J. Appl. Prob. 45, 703–713 (2008) Printed in England © Applied Probability Trust 2008

OPTIMAL CO-ADAPTED COUPLING FOR THE SYMMETRIC RANDOM WALK ON THE HYPERCUBE

STEPHEN CONNOR * ** AND SAUL JACKA,* *** University of Warwick

Abstract

Let *X* and *Y* be two simple symmetric continuous-time random walks on the vertices of the *n*-dimensional hypercube, \mathbb{Z}_2^n . We consider the class of co-adapted couplings of these processes, and describe an intuitive coupling which is shown to be the fastest in this class.

Keywords: Optimal coupling; co-adapted; stochastic minimum; hypercube

2000 Mathematics Subject Classification: Primary 93E20

Secondary 60J27

1. Introduction

Let \mathbb{Z}_2^n be the group of binary *n*-tuples under coordinatewise addition modulo 2: this can be viewed as the set of vertices of an *n*-dimensional hypercube. For $x \in \mathbb{Z}_2^n$, we write $x = (x(1), \ldots, x(n))$, and define elements $\{e_i\}_{i=0}^n$ by

$$e_0 = (0, \dots, 0), \qquad e_i(k) = \mathbf{1}_{[i=k]}, \quad i = 1, \dots, n,$$

where $\mathbf{1}_{[\cdot]}$ denotes the indicator function. For $x, y \in \mathbb{Z}_2^n$, let

$$|x - y| = \sum_{i=1}^{n} |x(i) - y(i)|$$

denote the Hamming distance between *x* and *y*.

A continuous-time random walk X on \mathbb{Z}_2^n may be defined using a marked Poisson process Λ of rate *n*, with marks distributed uniformly on the set $\{1, 2, ..., n\}$: the *i*th coordinate of X is flipped to its opposite value (0 or 1) at incident times of Λ for which the corresponding mark is equal to *i*. We write $\mathcal{L}(X_t)$ for the law of X at time *t*. The unique equilibrium distribution of X is the uniform distribution on \mathbb{Z}_2^n .

Suppose that we now wish to couple two such random walks, X and Y, starting from different states.

Definition 1.1. A *coupling* of X and Y is a process (X', Y') on $\mathbb{Z}_2^n \times \mathbb{Z}_2^n$ such that

$$X' \stackrel{\mathrm{D}}{=} X$$
 and $Y' \stackrel{\mathrm{D}}{=} Y$,

where $\stackrel{\text{D}}{=}$ denotes equality in distribution. That is, viewed marginally, X' behaves as a version of X and Y' behaves as a version of Y.

Received 7 February 2007; revision received 17 July 2008.

^{*} Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.

^{**} Email address: s.b.connor@warwick.ac.uk

^{***} Email address: s.d.jacka@warwick.ac.uk

For any coupling strategy c, write (X_t^c, Y_t^c) for the value at t of the pair of processes X^c and Y^c driven by strategy c, although this superscript notation may be dropped when no confusion can arise. (We assume throughout that (X^c, Y^c) is a coupling of X and Y.) We then define the coupling time by

$$\tau^c = \inf\{t \ge 0 \colon X_s^c = Y_s^c \text{ for all } s \ge t\}.$$

Note that, in general, this is not necessarily a stopping time for either of the marginal processes, nor even for the joint process. For $t \ge 0$, let

$$U_t^c = \{1 \le i \le n : X_t^c(i) \ne Y_t^c(i)\}$$

denote the set of unmatched coordinates at time *t*, and let

$$M_t^c = \{1 \le i \le n : X_t^c(i) = Y_t^c(i)\}$$

be its complement. A simple coupling technique appears in [1, pp. 254–256], and may be described as follows:

- if X(i) flips at time t, with $i \in M_t$, then also flip coordinate Y(i) at time t (matched coordinates are always made to move synchronously);
- if |U_t| > 1 and X(i) flips at time t, with i ∈ U_t, then also flip coordinate Y(j) at time t, where j is chosen uniformly at random from the set U_t \ {i};
- else, if $U_t = \{i\}$ contains only one element, allow coordinates X(i) and Y(i) to evolve independently of each other until this final match is made.

This defines a valid coupling of X and Y for which existing coordinate matches are maintained and new matches are made in pairs when $|U_t| \ge 2$. It is also an example of a *co-adapted* coupling.

