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OPTIMAL STOPPING FOR THE
EXPONENTIAL OF A BROWNIAN BRIDGE
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Abstract

We study the problem of stopping a Brownian bridge X in order to maximise the expected
value of an exponential gain function. The problem was posed by Ernst and Shepp
(2015), and was motivated by bond selling with non-negative prices.

Due to the non-linear structure of the exponential gain, we cannot rely on meth-
ods used in the literature to find closed-form solutions to other problems involving the
Brownian bridge. Instead, we must deal directly with a stopping problem for a time-
inhomogeneous diffusion. We develop techniques based on pathwise properties of the
Brownian bridge and martingale methods of optimal stopping theory, which allow us to
find the optimal stopping rule and to show the regularity of the value function.
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1. Introduction

Problems of optimal stopping involving a Brownian bridge have a long history, dating
back to the early days of modern optimal stopping theory. The first results were obtained
by Dvoretzky [9] and Shepp [24]. Both authors considered stopping of a Brownian bridge to
maximise its expected value. Dvoretzky proved the existence of an optimal stopping time and
Shepp provided an explicit solution in terms of the first time the Brownian bridge (pinned at
zero at time T = 1) exceeds a boundary of the form 7+ a+/1 — ¢, for ¢ € [0, 1] and a suitable
a>0.

A few years later, Follmer [13] extended the study to the case of a Brownian bridge whose
pinning point is random with normal distribution. He showed that the optimal stopping time is
the first time the process crosses a time-dependent boundary, and the stopping set may lie either
above or below the boundary, depending on the variance of the pinning point’s distribution.

More recently, Ekstrom and Wanntorp [11] studied optimal stopping of a Brownian bridge
via the solution of associated free boundary problems. They recovered results by Shepp and
extended the analysis by finding explicit solutions to some examples with more general gain
functions than the linear case.

Optimal stopping of a Brownian bridge with random pinning point or random pinning time
were also studied in [10] and [15], respectively. In [10], the authors considered more general
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versions of the problem addressed in [13] and, among other things, they gave general sufficient
conditions for optimal stopping rules in the form of a hitting time to a one-sided stopping
region. In [15], the author provided sufficient conditions for a one-sided stopping set and was
able to solve the problem in closed form for some choices of the pinning time’s distribution.

Problems of optimal stopping for a Brownian bridge have attracted significant attention
from the mathematical finance community thanks to their application to trading. Already in
1970, Boyce [3] had proposed applications of Shepp’s results to bond trading. In that context
the pinning effect of the Brownian bridge captures the well-known pull-fo-par mechanism of
bonds. Many other applications to finance have appeared in recent years, motivated by phe-
nomena of stock pinning (see, e.g., [1] and [17] among many others). Explicit results for some
problems of optimal double stopping of a Brownian bridge, also inspired by finance, were
obtained in [2].

In our paper we study a problem that was posed by Ernst and Shepp in Section 3 of [12]. In
particular, we are interested in finding the optimal stopping rule that maximises the expected
value of the exponential of a Brownian bridge which is constrained to be equal to zero at time
T = 1. Besides the pure mathematical interest, this problem is better suited to model bond/stock
trading situations than its predecessors with linear gain function. Indeed, the exponential struc-
ture avoids the unpleasant feature of negative asset prices, whilst retaining the pinning effect
discussed above. Questions concerning stopping the exponential of a Brownian bridge were
also considered in [20] in a model inspired by financial applications. In fact, in [20] the authors
considered a more general model than ours and allowed a random pinning point. However, the
complexity of the model is such that the analysis was carried out mostly from a numerical
point of view.

In this work we prove that the optimal stopping time for our problem is the first time the
Brownian bridge exceeds a time-dependent optimal boundary 7 +— b(¢), which is non-negative,
continuous, and non-increasing on [0, 1]. The boundary can be computed numerically as the
unique solution to a suitable integral equation of Volterra type (see Subsection 5.1). The full
analysis that we perform relies on four equivalent formulations of the problem (see (7), (11),
(12) and (20)), which are of interest in their own right, and offer different points of view on the
problem.

Our study reveals interesting features of the value function v. Indeed, we can prove that
v is continuously differentiable on [0, 1) x R, with respect to both time and space, with a
second-order spatial derivative which is continuous up to the optimal boundary (notice that this
regularity goes beyond the standard smooth-fit condition in optimal stopping). Notice, how-
ever, that the value function is not continuous at {1} x ( — oo, 0), due to the pinning behaviour
of the Brownian bridge as t — 1.

We extend the existing literature in several directions. The exponential structure of the gain
function makes it impossible to use scaling properties that are central in all the papers where
explicit solutions were obtained (see, e.g., [2, 11, 15, 24]). For this reason we must deal directly
with a stopping problem for a time-inhomogeneous diffusion. Optimal boundaries for such
problems are hard to come by in the literature and, in order to prove monotonicity of the
boundary (which is the key to the subsequent analysis), we have developed a method based on
pathwise properties of the Brownian bridge and martingale theory (see Theorem 1). The task
is challenging because there is no obvious comparison principle for sample paths of Brownian

/
bridges X"* and X’ - starting from a point x € R at different instants of time 7 # ¢'. Hence, our
approach could be used in other optimal stopping problems involving time-inhomogeneous
diffusions.
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It is worth noticing that, in Section 5 of [10], the authors also obtained a characterisation
of the optimal boundary via integral equations. However, in that case a time change of the
Brownian bridge and linearity of the gain function were used to infer monotonicity of the
boundary.

The paper is organised as follows. In Section 2 we provide some background notions on
the Brownian bridge and formulate the stopping problem. In Section 3 we prove continuity
of the value function and the existence of an optimal boundary. In Section 4 we prove that
the boundary is monotonic non-increasing, continuous, and bounded on [0, 1], and find its
limit at time 7= 1. In Section 5 we find C' regularity for the value function and we derive
the integral equation that uniquely characterises the optimal boundary. In Section 6 we solve
the integral equation numerically using Picard’s iteration scheme, and we provide plots of the
optimal boundary and of the value function. We also illustrate numerically the convergence of
the algorithm for the boundary, and the dependence of the boundary on the pinning time of the
Brownian bridge.

2. Problem formulation

We consider a complete filtered probability space (2, F, (F1)r=0, P), equipped with a stan-
dard Brownian motion W := (W;),>¢. With no loss of generality we assume that (F;);>0 is the
filtration generated by W and augmented with P-null sets. Further, we denote by X := (X;);¢[0,1]
a Brownian bridge pinned at zero at time 7 = 1, i.e. such that X; = 0. If the Brownian bridge
starts at time ¢ € [0, 1) from a point x € R, we sometimes denote it by (X?x)se[m] in order to
keep track of the initial condition.

