ON CERTAIN SEQUENCE SPACES

BY
H. KIZMAZ*

Abstract

In this paper define the spaces $l_{\infty}(\Delta), c(\Delta)$, and $c_{0}(\Delta)$, where for instance $l_{\infty}(\Delta)=\left\{x=\left(x_{k}\right): \sup _{k}\left|x_{k}-x_{k+1}\right|<\infty\right\}$, and compute their duals (continuous dual, α-dual, β-dual and γ-dual). We also determine necessary and sufficient conditions for a matrix A to map $l_{\infty}(\Delta)$ or $c(\Delta)$ into l_{∞} or c, and investigate related questions.

1. Introduction

Let l_{∞}, c and c_{0} be the linear spaces of complex bounded, convergent and null sequences $x=\left(x_{k}\right)$, respectively, normed by

$$
\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|
$$

where $k \in \mathbb{N}=\{1,2, \ldots\}$, the positive integers. If $\Delta x=\left(x_{k}-x_{k+1}\right)$, we define
(i) $l_{\infty}(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in l_{\infty}\right\}$;
(ii) $c(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in c\right\}$;
(iii) $c_{0}(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in c_{0}\right\}$.

These spaces are Banach with norm $\|x\|_{\Delta}=\left|x_{1}\right|+\|\Delta x\|_{\infty}$. Here we prove that $\left(l_{\infty}(\Delta),\|\cdot\|_{\Delta}\right)$ is a Banach space.

Let $\left(x^{n}\right)$ be a Cauchy sequence in $l_{\infty}(\Delta)$, where $x^{n}=\left(x_{i}^{n}\right)=\left(x_{1}^{n}, x_{2}^{n}, \ldots\right) \in l_{\infty}(\Delta)$, for each $n \in \mathbb{N}$. Then

$$
\left\|x^{n}-x^{m}\right\|_{\Delta}=\left|x_{1}^{n}-x_{1}^{m}\right|+\left\|\Delta x^{n}-\Delta x^{m}\right\|_{\infty} \rightarrow 0 \quad(n, m \rightarrow \infty) .
$$

Therefore we obtain $\left|x_{k}^{n}-x_{k}^{m}\right| \rightarrow 0$, for $n, m \rightarrow \infty$ and each $k \in \mathbb{N}$.
Hence $\left(x_{k}^{n}\right)=\left(x_{k}^{1}, x_{k}^{2}, \ldots\right)$ is a Cauchy sequence in \mathbb{C} (complex numbers) whence by the completeness of \mathbb{C}, it converges to x_{k} say, i.e., there exists

$$
\lim _{n} x_{k}^{n}=x_{k}, \text { for each } k \in \mathbb{N} .
$$

Further, for each $\varepsilon>0$, there exists $N=N(\varepsilon)$, such that for all $n, m \geq N$ and, for all $k \in \mathbb{N}$,

$$
\left|x_{1}^{n}-x_{1}^{m}\right|<\varepsilon, \quad\left|x_{k+1}^{n}-x_{k+1}^{m}-\left(x_{k}^{n}-x_{k}^{m}\right)\right|<\varepsilon
$$

[^0]and
\[

$$
\begin{gathered}
\lim _{m}\left|x_{1}^{n}-x_{1}^{m}\right|=\left|x_{1}^{n}-x_{1}\right| \leq \varepsilon, \\
\lim _{m}\left|x_{k+1}^{n}-x_{k+1}^{m}-\left(x_{k}^{n}-x_{k}^{m}\right)\right|=\left|x_{k+1}^{n}-x_{k+1}-\left(x_{k}^{n}-x_{k}\right)\right| \leq \varepsilon,
\end{gathered}
$$
\]

for all $n \geq N$. Since ε is not dependent on k,

$$
\sup _{k}\left|x_{k+1}^{n}-x_{k+1}-\left(x_{k}^{n}-x_{k}\right)\right| \leq \varepsilon .
$$

Consequently we have $\left\|x^{n}-x\right\|_{\Delta} \leq 2 \varepsilon$, for $n \geq N$. Hence we obtain $x^{n} \rightarrow x$ $(n \rightarrow \infty)$ in $l_{\infty}(\Delta)$, where $x=\left(x_{k}\right)$.

