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SPECTRAL THEORY FOR WEAKLY
REVERSIBLE MARKOV CHAINS

ACHIM WÜBKER,∗ Universität Osnabrück

Abstract

The theory of L2-spectral gaps for reversible Markov chains has been studied by many
authors. In this paper we consider positive recurrent general state space Markov chains
with stationary transition probabilities. Replacing the assumption of reversibility with
a weaker assumption, we still obtain a simple necessary and sufficient condition for the
spectral gap property of the associated Markov operator in terms of the isoperimetric
constant. We show that this result can be applied to a large class of Markov chains,
including those that are related to positive recurrent finite-range random walks on Z.
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1. Introduction

In this paper we establish new conditions for the existence of L2(π)-spectral gaps for
general state space Markov chains. Such conditions are often useful since they ensure a
geometric speed of convergence to equilibrium. Information about the size of the spectral
gap can be used to quantify such convergence rates and, hence, are of particular importance for
applications. Moreover, the existence of an L2(π)-spectral gap guarantees a central limit
theorem for functionals of general state space Markov chains (see, e.g. [13]). In certain
situations knowledge of the existence of an L2(π)-spectral gap may allow us to obtain uniform
geometric bounds for the rate of convergence to equilibrium even with respect to the total
variation distance (see, e.g. Proposition 1.5 of [21]). In this context finite state space Markov
chains are of particular importance and have given rise to intensive research investigations in the
past (see, e.g. [7] and [10]). Recently, Mitrophanov translated spectral information to derive
perturbation bounds. These are obviously of practical value since they provide information
about the stability of the convergence results under small perturbations of the parameters. For
more details, we refer the reader to [18], [19], and [20].

Let ξ1, ξ2, . . . form a time-discrete and time-homogeneous positive recurrent Markov chain
with arbitrary state space (�,F ), transition kernel p(·, ·), and uniquely determined invariant
measure π . The main goal of this paper is to address the existence of an L2(π)-spectral gap,
i.e. conditions that ensure that

ρ := lim
n→∞ sup

f∈L2
0,1(π)

‖Pnf ‖1/n
2 < 1,
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where ρ is called the spectral radius,

Pf (x) :=
∫
�

f (y)p(x, dy), f ∈ L2(π), (1)

and L2
0,1(π) := {f ∈ L2(π) : ∫

�
f (x)π(dx) = 0, ‖f ‖2 := (

∫
�
f (x)2π(dx))1/2 = 1}.

In the context of reversible Markov chains, the L2(π)-spectral gap 1 − ρ of a Markov chain
is frequently defined in terms of Dirichlet forms, i.e.

ρ = max
(∣∣∣ sup
f∈L2

0,1(π)

〈Pf, f 〉π
∣∣∣, ∣∣∣ inf

f∈L2
0,1(π)

〈Pf, f 〉π
∣∣∣),

where, for f, g ∈ L2(π), the scalar product is defined as 〈f, g〉π := ∫
�
f (y)g(y)π(dy). This

Dirichlet form approach has been intensively used in [4], [5], [6], and [7] to obtain good bounds
for the spectral gap in the finite state space Markov chain setting.

The spectral gap definition can be simplified if the associated Markov operator P is self-
adjoint and compact as, e.g. for reversible and finite Markov chains. In this case the existence
of a spectral gap simplifies to the condition that

ρ = max(|λmax|, |λmin|) < 1,

where λmax and λmin denote the largest and smallest eigenvalues of P , respectively, on the
space L2

0(π) := {f ∈ L2(π) : ∫
�
f (x)π(dx) = 0}.

Probably the best-known condition that ensures the existence of a spectral gap on L2(π)

in a very general setting is the Doeblin condition, which says that there exist a probability
measure µ, a number m ∈ N, some δ > 0 and 0 < ε < 1 such that

µ(A) > ε �⇒ pm(x,A) ≥ δ for all x ∈ �.
It has been shown [17, pp. 387–398] that, for ψ-irreducible and aperiodic Markov chains, the
Doeblin condition holds if and only if

sup
x∈�

‖pn(x, ·)− π‖TV ≤ Cδn for some δ < 1, 0 < C < ∞.

Here, the total variation distance for two measures µ and ν is defined as

‖µ− ν‖TV = sup
A∈F

|µ(A)− ν(A)|

and pn(·, ·) denotes the n-step transition probability, i.e. for x ∈ � and A ∈ F ,

pn(x,A) = P(ξn+1 ∈ A | ξ1 = x).

Moreover, P (as defined in (1)) regarded as an operator on the space B(�,F , π) of bounded,
complex-valued measurable functions, has a spectral gap if and only if the Doeblin condition is
satisfied [12]. From the Riesz–Thorin interpolation theorem, we can deduce that this actually
implies the spectral gap property on the space L2(π) (see, e.g. [23]). The latter implication
cannot be reversed and indeed there are many Markov chains that have the L2(π)-spectral gap
property, but do not satisfy the Doeblin condition. This means that the Doeblin condition is
often too restrictive when considering the space of square-integrable functions.
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For finite or reversible Markov chains, simple conditions equivalent to the spectral gap
property are known in the time-discrete case [16], [21], [24] as well as in the time-continuous
case [1], [2], [3], [4], [7], [15]. These conditions are given in terms of isoperimetric constants [1],
[2], [3], [8], [15], [24], in terms of geometric constants [7], or using geometric ergodicity [22].
However, without the assumption of reversibility and finiteness of the state space, only a
few results are known. The main problem is that nonreversibility implies that Dirichlet form
techniques can only be applied by using certain reversibilization procedures (see, e.g. [5], [10],
and [15]), which only yields information about the real part of the spectrum [15]. Recently,
Kontoyiannis and Meyn [14] related the size of an L2(π)-spectral gap with the geometric rate
of convergence for the associated Markov chain by introducing a weighted L∞-space. In the
same article it was also shown that geometric ergodicity and the spectral gap property are not
equivalent (i.e. geometric ergodicity does not imply the spectral gap property, but the converse
implication is well known). We will present a very general and simple condition which allows
us to decide whether a geometrically ergodic Markov chain has the spectral gap property. More
precisely, we suggest a condition that enables a comparison between the isoperimetric constant
associated to P 2 with those associated to P ∗P and PP ∗ (where P ∗ denotes the adjoint of P ).
Indeed, the suggested condition is much less restrictive than reversibility (for example, it is
satisfied for all finite state space Markov chains). These ideas are conglomerated in Theorem 1,
which can be regarded as the main result of this paper. We apply it in two ways. First, we show
that, for certain weakly reversible Markov chains, proving the spectral gap property can be done
by bounding the isoperimetric constant k from below. Secondly, we apply it to an example
which is closely related to the reflected random walk on Z. More generally, it is used to prove
Theorem 2, which gives a flair for the class of Markov chains where Theorem 1 successfully
applies.