It is well known that, given an initial condition X; = x at time ¢ € [0, 1), the dynamics of X
can be described by the following stochastic differential equation (SDE):

X
X =—"ds+dW,,  seln D). @
— S

The unique strong solution of the SDE (1) is given by
N dW
X?X:(l—S)(%_F/ “), set 1]. 2)
- t

1—u

The expression in (2) allows us to identify (in law) the process X** with the process Z"* :=
(Zg")selr,1) given by

178 LSy, selt 1] 3)
S ._l—l‘ l—f S—1» 5 .
That is, we have
Law(Xy™, set, 1]) =Law(Zy*, se(z, 1]) )

for any initial condition (¢, x) € [0, 1] x R. In the rest of the paper we will often use the
notations E; y[-] =E[ - | X; = x] and, equivalently, E; «[-] =E[ - | Z; = x].

Using the abovementioned identity in law of X and Z, along with well-known distributional
properties of the Brownian motion, it can be easily checked that

E,,x|: sup eXS:| < e""E[eS‘] < 400, 3)

t<s<l
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where S 1= supg,<; |Ws|. The random variable S; will be used several times in what follows,
and we denote

c1:=E[e] and ¢ :=E[$e%]. (6)

2.1. The stopping problem
Our objective is to study the optimal stopping problem

wt,x)= sup B, [eMr] for (1, x) €0, 1] x R, @)

0<t<l—t

where 7t is a random time such that # 4 7 is an (F)s>,-stopping time (in what follows we
simply say that 7 is an (F),>,-stopping time, as no confusion shall arise). Thanks to (5), we can
rely upon standard optimal stopping theory to give some initial results. In particular, we split
the state space [0, 1] x R into a continuation region C and a stopping region D, respectively
given by

C:={(t,x) €0, 1] xR:v(t, x)>e"}, 8)
D={t 1) el0,1] x R:v(t, x) =e*. 9)

Then, for any (¢, x) € [0, 1] x R, the smallest optimal stopping time for problem (7) is given
by (see, e.g., [18, Theorem D.12, Appendix D])

t* =inf{s € [0, 1 —1]: (t + s, X;15) € D}, P; x-almost surely (a.s.). (10)

We will sometimes use the notation 7%, to keep track of the initial condition of the time-space
process (¢, X).

Moreover, standard theory on the Snell envelope also guarantees (see, e.g., [18,
Theorem D.9, Appendix D]) that the process V :=(V;)ic[0,1] defined by V;:=v(t, X;) is a
right-continuous, non-negative, P-super-martingale and that V* := (Viar*)eqo0,1] is a right-
continuous, non-negative, P-martingale.

To conclude this section, we show two further formulations of problem (7) that will become
useful in our analysis. The former uses (4) and the fact that, thanks to the above discussion,
we only need to look for optimal stopping times in the class of entry times to measurable sets.
Hence, we have

v(t,x)= sup E, [e“] for (¢, x) € [0, 1] x R. (11)

O<t<l—t

The second formulation instead uses ideas originally contained in [16]. In particular, for any
fixed ¢ € [0, 1] and any (F)s>;-stopping time 7 € [0, 1 —¢], we can define an (Fs)o<s<1 Stop-
ping time 6 € [0, 1] such that T =6(1 —?) and Fy = F;141—5. In addition to this, notice that

Law(Wyi—p, s>0)=Law(v1 —1 W, 5>0).
Therefore, problem (11) (hence problem (7)) can be rewritten as

W, )= sup E[exp (1 —0)x+ /(1 —0)(1 —nWy)]. (12)
0<6<l1

This last formulation of the problem has the advantage that the domain of admissible stopping
times 6 is independent of the initial time 7.
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Remark 1. There is no loss of generality in our choice of a pinning time 7 =1 and a pinning
point &« = 0. We could equivalently choose a generic pinning time 7 >t >0 and a generic
pinning point « € R and consider the dynamics

Xs -
dst_
T

ds+dw,,  selr, T).

Then, the analysis in the next sections would remain valid up to obvious tweaks.

3. Continuity of the value function and existence of a boundary

In this section we prove some properties of the value function, including its continuity, and
derive the existence of a unique optimal stopping boundary. It follows immediately from (5)
that the value function is non-negative and uniformly bounded on compact sets. In particular,
we have

0<v(t,x)<creM  forall (r, x) €0, 1] x R, (13)
where ¢1 > 0 is given by (6).

Proposition 1. The map x +— v(t, x) is convex and non-decreasing. Moreover, for any compact
set K C R there exists Lx > 0 such that

sup |v(t,y) —v(t, x)| < Lkl|y — x| forall x, y e K.
te[0,1]

Proof. The convexity of x> v(t, x) follows from the linearity of x — ZL* (see (3)), the
convexity of the map x — ¢*, and the well-known inequality sup (a + b) < sup a + sup b.
Monotonicity can be easily deduced by, e.g., the explicit dependence of (12) on x € R. As
for the Lipschitz continuity, the claim is trivial for # =1 since v(1, x) =e”. For the remaining
cases, fix € [0, 1) and let us fix y > x. Denote 7y := rt’fy, then by the monotonicity of v(z, -),
the fact that 7, is sub-optimal for v(z, x), and simple estimates, we obtain
0=v( y)—v(t,x)

tX

E[e t+ry e r+r)]

1 —(t+1y) 1 —(t+1y) I—(t+T1)
e (o0 (7)o (555 o (V5557w )
E[(l_(t+ ‘Ey)) exp( /1 1(1‘_4;1');) >:|e|xvy(y_x)

< [Sl] \lel\’l(y x).

Hence, the claim follows with Lx = ¢; maxyex e™l. O

IA

Next, we show that the value function is locally Lipschitz in time on [0, 1) x R. However,
it fails to be continuous at {1} x ( — o0, 0).