Now we must show that $x \in l_{\infty}(\Delta)$. We have

$$
\left|x_{k}-x_{k+1}\right|=\left|x_{k}-x_{k}^{N}+x_{k}^{N}-x_{k+1}^{N}+x_{k+1}^{N}-x_{k+1}\right| \leq\left|x_{k}^{N}-x_{k+1}^{N}\right|+\left\|x^{N}-x\right\|_{\Delta}=O(1) .
$$

This implies $x=\left(x_{k}\right) \in l_{\infty}(\Delta)$.
Furthermore, since $l_{\infty}(\Delta)$ is a Banach space with continuous coordinates (that is, $\left\|x^{n}-x\right\|_{\Delta} \rightarrow 0$ implies $\left|x_{k}^{n}-x_{k}\right| \rightarrow 0$, for each $k \in \mathbb{N}$, as $n \rightarrow \infty$), it is a BK-space.

Now we define $s: l_{\infty}(\Delta) \rightarrow l_{\infty}(\Delta), x \rightarrow s x=y=\left(0, x_{2}, x_{3}, \ldots\right)$. It is clear that s is a bounded linear operator on $l_{\infty}(\Delta)$ and $\|s\|=1$. Also

$$
s\left[l_{\infty}(\Delta)\right]=s l_{\infty}(\Delta)=\left\{x=\left(x_{k}\right): x \in l_{\infty}(\Delta), x_{1}=0\right\} \subset l_{\infty}(\Delta)
$$

is a subspace of $l_{\infty}(\Delta)$ and

$$
\|x\|_{\Delta}=\|\Delta x\|_{\infty} \text { in } s l_{\infty}(\Delta) .
$$

On the other hand we can show that

$$
\begin{gather*}
\Delta: s l_{\infty}(\Delta) \rightarrow l_{\infty}, \\
x=\left(x_{k}\right) \rightarrow y=\left(y_{k}\right)=\left(x_{k}-x_{k+1}\right) \tag{1.1}
\end{gather*}
$$

is a linear homeomorphism. So $s l_{\infty}(\Delta)$ and l_{∞} are equivalent as topoiogical spaces [1]. Δ and Δ^{-1} are norm preserving and $\|\Delta\|=\left\|\Delta^{-1}\right\|=1$.

Let l_{∞}^{*} and $\left[s l_{\infty}(\Delta)\right]^{*}$ denote the continuous duals of l_{∞} and $s l_{\infty}(\Delta)$, respectively. We can prove that

$$
\begin{aligned}
& T:\left[s l_{\infty}(\Delta)\right]^{*} \rightarrow l_{\infty}^{*} \\
& f_{\Delta} \rightarrow f=f_{\Delta} \Delta^{-1}
\end{aligned}
$$

is a linear isometry. Thus $\left[s l_{\infty}(\Delta)\right]^{*}$ is equivalent [1] to l_{∞}^{*}. In the same way, we can show that $s c(\Delta)$ and $c, s c_{o}(\Delta)$ and c_{0} are equivalent as topological spaces and $[\operatorname{sc}(\Delta)]^{*} \cong\left[s c_{o}(\Delta)\right]^{*} \simeq l_{1}\left(l_{1}\right.$ absolutely convergent series).

2. Dual spaces

In this section we determine the $\alpha-, \beta$-, and γ-duais of $s l_{\infty}(\Delta)$, and obtain some results useful in the characterization of certain matrix maps.

Lemma 1. $\sup _{K}\left|X_{K}-X_{K+1}\right|<\infty$ if and only if

$$
\text { (i) } \sup _{k} k^{-1}\left|x_{k}\right|<\infty \quad \text { and } \text { (ii) } \sup _{k}\left|x_{k}-k(k+1)^{-1} x_{k+1}\right|<\infty \text {. }
$$

Proof. Let $\sup _{k}\left|x_{k}-x_{k+1}\right|<\infty$. Then

$$
\left|x_{1}-x_{k+1}\right|=\left|\sum_{\nu=1}^{k}\left(x_{\nu}-x_{\nu+1}\right)\right| \leq \sum_{\nu=1}^{k}\left|x_{\nu}-x_{\nu+1}\right|=O(k) .
$$