Let us introduce the basic notions and notation, and recall some known facts. Unless stated
otherwise, we consider a positive recurrent time-homogeneous Markov chain ξ1, ξ2, . . . with
arbitrary state space (�,F ), transition kernel p(x, dy), and uniquely determined invariant
probability measure π . We say that the chain ξ1, ξ2, . . . is reversible if, for all A,B ∈ F ,

Q(A,B) :=
∫
A

π(dx)
∫
B

p(x, dy) =
∫
B

π(dx)
∫
A

p(x, dy) = Q(B,A) =: Q̃(A,B),

so Q and Q̃ are measures on �2. Alternatively, reversibility can be stated as

dQ

dQ̃
(x, y) = 1 Q̃-almost surely (Q̃-a.s.).

In order to give a natural generalization of this definition, let us, for simplicity, assume that Q
and Q̃ are equivalent measures in the Radon–Nikodym sense.

Definition 1. We say that the Markov chain ξ1, ξ2, . . . is weakly reversible of order n ∈ N if
there exists C ∈ [1,∞) such that

1

C
≤ dQ(n)

dQ̃(n)
≤ C Q̃(n)-a.s.,

where Q(n)(A,B) := ∫
A
π(dx)pn(x, B) and Q̃(n)(A,B) = Q(n)(B,A).

For C = n = 1, this is exactly the definition of reversibility. Note that a Markov chain that
is weakly reversible of order n is not necessarily weakly reversible of orderm > n. To see this,
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consider the Markov chain with state space S = {0, 2, 3, . . . , n−1} and transition probabilities
p(i, j) = δi+1(j) for i ∈ {0, 1, . . . , n− 2} and p(n− 1, j) = δ0(j), j ∈ S, where δi denotes
the Dirac measure at i. It is easy to see that this Markov chain is not weakly reversible of order i
for all i �= kn, but weakly reversible of order kn (with C = 1), k ∈ N. Moreover, it is not
difficult to see that a Markov chain that is weakly reversible of order n is also weakly reversible
of order kn for all k ∈ N with a constant C depending on k.

Throughout this paper, we assume that dQ(n)(·, ·)/dQ̃(n) is a measurable function from
(�×�,F × F , Q̃(n)) to (R,B).

In the sequel we will need the following families of isoperimetric constants:

kn := inf
A∈F

kn(A), kn(A) := 1

π(A)π(Ac)

∫
A

pn(x,Ac)π(dx), n ∈ N,

and

kP ∗nP n := inf
A∈F

kP ∗nP n(A) := inf
A∈F

1

π(A)π(Ac)

∫
A

P ∗nP n 1Ac(x)π(dx),

where P ∗ is the adjoint operator of P considered on L2(π).
In [24] it was shown that aperiodicity of the Markov chain ξ1, ξn+1, . . . can be measured by

the constants
Kn := sup

A∈F
kn(A), n ∈ N.

In the following let k = k1, k(A) = k1(A), and K = K1.

2. Spectral theory for general and weakly reversible Markov chains

The following proposition, which provides a criterion for establishing the spectral gap
property, is probably known. However, since we cannot detect a reference in the literature,
a proof will be provided later on.

Proposition 1. Let ξ1, ξ2, . . . be a positive recurrent Markov chain. Then the following two
statements are equivalent.

(i) P has an L2(π)-spectral gap.

(ii) There exists an n0 ∈ N such that k
P ∗n0 Pn0 > 0.

If (ii) is satisfied, we obtain the following estimate for the spectral radius ρ of P on L2
0,1(π):

σ(P ) ⊂ Bρ(0) := {x ∈ C : ‖x‖2 ≤ ρ}, ρ =
(√

1 − κ

8
k2
P ∗n0 Pn0

)1/n0

.

Here n0 is as in (ii) and

κ = inf
D

sup
c∈R

E(|(X + c)2 − (Y + c)2|)
E((X + c)2)

,

where D denotes the set of all possible distributions of independent and identically distributed
random variables (X, Y ) with variance 1 (see [15]).

Let us show how Proposition 1 can be applied to the analysis of ε-lazy Markov chains of
order n0, i.e. for Markov chains for which there exist n0 ∈ N and ε > 0 such that

pn0(x, x) ≥ ε for all x ∈ �.
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In this case, we have

k
P ∗n0 Pn0 (A) = 1

π(A)π(Ac)

∫
�

pn0(x,A)pn0(x,Ac)π(dx)

≥ ε
1

π(A)π(Ac)

∫
A

pn0(x,Ac)π(dx)

= εkn0(A).

This, together with Proposition 1 and Theorem 2.1 of [15], yields the following result.

Corollary 1. A ε-lazy positive recurrent Markov chain of order 1 has an L2(π)-spectral gap
if and only if

k > 0.

We have just seen that it is easier to establish the spectral gap property for Markov chains
which are ε-lazy. Indeed, the required laziness property in Corollary 1 cannot be skipped. For
example, consider the Markov chain with state space {1, 2, 3} and transition matrix

P =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ .

For the invariant measure π , we have π(i) = 1
3 , i ∈ {1, 2, 3}, and an easy calculation shows

that k > 0. But this Markov chain does not have the spectral gap property.
Now let us state the main result of this paper.

Theorem 1. Let ξ1, ξ2, . . . be a positive recurrent, weakly reversible Markov chain of order n.
Then the following three conditions are equivalent.

(i) P has an L2(π)-spectral gap.