Definition 1.2. A coupling (X^c, Y^c) is called *co-adapted* if there exists a filtration $(\mathcal{F}_t)_{t\geq 0}$ such that

- 1. X^c and Y^c are both adapted to $(\mathcal{F}_t)_{t\geq 0}$;
- 2. for any $0 \le s \le t$,

$$\mathcal{L}(X_t^c \mid \mathcal{F}_s) = \mathcal{L}(X_t^c \mid X_s^c)$$
 and $\mathcal{L}(Y_t^c \mid \mathcal{F}_s) = \mathcal{L}(Y_t^c \mid Y_s^c)$.

In other words, (X^c, Y^c) is co-adapted if X^c and Y^c are both Markov with respect to a common filtration, $(\mathcal{F}_t)_{t\geq 0}$. Note, however, that this definition does *not* imply that the joint process (X^c, Y^c) is Markovian. If (X^c, Y^c) is co-adapted then the coupling time is a randomised stopping time with respect to the individual chains, and it suffices to study the first *collision* time of the two chains (since it is then always possible to make X^c and Y^c agree from this time onwards).

In this paper we search for the best possible coupling of the random walks X and Y on \mathbb{Z}_2^n within the class C of all co-adapted couplings.

2. Co-adapted couplings for random walks on \mathbb{Z}_2^n

In order to find the optimal co-adapted coupling of X and Y, it is first necessary to be able to describe a general coupling strategy $c \in C$. To this end, let Λ_{ij} $(0 \le i, j \le n)$ be independent

unit-rate marked Poisson processes, with marks W_{ij} chosen uniformly on the interval [0, 1]. We let $(\mathcal{F}_t)_{t\geq 0}$ be any filtration satisfying

$$\sigma\left\{\bigcup_{i,j}\Lambda_{ij}(s),\bigcup_{i,j}W_{ij}(s)\colon s\leq t\right\}\subseteq \mathcal{F}_t\quad\text{for all }t\geq 0.$$

The transitions of X^c and Y^c will be driven by the marked Poisson processes, and controlled by a process $\{Q^c(t)\}_{t\geq 0}$ which is adapted to $(\mathcal{F}_t)_{t\geq 0}$. Here, $Q^c(t) = \{q_{ij}^c(t): 1 \leq i, j \leq n\}$ is an $n \times n$ doubly substochastic matrix. Such a matrix implicitly defines the terms $\{q_{0j}^c(t): 1 \leq i \leq n\}$ and $\{q_{i0}^c(t): 1 \leq i \leq n\}$ such that

$$\sum_{i=0}^{n} q_{ij}^{c}(t) = 1 \text{ for all } 1 \le j \le n \text{ and } t \ge 0,$$

and

$$\sum_{j=0}^{n} q_{ij}^{c}(t) = 1 \quad \text{for all } 1 \le i \le n \text{ and } t \ge 0.$$

For convenience, we also define $q_{00}^c(t) = 0$ for all $t \ge 0$.

Note that any co-adapted coupling (X^c, Y^c) must satisfy the following three constraints, all of which are due to the marginal processes $X^c(i)$ (i = 1, ..., n) being independent unit-rate Poisson processes (and similarly for the processes $Y^c(i)$).

- 1. At any instant, the number of jumps by the process (X^c, Y^c) cannot exceed two (one on X^c and one on Y^c).
- 2. All single and double jumps must have rates bounded above by 1.
- 3. For all i = 1, ..., n, the *total* rate at which $X^{c}(i)$ jumps must equal 1.

A general co-adapted coupling for X and Y may therefore be defined as follows: if there is a jump in the process Λ_{ij} at time $t \ge 0$ and the mark $W_{ij}(t)$ satisfies $W_{ij}(t) \le q_{ij}(t)$, then set $X_t^c = X_{t-}^c + e_i \pmod{2}$ and $Y_t^c = Y_{t-}^c + e_j \pmod{2}$. Note that if *i* or *j* equals 0 then $X_t^c = X_{t-}^c$ or, respectively, $Y_t^c = Y_{t-}^c$, since $e_0 = (0, \dots, 0)$.

From this construction, it directly follows that X^c and Y^c both have the correct marginal transition rates to be continuous-time simple random walks on \mathbb{Z}_2^n as described above, and are co-adapted.