This implies $\sup _{k} k^{-1}\left|x_{k}\right|<\infty$,

$$
\left|x_{k}-k(k+1)^{-1} x_{k+1}\right|=\left|k(k+1)^{-1}\left(x_{k}-x_{k+1}\right)+(k+1)^{-1} x_{k}\right|=O(1) .
$$

Now suppose (i) and (ii) hold. Then

$$
\left|x_{k}-k(k+1)^{-1} x_{k+1}\right| \geq k(k+1)^{-1}\left|x_{k}-x_{k+1}\right|-(k+1)^{-1}\left|x_{k}\right| .
$$

This implies $\sup _{k}\left|x_{k}-x_{k+1}\right|<\infty$.
Now let $\left(P_{n}\right)$ be a sequence of positive numbers increasing monotonically to infinity.

Lemma 2. If

$$
\sup _{n}\left|\sum_{\nu=1}^{n} c_{\nu}\right|<\infty, \quad \text { then } \sup _{n}\left(p_{n}\left|\sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}\right|\right)<\infty \text {. }
$$

Proof. Using Abel's partial summation, we get

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}=\sum_{k=1}^{\infty}\left(\sum_{\nu=1}^{k} c_{n+\nu-1}\right)\left(\frac{1}{P_{n+k}}-\frac{1}{P_{n+k+1}}\right) \tag{2.1}
\end{equation*}
$$

and

$$
P_{n}\left|\sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}\right|=O(1)
$$

Lemma 3. If the series $\sum_{k=1}^{\infty} c_{k}$ is convergent, then

$$
\lim _{n}\left(P_{n} \sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}\right)=0
$$

Proof. Since $\left|\sum_{\nu=1}^{k} c_{n+\nu-1}\right|=\left|\sum_{\nu=n}^{n+k-1} c_{\nu}\right|=o(1)$, for every $k \in \mathbb{N}$. Using (2.1) we get

$$
P_{n}\left|\sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}\right|=o(1) .
$$

Corollaries. Let $\left(P_{n}\right)$ be as above
(1) If $\sup _{n}\left|\sum_{\nu=1}^{n} P_{\nu} a_{\nu}\right|<\infty$, then $\sup _{n}\left|P_{n} \sum_{k=n+1}^{\infty} a_{k}\right|<\infty$.

Proof. We put $P_{k+1} a_{k+1}$ instead of c_{k} in Lemma 2. We get

$$
P_{n} \sum_{k=1}^{\infty} \frac{c_{n+k-1}}{P_{n+k}}=P_{n} \sum_{k=n+1}^{\infty} a_{k}=O(1) .
$$

(2) If $\sum_{k=1}^{\infty} P_{k} a_{k}$ is convergent, then $\lim _{n} P_{n} \sum_{k=n+1}^{\infty} a_{k}=0$.

Proof. We put $P_{k+1} a_{k+1}$ instead of c_{k} in Lemma 3.
(3) $\sum_{k=1}^{\infty} k a_{k}$ is convergent if and only if $\sum_{k=1}^{\infty} R_{k}$ is convergent with $n R_{n}=$ $o(1)$, where $R_{n}=\sum_{k=n+1}^{\infty} a_{k}$.

Proof. Use Abel's summation formula and put $P_{n}=n$ in Corollary (2), we get

$$
\sum_{k=1}^{n} k a_{k+1}=\sum_{k=1}^{n} R_{k}-n R_{n+1} .
$$

Definition 2.1. If X is a sequence space we define [2]:
(i) $X^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty\right.$, for each $\left.x \in X\right\}$;
(ii) $X^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} a_{k} x_{k}\right.$ is convergent, for each $\left.x \in X\right\}$;
(iii) $X^{\gamma}=\left\{a=\left(a_{k}\right): \sup _{n}\left|\sum_{k=1}^{n} a_{k} x_{k}\right|<\infty\right.$, for each $\left.x \in X\right\}$.
X^{α}, X^{β}, and X^{γ} are called the α - (or Köthe-Toeplitz), β - (or generalized Köthe-Toeplitz), and γ-dual spaces of X, respectively. We can show that $X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$. If $X \subset Y$ then $Y^{\dagger} \subset X^{\dagger}$, for $\psi=\alpha, \beta$, or γ.