Proposition 2. Forany T < 1 and any 0 <t; <ty <T, we have

czele

21 =T

(2, x) = v(t1, X)| < (n—1t1)  forxeR, (14)
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with ¢y > 0 as in (6). Moreover,

lin} v(t, x) =¢" forx>0, (15)

—

lim ilnf v(t,x)>1>¢e" forx <O. (16)
1—

Proof. For the proof of (14) we will refer to the problem formulation in (12). Fix 0 <71 <
1 <T <1 and let 6, := 0 . be the optimal stopping time for (72, x). Then, given that 65 is
admissible and sub-optimal for the problem with value v(t1, x), we have
w2, x) — V(11 X) a7
< E[e(l—(’z)X(e«/(l*92)(1*12)W92 _ e«/(1*92)(1*t1)W92)]

< elxlE[ex/(l—ez)(l—fl)lWez\\/(1 _ 92)|W92|]( 1=t —1— 2‘2)
h—1

2/1=T
*

Now, setting 0 == 9,1 xwe notice that 6; is admissible and sub-optimal for the problem with
value v(f2, x). Then, arguments as above give

SelxlE[Slesl]

h — 1

2J/1=T'

v(i2, x) = (11, x) = —eME[S1e]

which, combined with (17), implies (14).

Finally, we show (15) and (16). Notice first that v(1, x) =e* and v(z, x) > ¢e* for t € [0, 1).
Pick x > 0, then by (11) we have e* <v(t, x) <e*'E [eS 1*’], which implies (15) by dominated
convergence and using that S1_;, — 0 as r— 1. If x <0 instead, the sub-optimal strategy
T =1—1rgives v(t, x) > 1. Hence, liminf;_, | v(z, x) > 1 > e* = v(1, x) as in (16). O

As a corollary of the two propositions just stated, we have that C is an open set. Combining
this fact with the martingale property (in C) of the value function, we obtain that v € cl2)
and it solves the free boundary problem (see, e.g., arguments as in the proof of Theorem 7.7 in
Chapter 2, Section 7 of [18])

(3 + 30 — £500)v(t, ) =0, (t,x)eC, (18)

v(t, x)=¢" (t,x) e dC, (19)

where 9, dy, and 9y denote the time derivative, the first spatial derivative, and the second
spatial derivative, respectively.

For future reference, we also denote by L the second-order differential operator associated
with X. That is,

(L)1, x) = %axx Ft, %) — li_tax f(t,x)  foranyf e CO2(R).
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3.1. Existence of an optimal boundary

In order to prove the existence of an optimal boundary it is convenient to perform a change
of measure in our problem formulation (7). In particular, using the integral form of (1) (upon
setting B; := Wy, — W;), we have

X ' Xt’xs
E[exp(Xtt;_r)]zE[exp (x+Bt _/0 ﬁds)}
—et 1 (L X
= E|:exp(BT 2r)exp(/o (2 1—(t+s)>ds>]
- X
cafe [ (&)
b \2 1=+
dp

1
— = exp (Blt — 5(1 — t))
Fi

dp

where

defines a new equivalent probability measure P on (Q, F) and the associated expected value
E. Under P, we have

tx va’x i~
dXxg 1— 1 ds + dW; fors e [t, 1],

with Xf’x =x, and with W, .= W, — 1 defining a P-Brownian motion by Girsanov’s theorem.
Thanks to this transformation of the expected payoff, it is clear that solving problem (7) is
equivalent to solving

. fx
Wt,x):= sup E[ exp ([ (l — L)ds)} (20)
O<t<l—t 0o \2 1—=(@+s)

Notice that, indeed, v(z, x) = e"v(¢, x) implies that
C={(tx)e[0, 1] x R:v(t, x) > 1}.

Moreover, since V is a P-super-martingale and V* is a P-martingale then, as a consequence of
Girsanov’s theorem, the process V= (V,),E [0,1] defined as

t
V,=exp (/ (; 1XS ) ds) v(t, X;) 2n
0 — S

isa l~’—super—martinga16 and V* := (Vtm*),e[o,l] is a ﬁ—maningale, with t* as in (10).
Using this formulation, we can easily obtain the next result.

Proposition 3. There exists a function b : [0, 1] — Ry U{+o00} such that

C={(t,x) [0, 1) x R:x < b(r)}. (22)
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Proof. Thanks to the pathwise uniqueness of the Brownian bridge, it is clear that for any
x <x’ we have, P-a.s. (hence also P-a.s.),

/
X0 < x for all s € [t, 1].

Using such a comparison principle and (20), it is easy to show that x> v(#, x) is non-
increasing. This means, in particular, that if (f, x) € D, then (¢, x') € D for all x' > x. Then,
we define

b(t) :=sup{x e R: v(t, x) > 1} (23)
=sup{x e R:v(t, x) > €'}, te[0, 1),

and (22) holds by continuity of the value function. For future reference, notice that (23) and
(15)—(16) also give b(1) = 0.

It remains to show that b(r) > 0 for all ¢ € [0, 1]. By choosing the stopping rule t =1 — ¢,
one has v(t, x) > 1 > ¢* for x < 0 and any ¢ € [0, 1). Hence,

[0, 1) x (— o0, 0)CC,

and the claim follows. U

As a straightforward consequence of the proposition above and (10), we have
T =inf{s €[0, 1 — 1] : X > b(r + 5)}. (24)

4. Regularity of the optimal boundary

In this section we show that the optimal boundary is monotonic, continuous, and bounded.
We will then, in the next section, use these properties to derive smoothness of the value function
across the optimal boundary.

By an application of Dynkin’s formula we know that, given any initial condition (¢, x) €
[0, 1) x R, any stopping time 7 € [0, 1 — ], and a small § > 0 we have

TAS
1 Xt+S
t >E Xitons — et E Xits - ————— )ds|.
v(t, x) 2 By et [ =t + ”"[/o ) (2 1—(z+s)> s]

This shows that immediate stopping can never be optimal inside the set
1
Q;:{(;,x)e[o,l)xR:x<§(1—r)}, (25)

and so Q CC.

The next result, concerning monotonicity of the optimal boundary, is crucial for the sub-
sequent analysis of the stopping set and of the value function. Monotonicity of optimal
boundaries is relatively easy to establish in optimal stopping problems when the underlying
diffusion is time homogeneous and the gain function is independent of time. In our case,
the latter condition holds but our diffusion is time dependent, hence new ideas are needed
in the proof of the theorem below. We also remark that, while in some stopping problems of a
Brownian bridge (see, e.g., [11]) it is possible to rely upon a time change in order to formulate
an auxiliary equivalent stopping problem for a time-homogeneous diffusion (see [21]), this is
not the case here, due to the exponential nature of the gain function.
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Theorem 1. The optimal boundary t — b(t) is non-increasing on [0, 1].

Proof. 1t is sufficient to show that, for any fixed x € R, the map 7+ v(¢, x) is non-increasing
on [0, 1). Indeed, the latter implies monotonicity of the boundary on [0, 1] by definition (23)
and using that b(r) > 0 for all 7 € [0, 1) and b(1) =0.