3. Optimal coupling

Our proposed optimal coupling strategy, \hat{c} , is very simple to describe, and depends only upon the number of unmatched coordinates of X and Y. Let $N_t = |U_t|$ denote the value of this number at time t. Strategy \hat{c} may be summarised as follows:

- matched coordinates are always made to move synchronously (thus, N^c is a decreasing process);
- if *N* is odd, all unmatched coordinates of *X* and *Y* are made to evolve independently until *N* becomes even;

• if *N* is even, unmatched coordinates are coupled in pairs—when an unmatched coordinate on *X* flips (thereby making a new match), a different, uniformly chosen, unmatched coordinate on *Y* is forced to flip at the same instant (making a total of two new matches).

Note the similarity between \hat{c} and the coupling of Aldous [1] described in Section 1: if N is even, these strategies are identical; if N is odd however, \hat{c} seeks to restore the parity of N as fast as possible, whereas Aldous's coupling continues to couple unmatched coordinates in pairs until N = 1.

Definition 3.1. The matrix process \hat{Q} corresponding to the coupling \hat{c} is as follows:

- $\hat{q}_{ii}(t) = 1$ for all $i \in M_t$ and all $t \ge 0$;
- if N_t is odd, $\hat{q}_{i0}(t) = \hat{q}_{0i}(t) = 1$ for all $i \in U_t$;
- if N_t is even, $\hat{q}_{i0}(t) = \hat{q}_{0i}(t) = \hat{q}_{ii}(t) = 0$ for all $i \in U_t$, and

$$\hat{q}_{ij} = \frac{1}{|U_t| - 1}$$
 for all distinct $i, j \in U_t$.

The coupling time under \hat{c} , when $(X_0, Y_0) = (x, y)$, can thus be expressed as follows:

$$\hat{\tau} = \tau^{\hat{c}} = \begin{cases} E_0 + E_1 + E_2 + \dots + E_{m-1} + E_m & \text{if } |x - y| = 2m, \\ E_0 + E_1 + E_2 + \dots + E_{m-1} + E_m + E_{2m+1} & \text{if } |x - y| = 2m + 1, \end{cases}$$
(3.1)

where $\{E_k\}_{k\geq 0}$ form a set of independent exponential random variables, with E_k having rate 2k. (Note that $E_0 \equiv 0$: it is included merely for notational convenience.)

Now define

$$\hat{v}(x, y, t) = P[\hat{\tau} > t \mid X_0 = x, Y_0 = y]$$

to be the tail probability of the coupling time under \hat{c} . The main result of this paper is the following.

Theorem 3.1. For any states $x, y \in \mathbb{Z}_2^n$ and time $t \ge 0$,

$$\hat{v}(x, y, t) = \inf_{c \in \mathcal{C}} \mathbf{P}[\tau^c > t \mid X_0 = x, Y_0 = y].$$
(3.2)

In other words, $\hat{\tau}$ is the stochastic minimum of all co-adapted coupling times for the pair (X, Y).

It is clear from the representation in (3.1) that $\hat{v}(x, y, t)$ depends only on (x, y) through |x - y|, and so we shall usually simply write

$$\hat{v}(k,t) = \mathbf{P}[\hat{\tau} > t \mid N_0 = k],$$

with the convention that $\hat{v}(k, t) = 0$ for $k \le 0$. Note, again from (3.1), that $\hat{v}(k, t)$ is strictly increasing in k. For a strategy $c \in \mathbb{C}$, define the process S_t^c by

$$S_t^c = \hat{v}(X_t^c, Y_t^c, T - t),$$

where T > 0 is some fixed time. This is the conditional probability of X and Y not having coupled by time T, when strategy c has been followed over the interval [0, t] and \hat{c} has then been used from time t onwards. The optimality of \hat{c} will follow by Bellman's principle (see, for example, [8, pp. 2–7]) if it can be shown that $S_{t\wedge\tau^c}^c$ is a submartingale for all $c \in C$, as demonstrated in the following lemma. (Here and throughout, $s \wedge t = \min\{s, t\}$.) **Lemma 3.1.** Suppose that, for each $c \in \mathbb{C}$ and each $T \in \mathbb{R}_+$, $(S_{t \wedge \tau^c}^c)_{0 \le t \le T}$ is a submartingale. Then (3.2) holds.