Theorem 2.1.
(1) $\left(S L_{\infty}(\Delta)\right)^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty\right\}=D_{1}$,
(2) $\left(s l_{\infty}(\Delta)\right)^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k=1}^{\infty} k a_{k}\right.$ is convergent, $\left.\sum_{k=1}^{\infty}\left|R_{k}\right|<\infty\right\}=D_{2}$,
(3) $\left(s l_{\infty}(\Delta)\right)^{\gamma}=\left\{a=\left(a_{k}\right): \sup _{n}\left|\sum_{k=1}^{n} k a_{k}\right|<\infty, \sum_{k=1}^{\infty}\left|R_{k}\right|<\infty\right\}=D_{3}$,
where

$$
R_{k}=\sum_{\nu=k+1}^{\infty} a_{\nu}
$$

Proof. (1) If $a \in D_{1}$ then $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{\infty} k\left|a_{k}\right|\left(\left|x_{k}\right| / k\right)<\infty$ (Lemma 1) for each $x \in s l_{\infty}(\Delta)$. This implies $a \in\left(s l_{\infty}(\Delta)\right)^{\alpha}$. If $a \in\left(s l_{\infty}(\Delta)\right)^{\alpha}$, then $\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|<\infty$, for each $x \in s l_{\infty}(\Delta)$. So we take

$$
x_{k}= \begin{cases}0, & k=1 \\ k, & k \geq 2\end{cases}
$$

then

$$
\left|a_{1}\right|+\sum_{k=1}^{\infty}\left|a_{k} x_{k}\right|=\sum_{k=1}^{\infty} k\left|a_{k}\right|<\infty .
$$

(2) Suppose that $a \in D_{2}$. If $x \in s l_{\infty}(\Delta)$, then there exists one and only one $y=\left(y_{k}\right) \in l_{\infty}$, such that ((1.1))

$$
x_{k}=-\sum_{\nu=1}^{k} y_{\nu-1}, \quad y_{0}=0 .
$$

Then

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} x_{k}=-\sum_{k=1}^{n} a_{k}\left(\sum_{\nu=1}^{k} y_{\nu-1}\right)=-\sum_{k=1}^{n-1} R_{k} y_{k}+R_{n} \sum_{k=1}^{n-1} y_{k} . \tag{2.2}
\end{equation*}
$$

Since $\sum_{k=1}^{\infty} R_{k} y_{k}$ is absolutely convergent and $R_{n} \sum_{k=1}^{n-1} y_{k} \rightarrow 0 \quad(n \rightarrow \infty)$ (Corollary (3)) the series $\sum_{k=1}^{\infty} a_{k} x_{k}$ is convergent for each $x \in s l_{\infty}(\Delta)$; this yields $a \in\left(s l_{\infty}(\Delta)\right)^{\beta}$.

If $a \in\left(s l_{\infty}(\Delta)\right)^{\beta}$, then $\sum_{k=1}^{\infty} a_{k} x_{k}$ is convergent, for each $x \in s l_{\infty}(\Delta)$. We take

$$
x_{k}= \begin{cases}0, & k=1 \\ k, & k>1\end{cases}
$$

thus $\sum_{k=1}^{\infty} k a_{k}$ is convergent. This implies $n R_{n}=o(1)$ (Corollary (3)). If we use (2.2) we get

$$
\sum_{k=1}^{\infty} a_{k} x_{k}=-\sum_{k=1}^{\infty} R_{k} y_{k}
$$

convergent, for all $y \in l_{\infty}$. So we have $\sum_{k=1}^{\infty}\left|R_{k}\right|<\infty$ and $a \in D_{2}$.
(3) The proof of (3) is the same as above.

It is easy to check that $\left(s l_{\infty}(\Delta)\right)^{+}=(\operatorname{sc}(\Delta))^{\dagger}$, for $\ddagger=\alpha, \beta$, or γ.
Now let E be one of the sequence spaces $l_{\alpha}(\Delta), c(\Delta)$ or $c_{0}(\Delta)$. We can show that

$$
(S E)^{+}=E^{\dagger}, \quad \text { for } \quad t=\alpha, \beta, \text { or } \gamma
$$

3. Matrix maps.

Let each of E and F denote one of the sequence spaces l_{∞} and c, and let E^{\prime} and F^{\prime} denote one of the sequence spaces $l_{\infty}(\Delta)$ and $c(\Delta)$. Let (X, Y) denote the set of all infinite matrices A which map X into Y.