(ii) k2n > 0.

(iii) 0 < kn ≤ Kn < 2.

Let us make some comments on this result. First, observe that it is not interesting for
analyzing Markov chains in an MCMC setting, since in that case problems with periodicity
can be simply avoided by generating a lazy Markov chain so that Corollary 1 can be applied.
The situation is different when we are asked for the stability properties of a given Markov
chain. Here, it may be difficult to recognize periodic behavior, but even for positive recurrent
and aperiodic Markov chains, it cannot be deduced in general that they have the spectral gap
property. For this reason, let us explain the content of Theorem 1(iii) for n = 1.

Theorem 1(iii) essentially says that, for weakly reversible Markov chains with k > 0, it
suffices to exclude periods of order two (K < 2) to ensure the spectral gap property. It turns
out that this, more precisely, the implication (iii) ⇒ (ii), is the most difficult part in the proof
of Theorem 1. Note that, for n = 1, Theorem 1 improves the result in [24].

Before we turn to some examples, let us draw some conclusions from Theorem 1, especially
from the implication (iii) ⇒ (ii).

Corollary 2. Let ξ1, ξ2, . . . be a positive recurrent, weakly reversible Markov chain of order 1.
Assume that there exists ε > 0 such that

π(A) �∈ ( 1
2 − ε, 1

2 + ε
)

for all A ∈ F . (2)
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Then ξ1, ξ2, . . . has a spectral gap if and only if

k > 0.

Let us point out how Corollary 2 can be applied. For example, if ξ1, ξ2, . . . is a weakly
reversible Markov chain with a state x ∈ � such that π(x) > 1

2 . Then (2) holds and we only
have to check that k > 0 to establish the spectral gap property. Obviously, there are many
other examples, for instance, if there exist x1, x2, x3 ∈ � such that π(x1) = π(x2) = 2

5 and
π(x3) = 1

9 , we also conclude that (2) holds, no matter what the other values of the invariant
distribution π .

Corollary 3. Let ξ1, ξ2, . . . be a positive recurrent, time-discrete, weakly reversible Markov
chain of order 1 with state space (�,F , π). Moreover, assume that there exist C ∈ F with
π(C) > 0 and ε > 0 such that, for all measurable subsets B ⊂ C,

p(x, B) > ε for all x ∈ B. (3)

Then ξ1, ξ2, . . . has a spectral gap if and only if

k > 0.

Compared to Corollary 1, this result says that besides k > 0, for weakly reversible Markov
chains, laziness is only needed on a small subset C ∈ F with π(C) > 0.

After presenting some theoretical implications of Theorem 1, we will now see how it can be
applied to establish the spectral gap property of the following class of nonreversible Markov
chains, which can be investigated with the theory of linear higher-order difference equations.

Let ξ1, ξ2, . . . be a Markov chain with state space N and transition probabilities

p(i, i + k) = qk > 0, p(i, i − k) = pk > 0, (4)

for k ∈ {1, 2, . . . , n0} and all i ≥ n1 > n0 ∈ N,

p0 = q0 = p(i, i) (5)

for all i ≥ n1 > n0 ∈ N, for some n1 > n0 such that

p0 +
n0∑
k=1

pk + qk = 1,
n0∑
k=1

kpk >

n0∑
k=1

kqk. (6)

Observe that the above class of Markov chains extend the notion of discrete-time birth-and-death
processes in a natural way.

Theorem 2. Let ξ1, ξ2, . . . be an irreducible and weakly reversible Markov chain of order 1
with state space N such that (4), (5), and (6) are satisfied. Then ξ1, ξ2, . . . has anL2(π)-spectral
gap.

Observe that (4) is a constraint only for the transition probabilities p(i, ·) for i ≥ n1 > n0,
where n1 might be taken arbitrarily large. Hence, this result can also be understood as a certain
extension result for finite state space Markov chains. If a Markov chain, conditioned to stay in
a certain finite domain forever, is aperiodic and irreducible and satisfies the above conditions,
then it has an L2(π)-spectral gap. This means that, given a finite Markov chain, the above
result tells us how the Markov chain might be extended to a countable infinite state space.
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2.1. Proof of Theorem 2

For the proof, we have to establish the following.

(a) The Markov chain has a stationary distribution π .

(b) k2 > 0.

We will see that (a) can be deduced from a stronger result. We will establish that the above
Markov chain is geometrically ergodic by using the Lyapunov function approach. To prove (b),
it turns out that the tail behavior of the invariant distribution π will be of key importance.

The following result is taken from the book of Meyn and Tweedie [17, pp. 358–359].

Result 1. An irreducible and aperiodic Markov chain with state space N is geometrically
ergodic if and only if there exist a real-valued function V with V ≥ 1 and a small set C
such that

PV (i) < sV (i)+ b 1C, s < 1, b < ∞, for all i ∈ N, (7)

where in this discrete setting every subset C ⊂ N is small.

First of all it is easy to see that the chain is aperiodic. Now let us show that the above drift
condition is satisfied with V (i) = V (r, i) = ri (this means that P is assumed to operate only
on the second component of V (r, i)), C = {1, 2, . . . , n1 − 1}, and b = rn0+n1 for some r > 1.

For i ≥ n1, we have, by definition,

PV (r, i) = p0r
i +

n0∑
j=1

(qj r
i+j + pj r

i−j ).

We readily establish that, for all i ≥ n1,

PV (1, i)

V (1, i)
= 1.

Condition (6) yields

d

dr

PV (r, i)

V (r, i)

∣∣∣∣
r=1

=
n0∑
j=1

jqj −
n0∑
j=1

jpj < 0 for all i ≥ n1,

which implies that there exist r = r(q1, q2, . . . , qn0 , p1, p2, . . . , pn0) > 1 and ε > 0 such
that, for all i ≥ n1,

PV (r, i)

V (r, i)
< 1 − ε.