Proof. Note that, with $(X_0, Y_0) = (x, y)$, $S_0^c = \hat{v}(x, y, T)$ and $S_{T \wedge \tau^c}^c = \mathbf{1}_{[T < \tau^c]}$. If S_{\cdot, τ^c}^c is a submartingale, it follows, by the optional sampling theorem, that

$$\mathbf{P}[\tau^c > T] = \mathbf{E}[S^c_{T \wedge \tau^c}] \ge S^c_0 = \hat{v}(x, y, T) = \mathbf{P}[\hat{\tau} > T],$$

and, hence, the infimum in (3.2) is attained by \hat{c} .

Now, (point process) stochastic calculus yields

$$\mathrm{d}S_t^c = \mathrm{d}Z_t^c + \left(\mathcal{A}_t^c \hat{v} - \frac{\partial \hat{v}}{\partial t}\right) \mathrm{d}t, \qquad (3.3)$$

where Z_t^c is a martingale, and \mathcal{A}_t^c is the 'generator' corresponding to the matrix $Q^c(t)$. Since the Poisson processes Λ_{ij} are independent, the probability of two or more jumps occurring in the superimposed process $\cup \Lambda_{ij}$ in a time interval of length δ is $O(\delta^2)$. Hence, for any function $f: \mathbb{Z}_2^n \times \mathbb{Z}_2^n \times \mathbb{R}^+ \to \mathbb{R}, \mathcal{A}_t^c$ satisfies

$$\mathcal{A}_{t}^{c}f(x, y, t) = \sum_{i=0}^{n} \sum_{j=0}^{n} q_{ij}^{c}(t)(f(x + e_{i}, y + e_{j}, t) - f(x, y, t)).$$

Setting $f = \hat{v}$ gives

$$\begin{aligned} \mathcal{A}_{t}^{c}\hat{v}(x, y, t) &= \sum_{i=0}^{n} \sum_{j=0}^{n} q_{ij}^{c}(t)(\hat{v}(x+e_{i}, y+e_{j}, t) - \hat{v}(x, y, t)) \\ &= \sum_{i=0}^{n} \sum_{j=0}^{n} q_{ij}^{c}(t)(\hat{v}(|x-y+e_{i}+e_{j}|, t) - \hat{v}(|x-y|, t)) \end{aligned}$$

In particular, since \hat{v} is invariant under coordinate permutation, if $N_t^c = |x - y| = k$ then

$$\mathcal{A}_{t}^{c}\hat{v}(x, y, t) = \sum_{m=-2}^{2} \lambda_{t}^{c}(k, k+m)(\hat{v}(k+m, t) - \hat{v}(k, t)), \qquad (3.4)$$

where $\lambda_t^c(k, k + m)$ is the rate (according to $Q^c(t)$) at which N_t^c jumps from k to k + m. More explicitly,

$$\lambda_t^c(k,k+2) = \sum_{\substack{i,j \in M_t \\ i \neq j}} q_{ij}^c(t), \qquad \lambda_t^c(k,k+1) = \sum_{i \in M_t} (q_{i0}^c(t) + q_{0i}^c(t)), \tag{3.5}$$

$$\lambda_t^c(k,k-2) = \sum_{\substack{i,j \in U_t \\ i \neq j}} q_{ij}^c(t), \qquad \lambda_t^c(k,k-1) = \sum_{i \in U_t} (q_{i0}^c(t) + q_{0i}^c(t)), \tag{3.6}$$

and

$$\lambda_t^c(k,k) = \sum_{\substack{i \in U_t \\ j \in M_t}} (q_{ij}^c(t) + q_{ji}^c(t)) + \sum_{i=1}^n q_{ii}^c(t).$$
(3.7)

It follows, from the definition of Q and (3.5)–(3.7), that these terms must satisfy the linear constraints

$$\lambda_t^c(k, k-2) + \frac{1}{2}\lambda_t^c(k, k-1) \le k$$

and

$$\lambda_t^c(k, k-2) + \frac{1}{2}\lambda_t^c(k, k-1) + \lambda_t^c(k, k) + \frac{1}{2}\lambda_t^c(k, k+1) + \lambda_t^c(k, k+2) = n.$$

Denote by L_n the set of nonnegative λ satisfying the constraints

$$\lambda(k, k-2) + \frac{1}{2}\lambda(k, k-1) \le k$$
(3.8)

and

$$\lambda(k, k-2) + \frac{1}{2}\lambda(k, k-1) + \lambda(k, k) + \frac{1}{2}\lambda(k, k+1) + \lambda(k, k+2) = n.$$

