the infimum in (3.2) is attained by ĉ.

Now, (point process) stochastic calculus yields

dSc
t = dZc

t +
(

Ac
t v̂ − ∂v̂

∂t

)
dt, (3.3)

where Zc
t is a martingale, and Ac

t is the ‘generator’ corresponding to the matrix Qc(t). Since
the Poisson processes �ij are independent, the probability of two or more jumps occurring in
the superimposed process ∪�ij in a time interval of length δ is O(δ2). Hence, for any function
f : Z

n
2 × Z

n
2 × R

+ → R, Ac
t satisfies

Ac
t f (x, y, t) =

n∑
i=0

n∑
j=0

qc
ij (t)(f (x + ei, y + ej , t) − f (x, y, t)).

Setting f = v̂ gives

Ac
t v̂(x, y, t) =

n∑
i=0

n∑
j=0

qc
ij (t)(v̂(x + ei, y + ej , t) − v̂(x, y, t))

=
n∑

i=0

n∑
j=0

qc
ij (t)(v̂(|x − y + ei + ej |, t) − v̂(|x − y|, t)).

In particular, since v̂ is invariant under coordinate permutation, if Nc
t = |x − y| = k then

Ac
t v̂(x, y, t) =

2∑
m=−2

λc
t (k, k + m)(v̂(k + m, t) − v̂(k, t)), (3.4)

where λc
t (k, k + m) is the rate (according to Qc(t)) at which Nc

t jumps from k to k + m. More
explicitly,

λc
t (k, k + 2) =

∑
i,j∈Mt
i �=j

qc
ij (t), λc

t (k, k + 1) =
∑
i∈Mt

(qc
i0(t) + qc

0i (t)), (3.5)

λc
t (k, k − 2) =

∑
i,j∈Ut
i �=j

qc
ij (t), λc

t (k, k − 1) =
∑
i∈Ut

(qc
i0(t) + qc

0i (t)), (3.6)

and

λc
t (k, k) =

∑
i∈Ut

j∈Mt

(qc
ij (t) + qc

ji(t)) +
n∑

i=1

qc
ii(t). (3.7)
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It follows, from the definition of Q and (3.5)–(3.7), that these terms must satisfy the linear
constraints

λc
t (k, k − 2) + 1

2λc
t (k, k − 1) ≤ k

and

λc
t (k, k − 2) + 1

2λc
t (k, k − 1) + λc

t (k, k) + 1
2λc

t (k, k + 1) + λc
t (k, k + 2) = n.

Denote by Ln the set of nonnegative λ satisfying the constraints

λ(k, k − 2) + 1
2λ(k, k − 1) ≤ k (3.8)

and
λ(k, k − 2) + 1

2λ(k, k − 1) + λ(k, k) + 1
2λ(k, k + 1) + λ(k, k + 2) = n.

Returning to (3.3):

dSc
t = dZc

t +
(

Ac
t v̂ − ∂v̂

∂t

)
dt,

we wish to show that Sc
t∧τ c is a submartingale for all couplings c ∈ C. We shall do this by

showing that Ac
t v̂ is minimised by setting c = ĉ. This is sufficient because Sĉ

t∧τ̂
is a martingale

(and so Aĉ
t v̂ − ∂v̂/∂t = 0). Now, from (3.4) we know that

Ac
t v̂(k, t) =

2∑
m=−2

λc
t (k, k + m)(v̂(k + m, t) − v̂(k, t)).

Thus, we seek to show that, for all k ≥ 0 and all t ≥ 0,

max
λ∈Ln

2∑
m=−2

λ(k, k + m)(v̂(k, t) − v̂(k + m, t)) ≥ 0. (3.9)

For each t , this is a linear function of nonnegative terms of the form λ(k, k + m). Thanks to
the monotonicity in its first argument of v̂, the terms appearing on the left-hand-side of (3.9)
are nonpositive if and only if m is nonnegative. Hence, we must set

λ(k, k + 1) = λ(k, k + 2) = 0 (3.10)

in order to achieve the maximum in (3.9).
It now suffices to maximise

λ(k, k − 1)(v̂(k, t) − v̂(k − 1, t)) + λ(k, k − 2)(v̂(k, t) − v̂(k − 2, t)) (3.11)

subject to the constraint in (3.8).
Combining (3.8) and (3.11) yields the final version of our optimisation problem: maximise

λ(k, k − 1)
(
v̂(k, t) − v̂(k − 1, t) − 1

2 (v̂(k, t) − v̂(k − 2, t))
)

(3.12)

subject to
0 ≤ λ(k, k − 1) ≤ 2k. (3.13)

The solution to this problem is clearly given by

λ(k, k − 1) =
{

2k if (v̂(k, t) − v̂(k − 1, t)) > 1
2 (v̂(k, t) − v̂(k − 2, t)),

0 otherwise.
(3.14)

These observations may be summarised as follows.
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Proposition 3.1. For λ ∈ Ln, the maximum value of

2∑
m=−2

λ(k, k + m)(v̂(k, t) − v̂(k + m, t))

is achieved at λ∗, where λ∗ satisfies

λ∗(k, k + 1) = λ∗(k, k + 2) = 0,

λ∗(k, k − 2) + 1
2λ∗(k, k − 1) = k,

λ∗(k, k − 1) =
{

2k if (v̂(k, t) − v̂(k − 1, t)) > 1
2 (v̂(k, t) − v̂(k − 2, t)),

0 otherwise.