For i < n1, it follows that
PV (i) < rn0+n1 =: b,

which implies that ξ1, ξ2, . . . is geometrically ergodic.
To see that k2 > 0, a deeper investigation of the invariant distribution π is necessary. In

particular, the tail behavior of π(n) for large n is of key importance. By πP = π we obtain,
for i ≥ n0 + n1,

π(i) = qn0π(i−n0)+qn0−1π(i−n0 +1)+· · ·+q1π(i−1)+p1π(i+1)+· · ·+pn0π(i+n0).
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In analogy to linear differential equations, where the exponential function is used as an ansatz
function, the above equation might be solved using the ansatz function f (i) = λi (for further
details, see, e.g. [9]). By this we obtain

λ2n0 + pn0−1

pn0

λ2n0−1 + · · · + p1

pn0

λn0+1 − 1

pn0

λn0 + q1

pn0

λn0−1 + · · · + qn0

pn0

= 0. (8)

Denote by Z(P ) := {λ1, λ2, . . . , λr} the 0s of (8), and assume that λj has multiplicity mj . It
follows from the general theory of linear difference equations with constant coefficients (see,
e.g. [9, p. 76]) that

⋃r
j=1Gj , where

Gj =
{
λnj ,

(
n

1

)
λn−1
j ,

(
n

2

)
λn−2
j , . . . ,

(
n

mj − 1

)
λ
n−mj+1
j

}
,

is a fundamental set of solutions of (8). This means that, for any n ≥ n1, π(n) has a
representation of the form

π(n) =
r∑
j=1

λnj (aj,0 + aj,1n+ aj,2n
2 + · · · + aj,mj−1n

mj−1) (9)

for some constants aj,i ∈ C, 1 ≤ j ≤ r, 0 ≤ i ≤ mj − 1, and
∑r
j=1mj = 2n0 + 1. Since

there exists a solution of (9) such that π(n) > 0 for all n ∈ N and
∑∞
i=1 π(i) = 1, we only

have to consider

λ ∈ Z̃(P ) := {λ ∈ Z(P ) : λ ∈ [−λ1, λ1], λ1 := max{λ ∈ Z(P ) ∩ (0, 1)}} and aj,i ∈ R.

Ordering λ ∈ Z̃(P ) such that

1 > λ1 = |λ1| ≥ |λ2| ≥ · · · ≥ |λl |, l ≤ r,

where l := |Z̃(P )|, yields

π(n) = λn1

l∑
j=1

(
λj

λ1

)n
(aj,0 + aj,1n+ aj,2n

2 + · · · + aj,mj−1n
mj−1). (10)

By the positivity of π(n) for all n ∈ N we have

a1,0 + a1,1n+ a1,2n
2 + · · · + a1,m1−1n

m1−1 > 0.

Now we have to distinguish two cases, namely, λ1 > |λ2| and λ1 = |λ2|. We only treat the
first case, since the second case can be handled in a similar fashion. From (10) and λ1 > |λ2|,
it follows that

lim
n→∞

π(n+ 1)

π(n)
= λ1,

which implies that, for all ε > 0, there exists N = N(ε) such that, for all n ≥ N , we have

(λ1 − ε)π(n) ≤ π(n+ 1) ≤ (λ1 + ε)π(n).

Choosing ε < 1 − λ1 we obtain, for all n ≥ N ,

1 + ε − λ1 ≥ π(n)∑∞
i=n π(i)

≥ 1 − ε − λ1 > 0. (11)
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This yields

lim
n→∞

π(n)∑∞
i=n π(i)

= 1 − λ1 > 0.

Now we are prepared to show that k2 > 0. For this reason, let us take A = Aε such that

k2(A)− k2 ≤ ε. (12)

Furthermore, a simple computation shows that

k(A) = k(Ac).

Hence, without loss of generality, we can assume that π(A) ≤ 1
2 (otherwise, do the same

analysis with Ac). Define

i0 = i0(ε) = min{i ∈ A : p2(i, Ac) > 0}
and

pmin := min{p(i, j) : p(i, j) �= 0, i, j ∈ N}.
In the following we will always suppress the ε in the notation Aε and iε to simplify the
presentation. For the Markov chain under consideration, we obviously have

pmin > 0,

which immediately implies that

k2(A) ≥ π(i0)

π(A)
p2(i0, A

c) ≥ min{π(i) : i ≤ i0}p2
min. (13)

We consider the following two cases.
Case 1: i0 < ñ > 2n1. In this case, for any ñ > 2n1 and ε ≤ 1

2 min{π(i) : i < 2ñ}p2
min

(which in particular is true for ε ≤ 1
2π(1)p

2
min), it follows from (12) and (13) that

k2 ≥ k2(A)− ε ≥ min{π(i) : i < 2ñ}p2
min − ε ≥ min{π(i) : i < 2ñ}p2

min

2
> 0, (14)

and, hence, we are done in this case.
Case 2: i0 ≥ ñ. First, assume that i0 − 1 ∈ A. For i0 − 1 ∈ A, we find, by the minimality

of i0 and
p2(i0 − 1, i0 − 1 ± 2k) > 0 for all k ∈ {1, 2, . . . , n0},

that
{i0 − 1 − 2n0, . . . , i0 + 2n0 − 1} ⊂ A, {i0 + 2n0} ⊂ Ac.

By the definition of n1 and again using the minimality of i0, we can conclude that

B := {n1 − n0, n1 − n0 + 1, . . . , i0 + 2n0 − 1} ⊂ A.

Next we want to show that {1, 2, . . . , i0 + 2n0 − 1} ⊂ A, which will be done by contradiction.
Since the transition probabilities p(i, j) have been left unspecified for small i, we have to make
use of the fact that the underlying Markov chain is irreducible.
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Let us assume that
Ac ∩ {1, 2, . . . , n1 − n0 − 1} �= ∅. (15)

Let j∗ ∈ Ac ∩ {1, 2, . . . , n1 − n0 − 1}. By weak reversibility and irreducibility, there exists a
finite path from j0 := n1 − n0 to j∗ that stays in {1, 2, . . . , n1}, i.e. there exist j1, j2, . . . , jk ∈
{1, 2, . . . , n1} such that

p(j0, j1)p(j1, j2) · · ·p(jk−1, jk)p(jk, j∗) > 0.