Returning to (3.3):

$$\mathrm{d}S_t^c = \mathrm{d}Z_t^c + \left(\mathcal{A}_t^c \hat{v} - \frac{\partial \hat{v}}{\partial t}\right) \mathrm{d}t$$

we wish to show that $S_{t\wedge\tau^c}^c$ is a submartingale for all couplings $c \in C$. We shall do this by showing that $\mathcal{A}_t^c \hat{v}$ is minimised by setting $c = \hat{c}$. This is sufficient because $S_{t\wedge\hat{\tau}}^{\hat{c}}$ is a martingale (and so $\mathcal{A}_t^{\hat{c}}\hat{v} - \partial\hat{v}/\partial t = 0$). Now, from (3.4) we know that

$$\mathcal{A}_{t}^{c}\hat{v}(k,t) = \sum_{m=-2}^{2} \lambda_{t}^{c}(k,k+m)(\hat{v}(k+m,t) - \hat{v}(k,t)).$$

Thus, we seek to show that, for all $k \ge 0$ and all $t \ge 0$,

$$\max_{\lambda \in L_n} \sum_{m=-2}^{2} \lambda(k, k+m) (\hat{v}(k, t) - \hat{v}(k+m, t)) \ge 0.$$
(3.9)

For each t, this is a linear function of nonnegative terms of the form $\lambda(k, k + m)$. Thanks to the monotonicity in its first argument of \hat{v} , the terms appearing on the left-hand-side of (3.9) are nonpositive if and only if m is nonnegative. Hence, we must set

$$\lambda(k, k+1) = \lambda(k, k+2) = 0$$
(3.10)

in order to achieve the maximum in (3.9).

It now suffices to maximise

$$\lambda(k, k-1)(\hat{v}(k, t) - \hat{v}(k-1, t)) + \lambda(k, k-2)(\hat{v}(k, t) - \hat{v}(k-2, t))$$
(3.11)

subject to the constraint in (3.8).

Combining (3.8) and (3.11) yields the final version of our optimisation problem: maximise

$$\lambda(k,k-1)\big(\hat{v}(k,t) - \hat{v}(k-1,t) - \frac{1}{2}(\hat{v}(k,t) - \hat{v}(k-2,t))\big)$$
(3.12)

subject to

$$0 \le \lambda(k, k-1) \le 2k. \tag{3.13}$$

The solution to this problem is clearly given by

$$\lambda(k, k-1) = \begin{cases} 2k & \text{if } (\hat{v}(k, t) - \hat{v}(k-1, t)) > \frac{1}{2}(\hat{v}(k, t) - \hat{v}(k-2, t)), \\ 0 & \text{otherwise.} \end{cases}$$
(3.14)

These observations may be summarised as follows.

Proposition 3.1. For $\lambda \in L_n$, the maximum value of

$$\sum_{m=-2}^{2} \lambda(k,k+m)(\hat{v}(k,t) - \hat{v}(k+m,t))$$

is achieved at λ^* , where λ^* satisfies

$$\lambda^{*}(k, k+1) = \lambda^{*}(k, k+2) = 0,$$

$$\lambda^{*}(k, k-2) + \frac{1}{2}\lambda^{*}(k, k-1) = k,$$

$$\lambda^{*}(k, k-1) = \begin{cases} 2k & \text{if } (\hat{v}(k, t) - \hat{v}(k-1, t)) > \frac{1}{2}(\hat{v}(k, t) - \hat{v}(k-2, t)), \\ 0 & \text{otherwise.} \end{cases}$$

Our final proposition shows that $\lambda^*(k, k - 1) = 2k$ if and only if *k* is odd.