Theorem 3.1. $A \in\left(E^{\prime}, F\right)$ if and only if
(i) $\left(\alpha_{n l}\right) \in F$, and $\left(A_{n}(k)\right) \in F$,
(ii) $R \in(E, F)$,
where

$$
A_{n}(k)=\sum_{k=1}^{\infty} k a_{n k} \quad \text { and } \quad R=\left(r_{n k}\right)=\left(\sum_{\nu=k+1}^{\infty} a_{n \nu}\right)
$$

Proof. If $A \in\left(E^{\prime}, F\right)$ then the series $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$ are convergent and $\left(A_{n}(x)\right) \in F$, for each $n \in \mathbb{N}$ and all $x \in E^{\prime}$. The necessity of (i) is trivial. We just put $x=(1,0,0, \ldots)$ and $x=(k)$. Furthermore we have $\sum_{k=1}^{\infty}\left|r_{n k}\right|<\infty$ for each $n \in \mathbb{N}$ (Theorem 2.1). Now let $x \in s E^{\prime} \subset E^{\prime}$.

$$
\begin{equation*}
A_{n}(m, x)=\sum_{k=1}^{m} a_{n k} x_{k}=-\sum_{k=1}^{m-1} r_{n k} y_{k}+r_{n m} \sum_{k=1}^{m-1} y_{k} \tag{3.1}
\end{equation*}
$$

where $y \in E, y_{0}=0$ such that

$$
x_{k}=-\sum_{r=1}^{k} y_{r-1} .
$$

Hence

$$
\lim _{m} A_{n}(m, x)=A_{n}(x)=-\sum_{k=1}^{\infty} r_{n k} y_{k},
$$

for each $n \in \mathbb{N}$ (Corollary 3). Thus, we get $\left(R_{n}(y)\right)=\left(\sum_{k=1}^{\infty} r_{n k} y_{k}\right) \in F$, for each $y \in E$. This yields $R \in(E, F)$.

Now suppose (i) and (ii) hold.
If $x \in E^{\prime}$,

$$
x_{k}=\left\{\begin{array}{ll}
x_{1}, & k=1 \\
x_{k}^{\prime}, & k>1
\end{array}, \quad \text { where } x^{\prime}=\left(x_{k}^{\prime}\right) \in s E^{\prime} .\right.
$$

We write again (3.1) and get

$$
A_{n}(x)=a_{n 1} x_{1}-\sum_{k=1}^{\infty} r_{n k} y_{k} .
$$

This implies the $A_{n}(x)$ exist for each $x \in E^{\prime}$ and $A \in\left(E^{\prime}, F\right)$.
Theorem 3.2. $A \in\left(E, F^{\prime}\right)$ if and only if
(i) $\sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, for each $n \in \mathbb{N}$,
(ii) $B \in(E, F)$,
where

$$
B=\left(b_{n k}\right)=\left(a_{n k}-a_{n+1, k}\right) .
$$

The proof is trivial.
Theorem 3.3. (1) $l_{\infty} \cap c(\Delta)=l_{\infty} \cap c_{0}(\Delta)=M_{0}$

$$
=\left\{x=\left(x_{k}\right): x \in l_{\infty}, \lim _{k}\left(x_{k}-x_{k+1}\right)=0\right\},
$$

(2) $\left(M_{0}, l_{\infty}\right)=\left(l_{\infty}, l_{\infty}\right)$,
(3) $A \in\left(l_{\infty}, M_{0}\right)$ if and only if
(i) $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$,
(ii) $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n+1, k}\right|=0$.

Proof. (1) If $x \in l_{\infty} \cap c(\Delta), x \in l_{\infty}$ and $x_{k}-x_{k+1} \rightarrow l(k \rightarrow \infty), x_{k}-x_{k+1}=l+\varepsilon_{k}$ $\left(\varepsilon_{k} \rightarrow 0, k \rightarrow \infty\right)$. This implies

$$
x_{n+1}=x_{1}-n l-\sum_{k=1}^{n} \varepsilon_{k} \quad \text { and } \quad l=\frac{x_{1}}{n}-\frac{x_{n+1}}{n}-\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} .
$$

This yields $l=0$ and $x \in l_{\infty} \cap c_{0}(\Delta)$.
(2) The proof is trivial.
(3) The necessity of (i) follows follows from the fact that it is necessary for $A \in\left(l_{\infty}, l_{\infty}\right)$. Other parts are trivial