Recalling (18) and using the convexity of x — v(¢, x), we obtain

av(t, x) < %8);\/0, x)  forall (1, x) €C,

and, in particular,
ov(t, x) <0 for all (¢, x) € [0, 1) x (— 00, 0], (26)

thanks to the fact that Q C C (see (25)) and v > 0 in C (Proposition 1).

Notice that if (z, x) € D\ 9C then v(z, x) = e* and 9,v(¢, x) = 0. Since ¢ — (¢, x) is continu-
ous on [0, 1), it only remains to prove that d,v(¢, x) < 0 for (¢, x) € C with x > 0. For that, we
proceed in two steps.

Step 1. (Property of ¢+ X"*). Consider (¢, x) € C with x>0 and 0 <& <t < 1, for some
e >0.Forse[0,1—t] we denote

1x8 oyl X yl—EX
Yt+s '_Xt+s Xt7£+s'

Since (¢, x) is fixed, we simplify the notation and set Y¢, :=Y;;3", for s € [0, 1 —]. Next,
for some small § > 0, we let 75 := (1 — — 8) > O and ps :=15 A T°, where 1% := 1, :=inf{u €
[0, 1—1] :X,’;fu < 0}. Then, using the integral form of (1), for an arbitrary s € [0, 1 — 7] we
have, P-a.s.,

£ S X;fu S Xtt_gfu
=— —————du+ / —————du 27
rsnps /0 1 —(t+u) 0 l—(—e+u @7

—_ / e ( Xy Y )du.
o \(—G—etupd—(tu)  T—(—c+u)

Let [x]T := max{0, x}. Since Y is a continuous process of bounded variation and Y =0,
we have

Y T = W)61 dyé, <0
Yipsnps ] = ; e, =00dY;y, <0,

where the final inequality follows from (27), upon observing that X;jfu > 0 for all u < ps. Then,

Yiin p; = Oforalls €0, 1—rz]. Furthermore, letting § — 0, we obtain, by continuity of paths,
=X =0 forallse€[0,1—1], P-as. (28)

Hence, the process X™* hits zero before the process X'~¢* does.
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Step 2. (0,v(t, x) < 0). Fix (¢, x) € C with x > 0. Using the same notation as in Step 1 above,
leto =1/ A r[?x. By the (super-)martingale property of the value function, noticing that t* is
optimal in v(z, x) and sub-optimal in v(z — €, x), we have

v(t, x) —v(t — &, x) (29)
<E[v(r+0. Xp) — vt —e + 0. X))
< B[ <oopnpes <1-0(exp () — exp (X))

+E[Lio=1—n(exp (X7™) — exp (X177

+E[1 0 pnpoo g+ 10,00 —v(t — e + 70, XI5 ).

t—e+10
Recalling (28), on the event {t* <7%}N{r* <1 —1} we have Xt':j’jfr* ZX;’jfr*, and on

the event {o =1—1} we have that X|_©* > X|™. Moreover, x> v(t, x) is non-decreasing

(Proposition 1). Thus, combining these facts with (29), we obtain

v(t, x) —v(t — €, X) (30

= E[l{r0<r*}ﬁ{ro<l—t}(v(t +7%,0) —v(r — & +7°, 0)] <o,

where the final inequality uses (26) and the fact that 70 < 1 —1.
Finally, dividing both sides of (30) by ¢ and letting ¢ — 0, we obtain d;v(¢, x) <0 as
needed. U

It is well known in optimal stopping theory that monotonicity of the boundary leads to its
right continuity (or left continuity). In our case we have a simple corollary.

Corollary 1. The boundary is right continuous, whenever finite.

Proof. Let t € [0, 1) be such that b(f) < 4+00. Consider a sequence (#,),cn such that #,, | t as
n — o0o. By monotonicity of b and (22), we have that b(¢,) < oo and (,, b(t,)) € D for all n €
N. Since D is a closed set and (#,,, b(t,,)) — (¢, b(t 4 )), then also (¢, b(t + )) € D (the right limit
b(t +) exists by monotonicity). Hence, b(t + ) > b(f) (see (22)). However, by monotonicity
b(t) > b(t + ), which leads to b(r) = b(t +). O

We can now show that the optimal boundary is continuous and bounded on [0, 1].
Proposition 4. The optimal boundary t — b(t) is continuous on [0, 1] and we have

sup b(t) < +oo. (3D
te[0,1]

The proof of Proposition 4 relies upon four lemmas. First we state and prove those lemmas
and then we prove the proposition.

Lemma 1. For any t € [0, 1) we have DN ([t, 1) x R) # @.

Proof. Suppose by contradiction that this is not true and there exists ¢ € [0, 1) such that D N
([t, 1) x R) = &. Then rt"; =1—7,P-as.forall (7, x) € [t, 1) x R, which implies v(#, x) = 1.
X

This, however, leads to a contradiction since immediate stopping gives v(t’, x) > ¢e* > 1 for
x> 0andany? €[z, 1). O

Notice that the lemma above implies that for any #; € [0, 1) there exists #, € (¢1, 1) such that
b(ty) < 4o0. This fact will be used in the next lemma.
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Lemma 2. The boundary satisfies b(t) < +oo for all t € (0, 1].

Proof. By contradiction, let us assume that there is 7 € (0, 1) such that b(f) = +c0. Then,
thanks to Lemma 1 and Corollary 1 we can find ¢ € (¢, 1) such that 0 < b(¢') =: by < 400 and
(t,/)x RCC.Letog:=inf{s€[0,1—1): X;_,’_‘Y <bgo} A (' —1); then, recalling 7, asin (24),
we immediately see that P(z*, > 0¢) = 1. Using the martingale property of the value function
(see (21)), we obtain

V(t, x) :E‘x [exp (/ ’ (l — L) ds) V(t + oy, X,+UO):|
0 2 1—(t+s)

= %01 Xt+s ~
= Et,x 1{00<t,—t} eXp 0 E — m ds V([ + 00, b())

/1
= 1 Xt+s
+E |:1{ao=t/t} exp <A <§ 1=+ (l‘—I—S)) dS) . li| )

where we have used continuity of paths and the fact that on {og = ¢ — ¢} it must be Xt/ >b(f)=
bo, P x-a.s.
Moreover, since X;_,’f, > b for s < 0p, we have