But this implies that i0 ≤ n1, which contradicts the assumption that i0 > 2n1, so (15) is wrong,
which means that

A ⊃ {1, 2, . . . , i0 + 2n0 − 1}.
Since 1

2 ≥ π(A) ≥ ∑i0+2n0−1
i=1 π(i), we have

i0 ≤ n2 := max

{
n ∈ N :

n∑
i=1

π(i) ≤ 1

2

}
.

From here we obtain

k2(A) ≥ π(i0)

π(A)
p2(i0, A

c)

≥ min{π(i) : i ≤ n2}(min{q1, . . . , qn0 , p1, . . . , pn0})2
≥ min{π(i) : i ≤ n2}p2

min.

Now, as above, choose ε small enough so that

k2 ≥ min{π(i) : i ≤ n2}p2
min

2
. (16)

Second, assume that i0 − 1 �∈ A. Using similar arguments as before, we deduce in this case
that Ac ⊃ {1, 2, . . . , i0 − 1} and, hence,

A ⊂ {i0, i0 + 1, i0 + 2, . . .}. (17)

By assumption, we have i0 ≥ ñ. Take ε̃ such that 0 < ε̃ < 1 − λ1, and choose ñ ≥ N = N(ε̃).
Then, (11), together with (17), yields

k2(A) ≥ π(i0)

π(A)
(min{q1, q2, . . . , qn0 , p1, . . . , pn0})2

≥ (1 − λ1 − ε̃)(min{q1, q2, . . . , qn0 , p1, . . . , pn0})2
≥ (1 − λ1 − ε̃)p2

min.

Once again we choose ε small enough so that

k2 ≥ (1 − λ1 − ε̃)p2
min

2
. (18)

Theorem 2 now follows from (14), (16), (18), and Theorem 1.
We now provide an example to show how the explicit bounds on k2 can be derived using our

approach.
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Figure 1: The 0s of (21).

Example. Consider the Markov chain ξ1, ξ2, . . . with state space N and transition matrix P
given by

P =

⎛
⎜⎜⎜⎜⎜⎝

2p q q 0 0 0 . . .

2p 0 q q 0 0 . . .

p p 0 q q 0 . . .

0 p p 0 q q . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where p ∈ ( 1
4 ,

1
2 ) and q = 1 − p. It can be easily established that this Markov chain is not

reversible, but weakly reversible of order 1. Moreover, it can be easily established that (7) is
satisfied with drift function V (i) := ri , C = {1}, and b = 3, and, hence, the Markov chain
is geometrically ergodic. Hence, there exists an invariant probability measure π such that
πP = π , which yields

(1 − 2p)π(1) = 2pπ(2)+ pπ(3), (19)

π(2) = qπ(1)+ p(π(3)+ π(4)), (20)

and
π(n) = q(π(n− 2)+ π(n− 1))+ p(π(n+ 1)+ π(n+ 2)), n ≥ 3.

The latter is a fourth-order difference equation, which can be solved using the ansatz function
f (i) = λi . This yields

λ4 + λ3 − 1

p
λ2 + q

p
λ+ q

p
= 0. (21)

The solution of (21) as a function of p is presented in Figure 1, where it can be seen that
all the 0s of (21) are pairwise unequal. Hence, it follows from the general theory of difference
equations (see, e.g. [9]) that

π(i) = π(p, i) = Aλi1 + Bλi2 + Cλi3 +Dλi4 (22)

for some A = A(p), B = B(p), C = C(p), and D = D(p) ∈ R, where the dependence on
p will be suppressed in the following. These quantities can be calculated from the boundary
conditions, which are given by (19), (20), and

∞∑
i=1

π(i) = 1. (23)
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Figure 2: Values of the coefficients B(p) and C(p).

Since |λ1| = 1 and |λ4| > 1 (see Figure 1), we conclude from (22) and (23) that

A = D = 0.

Inserting (22) (with A = D = 0) into (23) yields

1 = B

1 − λ2
+ C

1 − λ3
,

which, together with (22), can be used to derive the formulae for B and C. These quantities are
plotted in Figure 2. Note that B and C can be written down explicitly in terms of p, but these
expressions are lengthy and do not enlighten anything, so we abstain from a representation here
and only provide the numerical values.

Let us show that k2 > 0. Since k(A) = k(Ac), we can assume that π(A) ≤ 1
2 and again

define
i0 := min{i : i ∈ A}.

Let us distinguish the cases i0 = 1 and i0 �= 1. In the first case choose n0 ∈ N such that∑n0
i=1 π(i) >

1
2 and define i1 := min{i : i ∈ Ac}. From π(A) ≤ 1

2 we conclude that i1 ≤ n0,
which yields

k2(A) ≥ 1

π(A)π(Ac)
π(i1 − 1)2pq ≥ 8pqπ(i1 − 1) ≥ 8pq min{π(i) : i < n0} > 0.

For i0 �= 1, we have

k2(A) ≥ (p2 + 2pq)π(i0)

π(A)π(Ac)

≥ (p2 + 2pq)
Bλ

i0
2 + Cλ

i0
3

Bλ
i0
2 /(1 − λ2)+ Cλ

i0
3 /(1 − λ3)

≥ (p2 + 2pq)
B + C

B − C

> 0 for all p ∈ ( 1
4 ,

1
2

)
. (24)

For the last inequality, see Figure 2. We have just shown that

k2(A) ≥ min

{
8pq min{π(i) : i < n0}, (p2 + 2pq)

B + C

B − C

}
,
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and since this holds for all A ∈ F , we end up with

k2 ≥ min

{
8pq min{π(i) : i < n0}, (p2 + 2pq)

B + C

B − C

}
> 0.

The spectral gap property now follows from Theorem 1.

3. Proofs

We will first provide the proofs of the results needed for the proof of Theorem 1.
Let us start with the proof of Proposition 1. It turns out that this will be an easy consequence

of the isoperimetric inequality derived in [15].

3.1. Proof of Proposition 1

Since P ∗nP n is positive and self-adjoint, the proof of Theorem 2.1 of [15] (with P replaced
by P ∗nP n) yields, for all f ∈ L2

0,1(π),

κ

8
k2
P ∗nP n ≤ inf

f∈L2
0,1(π)

〈f, f − P ∗nP nf 〉2 ≤ kP ∗nP n .