Our final proposition shows that λ∗(k, k − 1) = 2k if and only if k is odd.

Proposition 3.2. For any fixed t ≥ 0,

2(v̂(k, t) − v̂(k − 1, t)) − (v̂(k, t) − v̂(k − 2, t)) ≥ 0 if k is odd (3.15)

and
2(v̂(k, t) − v̂(k − 1, t)) − (v̂(k, t) − v̂(k − 2, t)) ≤ 0 if k is even. (3.16)

Proof. Define V̂α by

V̂α(k) =
∫ ∞

0
e−αt v̂(k, t) dt = 1

α
(1 − E[e−ατ̂ ]).

We also define d(k, t) = v̂(k, t) − v̂(k − 1, t), and, for α ≥ 0, let

Dα(k) =
∫ ∞

0
e−αtd(k, t) dt

be the Laplace transform of d(k, ·). Given the representation in (3.1) of τ̂ as a sum of
independent exponential random variables, it follows that

V̂α(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

α

(
1 −

m∏
i=1

2i

2i + α

)
if k = 2m,

1

α

(
1 − 2(2m + 1)

2(2m + 1) + α

m∏
i=1

2i

2i + α

)
if k = 2m + 1.

(3.17)

To ease notation, let

φα(m) =
m∏

i=1

2i

2i + α
.

The following equality then follows directly from consideration of the transition rates corre-
sponding to strategy ĉ: for all α ≥ 0 and m ≥ 1,

1 − αV̂α(2m) + 2m(V̂α(2m − 2) − V̂α(2m)) = φα(m) + 2m

α
(φα(m) − φα(m − 1))

= φα(m) + 2m

α
φα(m)

(
1 − 2m + α

2m

)
= 0. (3.18)
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Similarly,

1 − αV̂α(2m − 1) + 2(2m − 1)(V̂α(2m − 2) − V̂α(2m − 1)) = 0. (3.19)

Now suppose that k = 2m, and hence is even. We wish to prove that

d(2m − 1, t) − d(2m, t) ≥ 0 for all t ≥ 0,

which is equivalent to showing that Dα(2m−1)−Dα(2m) is totally (or completely) monotone
(by the Bernstein–Widder theorem; see [3, Theorem 1a, Chapter XIII.4]).

We proceed by subtracting (3.19) from (3.18):

0 = −α(V̂α(2m) − V̂α(2m − 1)) + 2m(V̂α(2m − 2) − V̂α(2m))

+ 2(2m − 1)(V̂α(2m − 1) − V̂α(2m − 2))

= −αDα(2m) − 2m(Dα(2m) + Dα(2m − 1)) + 2(2m − 1)Dα(2m − 1),

and so

Dα(2m − 1) − Dα(2m) = 2 + α

2m − 2
Dα(2m). (3.20)

It therefore suffices to show that (2 + α)Dα(2m) is completely monotone.
Now note from the form of V̂ in (3.17) that

(2 + α)Dα(2m) = 2	α(2m),

where 	α(2m) is the Laplace transform of

θ(2m, t) = P

[ m∑
i=0

Ei > t

]
− P

[m−1∑
i=0

Ei + E2m−1 > t

]
,

where {Ei}i≥0 form a set of independent exponential random variables, with Ei having
parameter 2i. But, since θ(2m, t) is strictly positive for all t , it follows that (2 + α)Dα(2m) is
completely monotone, as required. This proves that, for any fixed t ≥ 0,

2(v̂(k, t) − v̂(k − 1, t)) − (v̂(k, t) − v̂(k − 2, t)) ≤ 0

whenever k is even. Thus, inequality (3.16) holds in this case.
Now suppose that k = 2m + 1, and hence is odd. In this case we wish to show that

inequality (3.15) holds, which is equivalent to showing that Dα(2m+1)−Dα(2m) is completely
monotone. Now, substituting m + 1 for m in (3.19) yields

1 − αV̂α(2m + 1) + 2(2m + 1)(V̂α(2m) − V̂α(2m + 1)) = 0. (3.21)

Proceeding as above, we subtract (3.18) from (3.21):

0 = −α(V̂α(2m + 1) − V̂α(2m)) + 2(2m + 1)(V̂α(2m) − V̂α(2m + 1))