) N % /1 by ~
v(t, x) < Et,x I:l{ao<t,—t} P (/(; (E - m) ds) V(t oo bO)] (32)
E 1 t/_t 1 XH—S \% bO d
+ t,x {gozt/—t} cXp 0 5 - m :
_ 1= (t+00)\" .
<Eix 1{(70 <\ T 1= ¢ !
. ) {1 1 Xi15 V bo d
+ E¢x {oo=r' —1} EXP 0 2 m :
1/2p / = o 1 Xtt—i)—cs Vbo
<16l o0 < — )+ E | exp 2 T-at9) )|
) _

where in the second inequality we have used (13) and v(z, x) = e *v(z, x). Now, we let x — 0o
and notice that

P, .00 <t — 1) <P( inf X" <by),
selt,f]

so that the first term on the right-hand side of (32) goes to zero. Similarly, given that

limy—, o X,’jfs = +4o0 for any s € [0, ¢ — 1], the second term goes to zero as well by the reverse
Fatou lemma. Then, recalling that v > 1, we reach the contradiction

lim sup v(t, x) < 0.
X—+00

It follows that b(f) < +o0 for all ¢ € (0, 1] since, by definition, b(1) =0. O

Lemma 3. We have b(0) < 4oc.
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Proof. Consider an auxiliary problem where the Brownian bridge is pinned at time 1 + A,
for some i > 0, and the time horizon of the optimisation is 1 4 4. That is, let us set

vh(t, X) = sup E,,X[eX’th ]
0<t<l+h—t

where X is a Brownian bridge (2) pinned at time 1 + A. _ ~
By the same argument as in Section 2, it follows that Law(X"*) = Law(Z"*), where

~ 14+h—s 1+h—s
AR — — W, f e, 1+ h].
T e e orselr, 1+7l

Thus,
Vit = sup By [el] (33)
0<t<l+h—t
and, since Law(Z!*, se[r, 1]) = Law(Z;iZ’x, s €[t, 1]) (compare (11) with (33)), we also

have that
v(t,x) =Vt +h,x)  forall (z, x) € [0, 1] x RR. (34)

By the same arguments as for the original problem, we obtain that there exists a
non-decreasing, right-continuous optimal boundary ¢ +— b"(¢) such that

Ch={t,x)el0, 1+h] x R:V'(t,x) > e} ={(t, x) €[0, 1 + h) x R:x < b))
Moreover, since the gain function e* does not depend on time, using (34) we obtain
b(ty=b"(t+h)  forallze [0, 1].

In particular, b(0) = b"*(h) and b"(h) < 400 by applying the result in Lemma 2 to the auxiliary
problem. 0

Using ideas as in [4], we can also prove left continuity of the optimal boundary.

Lemma 4. The optimal boundary t +— b(t) is left continuous.

Proof. We first prove that the boundary is left continuous for all ¢ € (0, 1) and then that its
left limit at t = 1 is zero, that is b(1 — ) =0=b(1).

Suppose, by contradiction, that there exists 79 € (0, 1) such that b(f9 — ) > b(fy) and consider
an interval [x1, x2] C (b(tp), b(ty — )). By monotonicity of b, we have that [0, #9) X [x1, x2] CC.
Now, pick an arbitrary, non-negative ¢ € C>°([x1, x2]). Since (18) holds in [0, 7o) x [x1, x2],
then, for any ¢ < #y, we have

X2
0= / [0, ¥) + Lv(2, Y)]o()dy (35)

X1

X2

X2
< / Lv(t, Y)pO)dy = / Wt V(L )(E, y)dy,

1

where for the inequality we have used d,v <0 (see the proof of Theorem 1) and in the final
equality we have applied integration by parts and used the adjoint operator

. =Llom+ . Y.
(L)1, y)=5¢"0)+ T, dy(y ).
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Taking limits as ¢t — #y and using the dominated convergence theorem, we obtain

X2 X2
0 <lim v(t, (L p)(t, y)dy = / v(to, V)(L*@)(10, y)dy (36)
Mo Jx, x|
X2 , X2 1 y
= / (L @) (19, y)dy = f e’ (5 | )w(y)dy,
X1 X1 — 1o

where we have used that v(#p, y) = e and integration by parts in the final equality.

Finally, recalling that x; > b(#y) > 1_7’0, then (36) leads to a contradiction because the right-
hand side of the expression is strictly negative (also ¢ is arbitrary).

In order to prove that b(1 —)=5b(1)=0, we need a slight modification of the argu-
ment above. In particular, suppose by contradiction that b(1 — ) > 0 and consider an interval
[x1, x2] C (0, b(1 —)). Then, replacing ¢ in (35) with ¢(¢, x) := (1 — )¢(x), and using the same
arguments with 7y = 1, we reach a contradiction, i.e.

X2

X2 X2 d
o<tim [ v i = [ To- ey == [ewmm<o. 0

1
We are now able to prove Proposition 4.

Proof of Proposition 4. The proof of (31) follows immediately from Lemmas 2 and 3. Right
continuity of the boundary follows from Corollary 1 and (31), whereas left continuity follows
from Lemma 4. Thus, the optimal boundary is bounded and continuous on [0, 1]. O

5. Regularity of the value function and integral equations

Thanks to the monotonicity of the optimal boundary and to the law of iterated logarithm
(combined with (3)), it is easy to see that, for any (z, x) € [0, 1) x R, we have r;fx = r,’, o P-as.,
where

1, =infs€[0, 1 —1]: X > bt +5)}  Pas. (37)

That is, the first time the process reaches the optimal boundary it also goes strictly above it.
(A proof of this claim can be found, e.g., in Lemma 5.1 of [5]).
Moreover, combining (37) with continuity of the optimal boundary, we deduce that

Tt =infls € [0, 1 —1]: (t + 5, X}3") € int(D)},

where int(D) =D\ 9C is the interior of the stopping set. In particular, since 7,*, = 0 P-a.s. for
any (z, x) € dC, by its definition (10), this implies that Tt/,x =0 P-a.s. as well for (¢, x) € C.
This means that the boundary dC is regular for the interior of the stopping set in the sense of
diffusions (see, e.g., [7]).

It is therefore possible to prove (see, e.g., Corollary 6 in [7] and Proposition 5.2 in [5]) that
for any (to, xo) € dC (i.e. xo = b(tp)) and any sequence (, X,),>1 < C converging to (fy, Xo) as
n — oo, we have

=0 P-a.s. (38)

: x __1s ’
10 Ty = 0 T 3

Now we can use this property of the optimal stopping time and some related ideas from [7] to
establish C! regularity of the value function.
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First, we give a lemma concerning the spatial derivative of v.