This is equivalent to

√
1 − κ

8
k2
P ∗nP n ≥ ‖Pnf ‖2 ≥ √

1 − kP ∗nP n, (25)

It is not difficult to see that, for all n in N, we have 1 − kP ∗nP n ≥ 0, so the right-hand side of
(25) is well defined. The necessity of (ii) follows from this inequality.

On the other hand, if (ii) is fulfilled for some n0 ∈ N, we obtain, by using the left-hand side
of inequality (25),

‖Pn0n‖2 ≤ ‖Pn0‖n2 ≤
(√

1 − κ

8
k2
P ∗n0 Pn0

)n
.

Bearing in mind that ‖Pn‖2 is monotonic decreasing in n, the desired estimate follows upon
taking the n0nth root. This completes the proof of Proposition 1.

Let us turn to the most difficult part in the proof of Theorem 1, namely the proof of the
following result.

Lemma 1. Let ξ1, ξ2, . . . be a stationary and weakly reversible Markov chain of order n on
an arbitrary state space (�,F , π). Let CR be the reversibility constant associated with the
Markov chain. Then we obtain the following estimate for k2n:

k2n ≥ sup
δ,ε1,ε2,ε∈R+

min

[
k2
n

16
δ,
kn

4
(ε1ε2(1 − δ)− CRδ),

(
kn

(
(2 − ε)(1 − ε1)(1 − ε2)(1 − δ)

(1 − ε)Kn
− 1

1 − ε

)
− ε

1 − ε

)
ε

]
.

Lemma 1 is closely related to Lemma 6 of [24] in that the assumption of reversibility is
replaced by weak reversibility. Although the proof is very similar to that provided in [24], we
provide it here for the sake of completeness.
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Proof of Lemma 1. Without loss of generality, let us assume that n = 1 (otherwise, argue
with pn(·, ·) instead of p(·, ·)). For A ∈ F , we have

k2(A) = 1

π(A)π(Ac)

∫
A

π(dx)p2(x,Ac)

= 1

π(A)π(Ac)

(∫
A

π(dx)
∫
A

p(x, dy)p(y,Ac)+
∫
A

π(dx)
∫
Ac
p(x, dy)p(y,Ac)

)

= 1

π(A)π(Ac)

(∫
A

π(dx)
∫
A

p(x, dy)p(y,Ac)+
∫
Ac
π(dx)

∫
Ac
p(x, dy)p(y,A)

)

≥ inf{A∈F : π(A)≤1/2}
1

π(A)π(Ac)

∫
A

π(dx)
∫
A

p(x, dy)p(y,Ac),

and, therefore,

k2 ≥ inf{A∈F : π(A)≤1/2}
1

π(A)π(Ac)

∫
A

π(dx)
∫
A

p(x, dy)p(y,Ac). (26)

Hence, we can assume without loss of generality that π(A) ≤ 1
2 . Let us define

Ak/4 :=
{
y ∈ A : p(y,Ac) ≥ k

4

}
.

Then we obtain∫
A

π(dx)
∫
A

p(x, dy)p(y,Ac) ≥
∫
A

π(dx)
∫
Ak/4

p(x, dy)p(y,Ac)

≥ k

4

∫
A

π(dx)p(x,Ak/4). (27)

Let us continue by estimating
∫
A
π(dx)p(x,Ak/4). For this, define

C := Ac
k/4 ∩ A, Ãε := {x ∈ C : p(x,Ak/4) ≥ ε}.

We now consider the following two cases.
Case 1: assume that there exists δA > 0 such that π(C) ≥ δAπ(A). Then it follows that

k ≤ 1

π(C)π(Cc)

∫
C

p(x, Cc)π(dx)

= 1

π(C)π(Cc)

∫
C

p(x,Ak/4)π(dx)+
∫
C

p(x,Ac)π(dx)

≤ 1

π(C)π(Cc)

(∫
Ãε

p(x,Ak/4)π(dx)+ επ(C ∩ Ãc
ε)+ k

4
π(C)

)

≤ 1

π(C)π(Cc)

∫
Ãε

p(x,Ak/4)π(dx)+ 2ε + k

2
.

Choosing ε = k/8 we obtain

1

π(C)π(Cc)

∫
Ãk/8

p(x,Ak/4)π(dx) ≥ k

4
,
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and, therefore, ∫
Ãk/8

p(x,Ak/4)π(dx) ≥ k

4
π(C)π(Cc) ≥ k

4
δAπ(A)π(A

c).

Together with (27) and (26) this yields

k2(A) ≥ k2

16
δA.

Case 2: assume that π(C) ≤ δAπ(A). Let us define

Bε1 := {x ∈ Ak/4 : p(x,Ac) < 1 − ε1}
and split the second case into the following two cases.

Case 2(i): assume that there exists ε2 > 0 such that π(Bε1) ≥ ε2π(Ak/4). Then it follows
that

k2(A) = 1

π(A)π(Ac)

∫
A

π(dx)p2(x,Ac)

≥ 1

π(A)π(Ac)

∫
Bε1

π(dx)p2(x,Ac)

≥ 1

π(A)π(Ac)

∫
Bε1

π(dx)
∫
Ak/4

p(x, dy)p(y,Ac)

≥ k

4

1

π(A)π(Ac)

∫
Ak/4

π(dx)p(x, Bε1)

≥ k

4CR

1

π(A)π(Ac)

∫
ε1

π(dx)p(x, BAk/4). (28)

Moreover, we have∫
Bε1

π(dx)p(x, C) ≤ CR

∫
C

π(dx)p(x, Bε1) ≤ CRπ(C) ≤ CRδAπ(A)

and ∫
Bε1

π(dx)p(x,A) ≥ ε1π(Bε1) ≥ ε1ε2π(Ak/4) ≥ ε1ε2(1 − δA)π(A).

Subtracting the first inequality from the second, we obtain
∫
Bε1

π(dx)p(x,Ak/4) ≥ (ε2ε1(1 − δA)− CRδA)π(A).

Inserting this into (28) yields

k2(A) ≥ k

4CR
(ε2ε1(1 − δA)− CRδA).