+ 2m(V̂α(2m) − V̂α(2m − 2))

= −αDα(2m + 1) − 2(2m + 1)Dα(2m + 1) + 2m(Dα(2m) + Dα(2m − 1)). (3.22)
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Then it follows from (3.20) that

(2m − 2)Dα(2m − 1) = (2m + α)Dα(2m). (3.23)

Substitution of (3.23) into (3.22) gives

0 = (4m + 2 − α)(Dα(2m) − Dα(2m + 1)) + 2(Dα(2m − 1) − Dα(2m)),

and so

Dα(2m + 1) − Dα(2m) = 2

4m + 2 + α
(Dα(2m − 1) − Dα(2m)). (3.24)

But, since we have already seen that Dα(2m − 1) − Dα(2m) is completely monotone, the
right-hand side of (3.24) is the product of two completely monotone functions, and so is itself
completely monotone [3], as required.

Now we may complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Thanks to Lemma 3.1 and Proposition 3.1, Proposition 3.2, along
with (3.10) and (3.14), shows that any optimal choice of Q(t), Q∗(t), is of the following
form:

• when Nt is odd,

q∗
i0(t) = q∗

0i (t) = 1 for all i ∈ Ut

(and so λ∗
t (Nt , Nt − 1) = 2Nt ),

q∗
ii (t) = 1 for all i ∈ Mt ;

• when Nt is even,

q∗
i0(t) = q∗

0i (t) = q∗
ii (t) = 0 for all i ∈ Ut (3.25)

(and so λ∗
t (Nt , Nt − 1) = 0),

q∗
ii (t) = 1 for all i ∈ Mt.

This is in agreement with our candidate strategy Q̂ (recall Definition 3.1). From (3.25), it
follows that the values of q∗

ij (t) for distinct i, j ∈ Ut must satisfy

∑
i,j∈Ut
i �=j

q∗
ij (t) = |Ut |,

but are not constrained beyond this. Our choice of

q̂ij (t) = 1

|Ut | − 1

satisfies this bound, and so ĉ is truly an optimal co-adapted coupling, as claimed.
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Remark 3.1. Observe that, when k = 1, (3.1) implies that v̂(1, t) = v̂(2, t) for all t . The
optimisation problem in (3.12) and (3.13) simplifies in this case to the following:

maximise λ(1, 0)v̂(1, t)

subject to 1
2λ(1, 0) + λ(1, 1) + 1

2λ(1, 2) ≤ n. (3.26)

As above, this is achieved by setting λ(1, 0) = 2. Note from (3.26), however, that, when k = 1,
there is no obligation to set λ(1, 2) = 0 in order to attain the required maximum. Indeed, owing
to the equality between v̂(1, t) and v̂(2, t), when k = 1, it is not suboptimal to allow matched
coordinates to evolve independently (corresponding to λc

t (1, 2) > 0), so long as strategy ĉ is
used once more as soon as k = 2.

4. Maximal coupling

Let X and Y be two copies of a Markov chain on a countable space, starting from different
states. The coupling inequality (see, for example, [9]) bounds the tail distribution of any
coupling of X and Y by the total variation distance between the two processes:

‖L(Xt ) − L(Yt )‖TV ≤ P[τ > t].
Griffeath [6] showed that, for discrete-time chains, there always exists a maximal coupling of
X and Y , that is, one which achieves equality for all t ≥ 0 in the coupling inequality. This
result was extended to general continuous-time stochastic processes with paths in Skorokhod
space in [12]. However, in general, such a coupling is not co-adapted. In light of the results
of Section 3, where it was shown that ĉ is the optimal co-adapted coupling for the symmetric
random walk on Z

n
2, a natural question is whether ĉ is also a maximal coupling.

This is certainly not the case in general. Suppose that X and Y are once again random walks
on Z

n
2, with X0 = (0, 0, . . . , 0) and Y0 = (1, 1, . . . , 1): calculations as in [2] show that the

total variation distance between Xt and Yt exhibits a cutoff phenomenon, with the cutoff taking
place at time Tn = 1

4 log n for large n. This implies that a maximal coupling of X and Y has
expected coupling time of order Tn. However, it follows from the representation of τ̂ in (3.1)
that

E[τ̂ ; |X0 − Y0| = n = 2m] = E[E1 + E2 + · · · + Em−1 + Em] ∼ 1
2 log(n).

It follows that ĉ is not, in general, a maximal coupling.
A faster coupling of X and Y was proposed in [10]. This coupling also makes new coordinate

matches in pairs, but uses information about the future evolution of one of the chains in order
to make such matches in a more efficient manner. This coupling is very near to being maximal
(it captures the correct cutoff time), but is of course not co-adapted. Further results related to
the construction of maximal couplings for general Markov chains may be found in [4], [5], [7],
and [11].
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