Lemma 5. For all (¢, x) € ([0, 1] x R) \ 9C we have

l—t—1" , |
ov(t, x) =E; « l—te L (39)

Hence, we also have that
0 v(t, x) < v(t, x) Jor (t,x) € ([0, 1] x R) \ oC. 40)

Proof. Recall that ve C l'2(C) (see the comment before (18)). Moreover, v(t, x) =¢* on
D and 0,v(t,x)=e¢* on D\ dC as needed in (39). It remains to show that (39) holds
for all (¢, x) € C.

Fix (¢, x) € C and take ¢ > 0. Recall the problem formulation in (11) with the explicit expres-
sion for Z (see (3)) and recall that we use the notation t* =17, (as in (10)). Since * is
admissible but sub-optimal for the problem with value v(¢, x + ¢), we have

v(t,x) —v(t,x+¢e)<E [exp (Zf;ft*) —exp (lef:ff)]

l—r—1* x
=E [(1 — exXp <1——l‘8)) exXp (Zt:'r‘f*)i| .

Hence, by the dominated convergence theorem and recalling that v is differentiable at (¢, x) € C,
we obtain

vt x4+ &) —v(t, x) 1—r—1*
av(t, x) = jﬂ% ; >E [ 1 exp (Z; ) |- 41)

By the same arguments, we also have that

l—r—1* x
v(t,x) —v(t,x—¢e)<E |:(1 —exp (—l—_ts)) exp (thH*)i| ,

which implies that

vt x) —v(t,x—¢) 1—¢r—1t* ’
av(t, x) = gg% . <E [ o VA ;‘T*)} ) (42)
Combining (41) and (42) we obtain (39).

Now, the inequality in (40) follows easily by comparison of (39) and (11). (]

Theorem 2. v € CL([0, 1) x R).

Proof. We know from (18) that d,v and 9,v exist and are continuous in C. Moreover, v(f, x) =
e* on D implies d,v(t, x) = e* and 9,v(¢, x) = 0 for (¢, x) € D \ dC. Then, it remains to prove that
dyxv and 9;v are continuous across the boundary dC. We do this in two steps.

Step 1. (Continuity of 9,v). Fix (fo, xg) € 9C with 7y <1 and recall (39). Then, for
any sequence (f, Xp)n>1 € C converging to (fp, xo) as n — oo, we can use the dominated
convergence theorem, continuity of paths, and (38) to obtain

1—t,—1*f
lim 0,v(t,, x,,) = E|: lim ! X exp (Zt"’x” ):| =",
n— oo

%
n— 00 1—1, Ty
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Step 2. (Continuity of 9,v). Let (f,x) €C and 0 <& <1 —1t. Then, repeating the argu-
ments used in (17) and recalling that 7+ v(¢, x) is non-increasing on [0, 1) (see the proof
of Theorem 1), we obtain

0=>v(t+e, x) —v(t, x)
> E[e(l—e*)x(e«/(l—0*)(1—1—8)W9* _ e«/(l—@*)(l—[)WQ*)]

= —(«/1 —t—A1—t— 8)€|X|E[|W9*|e|W0*|]’

where 6% := 0" is the optimal stopping time for v(z, x) (see (12)).
Dividing all terms above by ¢ and letting ¢ — 0, we find that

1
0> ,v(t, x) > ————eE[| Wy« |e/Wo*]]. 43
> 0pv(t, x) > Wi [| | ] (43)
The inequalities in (43) hold if we replace (, x) by (t,, x,) and 6* by 6,7 :=6; | . where the

sequence (f,, xp)n>1 C C converges to (fy, xo) € 9C as n — 00.
Now we aim at letting n — oco. Notice that (38) and the definition of 6 in (12) imply that

*
rtnaxn _

lim 6 = lim P-a.s.
n—oo M p—oo ] —t,
Thus, using the dominated convergence theorem, we obtain
0> lim 9ty x,) > — elolE [ lim |W9*|e|W9»T|] —0. 0
n— 00 2 — 1y n— 00 n

Theorem 2 has a simple corollary which shows the regularity of d,,v across the boundary. In
particular, d,,v is continuous but for a (possible) jump along the optimal boundary.

Corollary 2. The second derivative dy.v is continuous on ([0, 1] x R) \ 9C. Moreover; for any
(to, x0) € 0C with ty < 1 and any sequence (t,, X,)n>1 < C converging to (to, xo) as n — oo, we
have

2
Bm vty X,) = —0 %0 > ¢, (44)
n— 00 1 — 1

— 1o

Proof. Since v(t, x) = " in D, then 9, (t, x) = ¢* in D \ dC which is continuous. Moreover,
dxrv € C(C) and 50 dy,v is continuous on ([0, 1] x R)\ 9C.
To show (44), it is sufficient to take limits in (18), that is,

2xo
1—19

Xn
et

OV (ty, xn)) =

lim 0y v(ty, x,) = lim 2< — 0pv(ty, x,) +
n— 00 n— 00 1—1,

where we used Theorem 2 to arrive at the final expression. The inequality in (44) follows from
the fact that @ C C (see (25)). O

5.1 Integral equation for the optimal boundary

The regularity of the value function proved in the previous section allows us to derive an
integral equation for the optimal boundary. This follows well-known steps (see, e.g., [23])
which we repeat briefly below.
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Theorem 3. For all (t, x) € [0, 1) X R, the value function has the representation

— o Xt+s Xt+s 1
W(t, x)= 1+ E; e ( - -)1{xm>b(,+s)}ds . (45)
0 1—t—s 2

Moreover, the optimal boundary t — b(t) is the unique continuous solution of the following
non-linear integral equation for all t € [0, 1]:

1—t
b 1
" =1+ E, 4 [ f e (1t—:ys - E)l{xﬁ.pb(zﬂ)}dS} (46)
A — -

with b(1) =0 and b(t) > (1 —1)/2.

Proof. Thanks to Theorem 2 and Corollary 2, we can find a mollifying sequence (v;),>0 €
C*°([0, 1) x R) for v such that (see Section 7.2 in [14])

(Vs Ox Vi, 0pvy) — (v, Oxv, 04V) 47)

as n — oo, uniformly on compact sets, and
nlggo OxxVn(t, X) = O V(2 X) for all (¢, x) ¢ oC. (48)
We let (K,,,)m>0 be a sequence of compact sets increasing to [0, 1 —e] x R,andfort <1 —¢

we define
T =inf{s > 0: (t+5, X\5) ¢ K} A(1—1—e).