Case 2(ii): assume that there exist δA, ε1, and ε2 (the same as before) such that π(C) ≤
δAπ(A) andπ(Bε1) ≤ ε2π(Ak/4). First, we observe that, for small ε1, ε2, and δA, the associated
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π(A) is bounded away from 1
2 . This can be established in the following way:

∫
A

π(dx)p(x,Ac) ≥
∫
Ak/4

π(dx)p(x,Ac)

≥
∫
Ak/4∩Bc

ε1

π(dx)p(x,Ac)

≥ (1 − ε1)π(Ak/4 ∩ Bc
ε1
)

≥ (1 − ε1)(1 − ε2)π(Ak/4)

≥ (1 − ε1)(1 − ε2)(1 − δA)π(A).

This yields

k(A) ≥ (1 − ε1)(1 − ε2)(1 − δA)

π(Ac)
.

Since k(A) ≤ K for all A ∈ F by the definition of K , we obtain

π(Ac) ≥ (1 − ε1)(1 − ε2)(1 − δA)

K
. (29)

This inequality will now be used in order to continue the estimation of k2(A). Define

Hε := {y ∈ Ac : p(y,Ac) ≥ ε}.
Then we have

k2(A) ≥ 1

π(A)π(Ac)

∫
A

π(dx)
∫
Ac
p(x, dy)p(y,Ac)

≥ 1

π(A)π(Ac)

∫
A

π(dx)
∫
Hε

p(x, dy)p(y,Ac)

≥ ε
1

π(A)π(Ac)

∫
A

π(dx)p(x,Hε)︸ ︷︷ ︸
L

. (30)

In order to obtain a suitable estimation of L, we consider the probability flow out of the set
A ∪H c

ε :

k ≤ 1

π(A ∪H c
ε )π(Hε)

∫
A∪H c

ε

π(dx)p(x,Hε)

= 1

π(A ∪H c
ε )π(Hε)

(∫
A

π(dx)p(x,Hε)+
∫
H c
ε∩Ac

π(dx)p(x,Hε)

)

≤ π(A)π(Ac)

π(A ∪H c
ε )π(Hε)

L+ π(H c
ε ∩ Ac)

π(A ∪H c
ε )π(Hε)

ε

≤ 1

π(Hε)

(
L+ π(H c

ε ∩ Ac)

π(A)
ε

)
.

From this we obtain

L ≥ π(Hε)k − π(H c
ε ∩ Ac)

π(A)
ε. (31)
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Now we continue to estimate π(Hε) and π(H c
ε ∩ Ac)/π(A). It holds that

π(A) ≥
∫
H c
ε∩Ac

π(dx)p(x,A) ≥ (1 − ε)π(H c
ε ∩ Ac).

It follows that
π(H c

ε ∩ Ac)

π(A)
≤ 1

1 − ε
. (32)

By adding π(Hε) to both sides of π(H c
ε ∩ Ac) ≤ π(A)/(1 − ε) we obtain

π(Ac) ≤ 1

1 − ε
π(A)+ π(Hε),

and, hence,

π(Hε) ≥ π(Ac)
2 − ε

1 − ε
− 1

1 − ε
.

Using (29) we obtain

π(Hε) ≥ (1 − ε1)(1 − ε2)(1 − δA)

K

2 − ε

1 − ε
− 1

1 − ε
.

This and (32) inserted into (31) yields

L ≥ k

(
(2 − ε)(1 − ε1)(1 − ε2)(1 − δA)

(1 − ε)K
− 1

1 − ε

)
− ε

1 − ε
.

Again, inserting this into (30), we obtain

k2(A) ≥ ε

(
k

(
(2 − ε)(1 − ε1)(1 − ε2)(1 − δA)

(1 − ε)K
− 1

1 − ε

)
− ε

1 − ε

)
.

Recall that we have just proved the following three different inequalities for k2(A):

k2(A) ≥ k2

16
δA

for π(C) ≥ δAπ(A),

k2(A) ≥ k

4CR
(ε2ε1(1 − δA)− CRδA)

for π(C) ≤ δAπ(A), π(Bε1) ≥ ε2π(Ak/4), and

k2(A) ≥ ε

(
k

(
(2 − ε)(1 − ε1)(1 − ε2)(1 − δA)

(1 − ε)K
− 1

1 − ε

)
− ε

1 − ε

)

for π(C) ≤ δAπ(A), π(Bε1) ≤ ε2π(Ak/4). As an immediate consequence, we obtain

k2 ≥ sup
δ,ε1,ε2,ε∈R+

min

[
k2

16
δ,
k

4
(ε1ε2(1 − δ)− CRδ)),

(
k

(
(2 − ε)(1 − ε1)(1 − ε2)(1 − δ)

(1 − ε)K
− 1

1 − ε

)
− ε

1 − ε

)
ε

]
, (33)

completing the proof of Lemma 1.
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Based on Lemma 1 we derive the following result.

Proposition 2. Let ξ1, ξ2, . . . be a weakly reversible Markov chain of order n such that

0 < kn = inf
A∈F

kn(A) ≤ sup
A∈F

kn(A) = Kn < 2.

Then it follows that
k2n > 0.

Proof. Once again, without loss of generality, we may assume that n = 1. Choose ε1 and
ε2 in a way such that ε1ε2(1 − δ) = 2CRδ (e.g. ε1 = ε2 = √

2CRδ/(1 − δ)), where CR is as
in (33). Now choose ε and δ sufficiently small such that the third term in the min expression of
(33) is larger than 0. But then (33) is also bounded away from 0 and, hence, the result follows.

We will also need the following result.

Lemma 2. Consider the Markov chain ξ1, ξ2, . . .. The following inequalities hold:

k
P ∗n0 Pn0 ≤ 21/pesssupy∈�

∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
Lp(p(y,·))

k
1/q
2n0
,

k2n0 ≤ 21/pesssupy∈�
∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
Lp(p(y,·))

k
1/q

P n0P ∗n0 .