Proposition 3.2. *For any fixed* $t \ge 0$ *,*

$$2(\hat{v}(k,t) - \hat{v}(k-1,t)) - (\hat{v}(k,t) - \hat{v}(k-2,t)) \ge 0 \quad \text{if } k \text{ is odd}$$
(3.15)

and

$$2(\hat{v}(k,t) - \hat{v}(k-1,t)) - (\hat{v}(k,t) - \hat{v}(k-2,t)) \le 0 \quad if \ k \ is \ even.$$
(3.16)

Proof. Define V_{α} by

$$\hat{V}_{\alpha}(k) = \int_0^\infty \mathrm{e}^{-\alpha t} \hat{v}(k,t) \,\mathrm{d}t = \frac{1}{\alpha} (1 - \mathrm{E}[\mathrm{e}^{-\alpha \hat{\tau}}]).$$

We also define $d(k, t) = \hat{v}(k, t) - \hat{v}(k - 1, t)$, and, for $\alpha \ge 0$, let

$$D_{\alpha}(k) = \int_0^\infty e^{-\alpha t} d(k, t) dt$$

be the Laplace transform of $d(k, \cdot)$. Given the representation in (3.1) of $\hat{\tau}$ as a sum of independent exponential random variables, it follows that

$$\hat{V}_{\alpha}(k) = \begin{cases} \frac{1}{\alpha} \left(1 - \prod_{i=1}^{m} \frac{2i}{2i+\alpha} \right) & \text{if } k = 2m, \\ \frac{1}{\alpha} \left(1 - \frac{2(2m+1)}{2(2m+1)+\alpha} \prod_{i=1}^{m} \frac{2i}{2i+\alpha} \right) & \text{if } k = 2m+1. \end{cases}$$
(3.17)

To ease notation, let

$$\phi_{\alpha}(m) = \prod_{i=1}^{m} \frac{2i}{2i + \alpha}$$

The following equality then follows directly from consideration of the transition rates corresponding to strategy \hat{c} : for all $\alpha \ge 0$ and $m \ge 1$,

$$1 - \alpha \hat{V}_{\alpha}(2m) + 2m(\hat{V}_{\alpha}(2m-2) - \hat{V}_{\alpha}(2m)) = \phi_{\alpha}(m) + \frac{2m}{\alpha}(\phi_{\alpha}(m) - \phi_{\alpha}(m-1))$$

= $\phi_{\alpha}(m) + \frac{2m}{\alpha}\phi_{\alpha}(m)\left(1 - \frac{2m+\alpha}{2m}\right)$
= 0. (3.18)

Similarly,

$$1 - \alpha \hat{V}_{\alpha}(2m-1) + 2(2m-1)(\hat{V}_{\alpha}(2m-2) - \hat{V}_{\alpha}(2m-1)) = 0.$$
(3.19)

Now suppose that k = 2m, and hence is even. We wish to prove that

$$d(2m-1, t) - d(2m, t) \ge 0$$
 for all $t \ge 0$,

which is equivalent to showing that $D_{\alpha}(2m-1) - D_{\alpha}(2m)$ is totally (or completely) monotone (by the Bernstein–Widder theorem; see [3, Theorem 1a, Chapter XIII.4]).

We proceed by subtracting (3.19) from (3.18):

$$0 = -\alpha(\hat{V}_{\alpha}(2m) - \hat{V}_{\alpha}(2m-1)) + 2m(\hat{V}_{\alpha}(2m-2) - \hat{V}_{\alpha}(2m)) + 2(2m-1)(\hat{V}_{\alpha}(2m-1) - \hat{V}_{\alpha}(2m-2)) = -\alpha D_{\alpha}(2m) - 2m(D_{\alpha}(2m) + D_{\alpha}(2m-1)) + 2(2m-1)D_{\alpha}(2m-1),$$

and so

$$D_{\alpha}(2m-1) - D_{\alpha}(2m) = \frac{2+\alpha}{2m-2} D_{\alpha}(2m).$$
(3.20)

It therefore suffices to show that $(2 + \alpha)D_{\alpha}(2m)$ is completely monotone.

Now note from the form of \hat{V} in (3.17) that

$$(2+\alpha)D_{\alpha}(2m) = 2\Theta_{\alpha}(2m),$$

where $\Theta_{\alpha}(2m)$ is the Laplace transform of

$$\theta(2m, t) = \mathbf{P}\left[\sum_{i=0}^{m} E_i > t\right] - \mathbf{P}\left[\sum_{i=0}^{m-1} E_i + E_{2m-1} > t\right],$$

where $\{E_i\}_{i\geq 0}$ form a set of independent exponential random variables, with E_i having parameter 2*i*. But, since $\theta(2m, t)$ is strictly positive for all *t*, it follows that $(2 + \alpha)D_{\alpha}(2m)$ is completely monotone, as required. This proves that, for any fixed $t \geq 0$,

$$2(\hat{v}(k,t) - \hat{v}(k-1,t)) - (\hat{v}(k,t) - \hat{v}(k-2,t)) \le 0$$

whenever k is even. Thus, inequality (3.16) holds in this case.