By an application of Itd’s formula to v, and noticing that P(Xf’j_‘szb(t+s))=0 for
s € [0, 1 —1), we obtain

va(t, x) = Et,x |:Vn(t + T, XH—rm)

Tm
- / (atvn(t + 5, Xrps) + Lv,(t+ s, Xt+s))1{X,+S7éb(t+s)}dsi|~
0

Now, since (f + s, Xi+5)s<z,, lives in a compact set, letting n — oo and applying the dominated
convergence theorem, by (47) and (48) we obtain

v(t, x) =E; |:V(t + T, Xt+rm)

Tm
= [ (vt s X+ 4, Xt+s>)1{x,+¢b<t+s)}ds]
0

fm X, Xt+s 1
=Eox | V0T X )+ | ’“(m—ﬁl{xﬁpboﬂ)}ds ,

where in the second equality we have used (18) and the fact that v(z, x) = e in D.
Notice that 7,, - 1 — ¢t — & as m — oo and the integrand on the right-hand side of the above
expression is non-negative. Recalling (13) and letting m — oo, we can apply the dominated

https://doi.org/10.1017/jpr.2019.98 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2019.98

Optimal stopping for the exponential of a Brownian bridge 377

convergence theorem and the monotone convergence theorem (for the integral term) in order

to obtain
1—t—e o Xt+s 1
Wt ) =By (vl =8, X1 0) + ) L
0 1—t—s 2
By the same arguments, letting ¢ — 0 we obtain (45), i.e.
1—t o XH-S 1
v(t, x) = E; x v(l—, X1-)+ erts (— — _)I{X,ﬂ>b(t+x)}ds
0 1—t—s 2

S /H (T2 ds
" 0 l—t—s 2 {Xis>b(t+5)}AS |

where in the second line we have used that, for ¢, < 1,

1< liminf v(ty,x,) < limsup vty x,) < limsup eME[e!al]=1,
(tn,Xn) = (1,0) (tn.Xn)—(1,0) (tn.2)—(1,0)

which follows from the problem formulation in (11) with 7,} := 1:;‘1) X

Now the integral equation (46) is obtained by setting (¢, x) = (¢, b(¢)) in (45). The uniqueness
of the solution to such an equation follows a standard proof in four steps that was originally
developed in [22]. The same proof has since been repeated in numerous examples, some of
which are available in [23]. Therefore, here we only give a brief sketch of the key arguments
of the proof.

Suppose there exists another continuous function c: [0, 1] — R4 with ¢(1) =0 and such
that, for all 7 € [0, 1], ¢(t) > (1 — )/2 and

1—t

X 1

O — 1 4 Ey.c / eX’“(¢ _ —)1{X,+S>c(t+s)}ds . (49)
0 1—t—s 2

Then, define the function

Vet x)=1+E, /H ex’“(L - l)l{x ~c(t+s)ds |,
’ 0 1l—t—s 2 s

i.e. the analogue of (45) but replacing b(-) therein with c(-). Since c¢(-) is assumed continuous
and the Brownian bridge admits a continuous transition density, it is not hard to show that
v¢ is continuous on [0, 1) x R. Moreover, it is clear that v(1, x) =1 for x € R and, by (49),
Ve(r, c(t)) = e® for r € [0, 1].
The main observation in the proof is that the process

c s X, XH—u 1
SVt s, Xigs) + / € t+u(— - _>1{Xt+u>c(t+u)}d“ (50)

0 1—t—u 2
is a P; y-martingale for any (¢, x) € [0, 1) x R and, moreover, it is a continuous martingale
for s € [0, 1 — ). Using this martingale property and following [22], one obtains, in order: (i)
Ve(t, x) =¢e* for all x > c(t) with ¢ € [0, 1], and (ii) v(z, x) > v“(¢, x) for all (¢, x) € [0, 1] x R.
Using (i) and (ii), the continuity of b(-) and c¢(-), and, again, the martingale property of (50),
one also obtains: (iii) ¢(f) < b(¢) for all r € [0, 1], and (iv) ¢(r) > b(¢) for all 7 € [0, 1]. Hence,
c(t) = b(¢r) for all € [0, 1]. (It is shown in [6] that continuity of the boundaries can be relaxed
to right/left continuity.) U

https://doi.org/10.1017/jpr.2019.98 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2019.98

378 T. DE ANGELIS AND A. MILAZZO

6. Numerical results

In order to numerically solve the nonlinear Volterra integral equation (46), we apply a Picard
scheme that we learned from [8].
First, notice that equation (46) can be rewritten as

1—1 00 y 1
b —q —|—f </ ey(— — —)p(t, b(t), t+ s, y)dy)ds,
0 bits) M —t—s 2

where p(t, x, t +s,y) = ByP(Xf’jf‘Y <) is the transition density of the Brownian bridge.

Let T:={0:=1t) <t <---<t,:=1} be an equispaced partition of [0, 1] with mesh
h=1/n. The algorithm is initialised by setting 5©(¢;) := 0 for all j=0, 1, ..., n. Now, let
b(k)(tj) denote, for j=0, 1, ..., n, the values of the boundary obtained after the kth iteration.
Then, the values for the (k + 1)th iteration are computed, for all j =0, ..., n, as

1—t; 00 1
PO / ( / ey( Y ——)p(tj, b)), ti+s, y)dy)ds. (51)
0 b0 g5y N—tji—s 2 s

In particular, the inner integral with respect to dy can be computed explicitly. Indeed,
noticing that

— 2
p(t, x, t+s,y) = _w>

L N <

J2malt, s) 2a(t, 5)

with B(x, ¢, s) :=x(1 —t—s5)/(1 — ) and a(t, s) :=s(1 —t —s5)/(1 — 1), we can now substitute
this expression inside the integral. Then, tedious but straightforward algebra allows us to reduce
the exponent of e”p(t;, b(k)(tj), ti+s, y) to an exact square plus a term independent of y. Thus,
properties of the Gaussian distribution give

11, bO@). ti+s. b0 + 5))

/ = y ! ®
= ey(— — —)p(t~, b'™(t), ti+s, y)dy
b(k)(tj—i-s) 1— li—s 2 / I
— eV [MC—W + (n(k)(,. 5) — l) (1 — (W s)))}
m j’ 2 ]’ E)
where ® is the cumulative density function of a standard normal distribution, and
W ) QP ) +s)(1—s—1;) 0, O () +s
y ] . 2(1_0) ’ n ] . 1—t] ’
b® (tj+s)
. (k) . j (k)
ti, = t, =|—- ti, .
¢(, ) (—s—)(1=1) £5(, 5) ( ==y, " (tj, 5) )