Proof. Without loss of generality, we can assume that π(Ac) ≥ 1
2 . The first inequality can

be seen as follows:

π(A)π(Ac)kP ∗P (A) =
∫
A

P ∗P 1Ac(x)π(dx)

=
∫
�

p(x,A)p(x,Ac)π(dx)

= π(A)

∫
�

∫
A

dQ

dQ̃
(x, y)p(x,Ac)

π(dy)

π(A)
p(y, dx)

≤ π(A)

(∫
�

∫
A

dQ

dQ̃
(x, y)p

π(dy)

π(A)
p(y, dx)

)1/p

×
(∫

�

∫
A

p(x,Ac)q
π(dy)

π(A)
p(y, dx)

)1/q

≤ π(A)

(∫
A

∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
p

Lp(p(y,·))
π(dy)

π(A)

)1/p

(π(Ac)k2(A))
1/q

≤ π(A)π(Ac)21/pesssupy∈�
∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
Lp(p(y,·))

k2(A)
1/q .

Turning to the second inequality:

π(A)π(Ac)k2(A) = π(A)π(Ac)k2(A
c)

=
∫
�

P ∗ 1Ac(x)P 1A(x)π(dx)

= π(A)

∫
�

∫
A

P ∗ 1Ac(x)p(x, dy)
π(dx)

π(A)
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≤ π(A)esssupy∈�
∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
Lp(p(y,·))

×
(∫

A

∫
�

P ∗ 1Ac(x)qp(y, dx)
π(dy)

π(A)

)1/q

≤ π(A)π(Ac)21/pesssupy∈�
∥∥∥∥dQ

dQ̃
(·, y)

∥∥∥∥
Lp(p(y,·))

kPP ∗(A)1/q .

Let us generalize the definition of weakly reversible in the following way.

Definition 2. We say that the Markov chain ξ1, ξ2, . . . is metareversible of order n ∈ N if there
exists q ∈ (1,∞] such that

essupy∈�
∥∥∥∥dQ(n)

d ˜Q(n)
(·, y)

∥∥∥∥
Lq(p(y,·))

< ∞ π -a.s.

From the definition, it is immediately clear that weakly reversible Markov chains are meta-
reversible, but in general the converse is not true.

The following proposition implies the first equivalence in Theorem 1.

Proposition 3. Let us assume that ξ1, ξ2, . . . is metareversible of order n. Then the following
two conditions are equivalent.

(i) P has an L2(π)-spectral gap.

(ii) k2n > 0.

Proof. That the existence of an n0 with k2n0 > 0 is necessary was shown in [24]. Assume
now that there exists n0 such that k2n0 > 0. Then we have, by Lemma 2 and weak reversibility,
k
Pn0P ∗n0 > 0. From Proposition 1, P ∗ has a spectral gap. But it is well known that σ(P ) =
σ(P ∗). So this implies that P has an L2(π)-spectral gap.

With these preparations, the proof of Theorem 1 becomes rather short.

3.2. Proof of Theorem 1

By assumption we have 0 < kn ≤ Kn and, hence, Proposition 2 yields k2n > 0. Since weakly
reversible Markov chains are metareversible, the result immediately follows from Proposition 3.

The following corollary is an easy consequence of Proposition 3.

Corollary 4. Assume that ξ1, ξ2, . . . is a weakly reversible Markov chain of order n0 with
reversibility constant C. Then we obtain the following estimates:

k
P ∗n0Pn0 ≤ Ck2n0 , k2n0 ≤ Ck

Pn0P ∗n0 .

Proof. Use Lemma 2, and choose p = ∞ and q = 1.

For the proof of Corollary 2, we need the following result.

Lemma 3. Let K := supA∈F k(A) = 2. Then, for any sequence of sets An ∈ F with the
property that k(An) → 2, we have π(An) → 1

2 .

Proof. First let us show that, for all A ∈ F , we have

0 ≤ k(A) ≤ 2.
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The first inequality is trivial. In order to show the second inequality, let us consider K :=
supA∈F k(A). Then, for every ε > 0, there exists A ∈ F such that k(A) > K − ε. For such a
set A, it follows that ∫

A

p(x,Ac)π(dx) > (K − ε)π(A)π(Ac). (34)

Since p(x,Ac) only takes values between 0 and 1, an α with 0 ≤ α ≤ 1 exists such that∫
A

p(x,Ac)π(dx) = απ(A). (35)

This together with (34) yields
α > (K − ε)π(Ac). (36)

Since k(A) = k(Ac), we obtain
∫
Ac p(x,A)π(dx) > (K − ε)π(A)π(Ac). So there exists β ∈

[0, 1] such that ∫
Ac
p(x,A)π(dx) = βπ(Ac). (37)

As above, this yields
β > (K − ε)π(A). (38)

Adding (36) and (38) we obtain

2 ≥ α + β > (K − ε)π(A)+ (K − ε)π(Ac) = K − ε. (39)

Since this is true for all ε > 0, we have K ≤ 2. According to (35) and (37), we associate with
An and Ac

n the constants αn and βn. From k(An) ≥ 2 − εn, 0 < εn → 0, and (39) withK = 2,
α = αn, β = βn, and ε = εn, it follows that αn → 1 and βn → 1. Using (36) and (38) with
K = 2 and keeping in mind the first inequality in (39), we can conclude that π(An) → 1

2 .

3.3. Proof of Corollary 2

Lemma 3 and condition (2) imply that K < 2. Hence, the result follows from Theorem 1.

3.4. Proof of Corollary 3

We have to show that (3) implies K < 2. So let us assume that K = 2 and An ∈ F is a
sequence such that

k(An) → 2.

By Lemma 3 we know that π(An) → 1
2 . We have

2 = lim
n→∞

1

π(An)π(Ac
n)

∫
An

p(x,Ac
n)π(dx)

= 2

(
lim
n→∞

∫
An∩C

p(x,Ac
n)π(dx)+

∫
Ac
n∩C

p(x,An)π(dx)

+
∫
An∩Cc

p(x,Ac
n)π(dx)+

∫
Ac
n∩Cc

p(x,An)π(dx)

)

≤ 2((1 − ε)π(C)+ π(Cc))

= 2 − 2επ(C)

< 2,

since π(C) > 0 by assumption. This contradicts the assumption that K = 2 and, hence, the
result follows.
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