Now suppose that k = 2m + 1, and hence is odd. In this case we wish to show that inequality (3.15) holds, which is equivalent to showing that $D_{\alpha}(2m+1) - D_{\alpha}(2m)$ is completely monotone. Now, substituting m + 1 for m in (3.19) yields

$$1 - \alpha \hat{V}_{\alpha}(2m+1) + 2(2m+1)(\hat{V}_{\alpha}(2m) - \hat{V}_{\alpha}(2m+1)) = 0.$$
(3.21)

Proceeding as above, we subtract (3.18) from (3.21):

$$0 = -\alpha (\hat{V}_{\alpha}(2m+1) - \hat{V}_{\alpha}(2m)) + 2(2m+1)(\hat{V}_{\alpha}(2m) - \hat{V}_{\alpha}(2m+1)) + 2m(\hat{V}_{\alpha}(2m) - \hat{V}_{\alpha}(2m-2)) = -\alpha D_{\alpha}(2m+1) - 2(2m+1)D_{\alpha}(2m+1) + 2m(D_{\alpha}(2m) + D_{\alpha}(2m-1)).$$
(3.22)

Then it follows from (3.20) that

$$(2m-2)D_{\alpha}(2m-1) = (2m+\alpha)D_{\alpha}(2m).$$
(3.23)

Substitution of (3.23) into (3.22) gives

$$0 = (4m + 2 - \alpha)(D_{\alpha}(2m) - D_{\alpha}(2m + 1)) + 2(D_{\alpha}(2m - 1) - D_{\alpha}(2m)),$$

and so

$$D_{\alpha}(2m+1) - D_{\alpha}(2m) = \frac{2}{4m+2+\alpha} (D_{\alpha}(2m-1) - D_{\alpha}(2m)).$$
(3.24)

But, since we have already seen that $D_{\alpha}(2m-1) - D_{\alpha}(2m)$ is completely monotone, the right-hand side of (3.24) is the product of two completely monotone functions, and so is itself completely monotone [3], as required.

Now we may complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Thanks to Lemma 3.1 and Proposition 3.1, Proposition 3.2, along with (3.10) and (3.14), shows that any optimal choice of Q(t), $Q^*(t)$, is of the following form:

• when N_t is odd,

$$q_{i0}^{*}(t) = q_{0i}^{*}(t) = 1$$
 for all $i \in U_t$

(and so $\lambda_t^*(N_t, N_t - 1) = 2N_t$),

$$q_{ii}^*(t) = 1$$
 for all $i \in M_t$;

• when N_t is even,

$$q_{i0}^{*}(t) = q_{0i}^{*}(t) = q_{ii}^{*}(t) = 0 \text{ for all } i \in U_t$$
 (3.25)

(and so $\lambda_t^*(N_t, N_t - 1) = 0$),

$$q_{ii}^*(t) = 1$$
 for all $i \in M_t$.

This is in agreement with our candidate strategy \hat{Q} (recall Definition 3.1). From (3.25), it follows that the values of $q_{ij}^*(t)$ for distinct $i, j \in U_t$ must satisfy

$$\sum_{\substack{i,j\in U_t\\i\neq j}} q_{ij}^*(t) = |U_t|,$$

but are not constrained beyond this. Our choice of

$$\hat{q}_{ij}(t) = \frac{1}{|U_t| - 1}$$

satisfies this bound, and so \hat{c} is truly an optimal co-adapted coupling, as claimed.

Remark 3.1. Observe that, when k = 1, (3.1) implies that $\hat{v}(1, t) = \hat{v}(2, t)$ for all t. The optimisation problem in (3.12) and (3.13) simplifies in this case to the following:

maximise
$$\lambda(1,0)\hat{v}(1,t)$$

subject to $\frac{1}{2}\lambda(1,0) + \lambda(1,1) + \frac{1}{2}\lambda(1,2) \le n.$ (3.26)

As above, this is achieved by setting $\lambda(1, 0) = 2$. Note from (3.26), however, that, when k = 1, there is no obligation to set $\lambda(1, 2) = 0$ in order to attain the required maximum. Indeed, owing to the equality between $\hat{v}(1, t)$ and $\hat{v}(2, t)$, when k = 1, it is not suboptimal to allow *matched* coordinates to evolve independently (corresponding to $\lambda_t^c(1, 2) > 0$), so long as strategy \hat{c} is used once more as soon as k = 2.