The integral with respect to the time variable (i.e. the one in ds) is computed by a standard
quadrature method. Hence, (51) reduces to

n—1—j

pk+D x h @ h

L g 2} 1<t,~, b0, t;+mh+§,b()<;/+mh+ 5))
—
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FIGURE 1: A sample path of a Brownian bridge X starting at Xy =0.3 and pinned at X; =0. The

Brownian bridge hits the optimal boundary at 7* ~ 0.3. The boundary divides the state space into the

continuation region C (in light blue) and the stopping region D (in red). The tolerance of the algorithm is
set to &€ = 107 and the equispaced time step is h = 1073,

where each b(k)(tj + mh + %) is computed by interpolation and we use the convention Z,;lzo =
0 for j = n. Finally,

n—1—j

h h
&0 (1) =log (1 +h Yy I(zj, bOW), tj +mh + > b (tj + mh + 5)))

m=0

The algorithm stops when the numerical error ey := max;—o,.... |b(k)(tj) — b(k_l)(tj)| fulfills
the tolerance condition e < ¢, for some & > 0. A numerical approximation of the optimal
boundary is presented in Figure 1.

While a rigorous proof of the convergence of the scheme seems difficult and falls outside
the scope of this work, in Figure 2 we show that the numerical error e, converges to zero as
the number of iterations increases. Moreover, the convergence is monotone, which results in a
good stability of the scheme.

Finally, in Figure 3 we plot the value function as a surface in the (7, x)-plane using (45). It
is interesting to observe that, as predicted by the theory, the value function exhibits a jump at
{1} x (— o0, 0).

Remark 2. As noted in Remark 1, we could consider a Brownian bridge with a generic pinning
time 7 > t and nothing would change in our analysis. However, it may be interesting to observe
that as T — oo the Brownian bridge converges (in law) to a Brownian motion W. Thus, we also
expect that the stopping problem (7) converges to the problem of stopping the exponential of
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Iteration

FIGURE 2: The trajectory of the error ey, for 16 iterations of the algorithm when & = 1073,

v(t,x)

02 04 06

t 0
17 Tog 06 04 02
X

FIGURE 3: The value function surface v(z, x) plotted on a grid of points (¢, x) € [0, 1] x [ — 1, 1] with
discretisation step 4 = 1072,
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T=10

T=1

FIGURE 4: Boundary functions with starting point # = 0 and increasing pinning times 7 =1, T =5, and

T =10 (plotted with increasing line thickness). Notice that every boundary lies above the corresponding

line x = %(T — 1) (represented by the dashed lines with the same thickness), which generalises the set Q
from (25).

a Brownian motion over an infinite time horizon. Since ¢ — exp (x + W;) is a sub-martingale,
the optimal stopping rule is to never stop. This heuristics is confirmed by Figure 4 where
we observe numerically that the continuation set expands as 7T increases and, in the limit as
T — 400, the stopping set disappears.

Remark 3. Traditionally, integral equations as in (46) are solved by discretisation of the inte-
gral with respect to time and a backward procedure, starting from the terminal time (see,
e.g., [23, Chapter VII, Section 27, pp. 432-433] for details in the case of the Asian option
or [23, Chapter VIII, Section 30, p. 475] for another example; this method was developed in
the seminal paper [19] and later extended). To the best of our knowledge, a rigorous proof of
convergence for this ‘traditional’ numerical scheme is not available.

At each time step, the scheme must find the root of a highly non-linear algebraic equation,
making the procedure slower than the Picard scheme that we implement, which requires no
root finding (see Figure 5 for a comparison).

Another possibility is to use finite difference methods to solve directly the free bound-
ary problem in (18) and (19). The finite difference method, however, requires discretisation
of both time and space (whereas we only discretise time), which leads to discretisation errors
both in time and space and generally to a slower convergence. Moreover, in our case the coef-
ficient associated to the first-order partial derivative d,v is discontinuous at ¢ = 1, which causes
additional difficulties.

Remark 4. After we numerically solved equation (46) and we were able to plot the boundary
function as in Figure 1, we began to investigate whether a suitable fit for the boundary could

https://doi.org/10.1017/jpr.2019.98 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2019.98

382 T. DE ANGELIS AND A. MILAZZO

1.2 T T T T T T T T T

Picard scheme
— — Traditional scheme

FIGURE 5: The solution of the optimal boundary found via the Picard scheme (continuous line) and via
the traditional method (dashed line). The time step is =5 - 1073 and the tolerance is ¢ = 107>. The
Picard scheme stops after 0.1 seconds and 36 iterations, the traditional method after 2.9 seconds.

be found. It is known that in the stopping problem with linear payoff E[X;] and pinning time
T = 1, the optimal boundary can be found explicitly and it takes the form b(¢) = Ba/1 — t (see
[24]). Motivated by this result we considered candidate boundaries of the form by () = Ar(1 —
exp (Br+/T — 1)), where T is the pinning time of the Brownian bridge, and Ar and Br are
parameters to be determined.

Using the ‘curve-fitting toolbox’ in Matlab to fit our ansatz to the boundaries obtained from
the integral equations, we obtain an excellent fit for 7 =1, 5, 10. The quality of the fit slightly
deteriorates for larger T (e.g. for T =20). The results are illustrated in Figure 6. While these
tests suggest that our problem might be amenable to an explicit solution, the question is more
complex than in the linear payoff case (and its extensions in [11]) and remains open. The key
difficulties are that (i) we must determine two parameters rather than one, and (ii) we do not
have a good guess for the value function that would allow us to transform the free boundary
problem in (18) and (19) into a solvable ordinary differential equation. Indeed, in the linear
case one uses the identity in law

Law (X}

s 0

selt, 1]) = Law(Z, s €0, 00)),

with 2;‘ =+ /1 —1tW;)/(1 +s), and obtains
x4+ 1=t W,
Utt,x)= sup EX""]=supE | """ _ /15U (o, —L) .
( Osrsefz s rzpo I+t 1=

With the exponential payoff, the same identity does not provide any useful insight.
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FIGURE 6: Boundary functions (continuous lines) and the corresponding fitted curves (dashed lines)

of the form b7(#) =Ar(1 —exp (Br+/T — 1)) for the pinning times 7 =1, 5, 10, 20. The values of the

parameters are, respectively, A = —2.09, By =0.4; As = —1.85, B5 =0.43; Ajg = —1.86, Bjg = 0.44;
and Ayg = —2.27, By = 0.39.

A different approach based on finding parameters for which the guessed boundary br(r)
solves the integral equation (46) seems even harder.
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