4. Maximal coupling

Let X and Y be two copies of a Markov chain on a countable space, starting from different states. The coupling inequality (see, for example, [9]) bounds the tail distribution of *any* coupling of X and Y by the total variation distance between the two processes:

$$\|\mathcal{L}(X_t) - \mathcal{L}(Y_t)\|_{\mathrm{TV}} \le \mathrm{P}[\tau > t].$$

Griffeath [6] showed that, for discrete-time chains, there always exists a *maximal* coupling of X and Y, that is, one which achieves equality for all $t \ge 0$ in the coupling inequality. This result was extended to general continuous-time stochastic processes with paths in Skorokhod space in [12]. However, in general, such a coupling is not co-adapted. In light of the results of Section 3, where it was shown that \hat{c} is the optimal co-adapted coupling for the symmetric random walk on \mathbb{Z}_2^n , a natural question is whether \hat{c} is also a maximal coupling.

This is certainly not the case in general. Suppose that *X* and *Y* are once again random walks on \mathbb{Z}_2^n , with $X_0 = (0, 0, ..., 0)$ and $Y_0 = (1, 1, ..., 1)$: calculations as in [2] show that the total variation distance between X_t and Y_t exhibits a cutoff phenomenon, with the cutoff taking place at time $T_n = \frac{1}{4} \log n$ for large *n*. This implies that a maximal coupling of *X* and *Y* has expected coupling time of order T_n . However, it follows from the representation of $\hat{\tau}$ in (3.1) that

$$E[\hat{\tau}; |X_0 - Y_0| = n = 2m] = E[E_1 + E_2 + \dots + E_{m-1} + E_m] \sim \frac{1}{2}\log(n).$$

It follows that \hat{c} is not, in general, a maximal coupling.

A faster coupling of X and Y was proposed in [10]. This coupling also makes new coordinate matches in pairs, but uses information about the future evolution of one of the chains in order to make such matches in a more efficient manner. This coupling is very near to being maximal (it captures the correct cutoff time), but is of course not co-adapted. Further results related to the construction of maximal couplings for general Markov chains may be found in [4], [5], [7], and [11].

References

- ALDOUS, D. (1983). Random walks on finite groups and rapidly mixing Markov chains. In Seminar on Probability XVII (Lecture Notes Math. 986), Springer, Berlin, pp. 243–297.
- [2] DIACONIS, P., GRAHAM, R. L. AND MORRISON, J. A. (1990). Asymptotic analysis of a random walk on a hypercube with many dimensions. *Random Structures Algorithms* **1**, 51–72.
- [3] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. John Wiley, New York.

- [4] GREVEN, A. (1987). Couplings of Markov chains by randomized stopping times. I. Couplings, harmonic functions and the Poisson equation. *Prob. Theory Relat. Fields* 75, 195–212.
- [5] GREVEN, A. (1987). Couplings of Markov chains by randomized stopping times. II. Short couplings for O-recurrent chains and harmonic functions. *Prob. Theory Relat. Fields* 75, 431–458.
- [6] GRIFFEATH, D. (1975). A maximal coupling for Markov chains. Z. Wahrscheinlichkeitsth. 31, 95-106.
- [7] HARISON, V. AND SMIRNOV, S. N. (1990). Jonction maximale en distribution dans le cas Markovien. Prob. Theory Relat. Fields 84, 491–503.
- [8] KRYLOV, N. V. (1980). Controlled Diffusion Processes (Appl. Math. 14). Springer, New York.
- [9] LINDVALL, T. (2002). Lectures on the Coupling Method. Dover, New York.
- [10] MATTHEWS, P. (1987). Mixing rates for a random walk on the cube. SIAM J. Algebraic Discrete Methods 8, 746–752.
- [11] PITMAN, J. W. (1976). On coupling of Markov chains. Z. Wahrscheinlichkeitsth. 35, 315–322.
- [12] SVERCHKOV, M. Y. AND SMIRNOV, S. N. (1990). Maximal coupling of D-valued processes. Soviet Math. Dokl. 41, 352–354.