If we write

$$
m_{0}=\left\{x=\left(x_{k}\right): x \in M_{0} \text { and } x_{k} \in \mathbb{R}\right\} \quad(\mathbb{R} \text { real numbers })
$$

we have that [3], [4], for any positive integer p and integer $0 \leq n_{1}<n_{2}<\cdots<$ n_{p},

$$
\inf _{n_{1}, n_{2}, \ldots, n_{p}} \sup _{k} \frac{1}{p} \sum_{i=1}^{p} x_{k+n_{i}}=\lim \sup _{k} x_{k} \text { on } m_{0} .
$$

Theorem 3.4. If $A \in(c, c)$ and $\sup _{n} \sum_{k=1}^{\infty}\left|r_{n k}\right|<\infty$, then $A \in\left(M_{0}, c\right)$, where $r_{n k}=\sum_{\nu=k+1}^{\infty} a_{n \nu}$.

Proof.

$$
\begin{gathered}
\sum_{k=1}^{m} a_{n k} x_{k}=x_{1} \sum_{k=1}^{m} a_{n k}-\sum_{k=1}^{m-1} r_{n k}\left(x_{k}-x_{k+1}\right)+\left(x_{1}-x_{m}\right) r_{n m}, \\
\lim _{m} \sum_{k=1}^{m} a_{n k} x_{k}=A_{n}(x)=x_{1} \sum_{k=1}^{\infty} a_{n k}-\sum_{k=1}^{\infty} r_{n k}\left(x_{k}-x_{k+1}\right), \text { for each } x \in M_{0} .
\end{gathered}
$$

Since $\sup _{n} \sum_{k=1}^{\infty}\left|r_{n k}\right|<\infty$ and $\lim _{n} r_{n k}$ exists, these imply $R=\left(r_{n k}\right) \in\left(c_{0}, c\right)$ and $\lim _{n} \sum_{k=1}^{\infty} r_{n k}\left(x_{k}-x_{k+1}\right)$ exists. Thus we get $A \in\left(M_{0}, c\right)$.

Now let E and F be sequence spaces. We define

$$
E(F)=\left\{x: x_{k}=y_{k} z_{k}, y \in E, z \in F\right\}
$$

by pointwise multiplication. Let M_{s} denote the space of all x for which $\sup _{n}\left|\sum_{k=1}^{n} x_{k}\right|<\infty$. It is easy to check that $M_{s}=\left\{y: y_{k}=x_{k}-x_{k-1}, x \in l_{\infty}, x_{0}=0\right\}$.

A matrix is called strongly regular if it is regular and

$$
\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n k+1}\right|=0 .
$$

It is known [3] that, if A is regular, then for all $x \in l_{\infty}$,

$$
\lim _{n} A_{n}(y)=\lim _{n} \sum_{k=1}^{\infty} a_{n k} y_{k}=0
$$

if and only if A is strongly regular, where $y_{k}=x_{k}-x_{k+1}$.
Now we consider the set $M_{s}\left(M_{0}\right)$. It is clear that $M_{s} \subset M_{s}\left(M_{0}\right)$ and this inclusion is strict.

Theorem 3.5. Let A be a regular matrix. $\lim _{n} A_{n}(y)=0$ for all $y \in M_{s}\left(M_{0}\right)$ if and only if A is strongly regular.

Proof. If $\lim _{n} A_{n}(y)=0$ for all $y \in M_{s}\left(M_{0}\right)$ then $A \in\left(M_{s}\left(M_{0}\right), c_{0}\right)$, this implies $A \in\left(M_{s}, c_{0}\right)$. Hence we get $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k+1}\right|=0$ [5].

Now let A be strongly regular. If $y \in M_{s}\left(M_{0}\right)$, then $y_{k}=\alpha_{k} x_{k}, \alpha \in M_{s}$ and $x \in M_{0}$.

$$
\sum_{k=1}^{m} a_{n k} y_{k}=\sum_{k=1}^{m} a_{n k}\left(x_{k}-x_{k+1}\right) \gamma_{k}+\sum_{k=1}^{m}\left(a_{n k}-a_{n, k+1}\right) \gamma_{k} x_{k+1}+a_{n, m+1} \gamma_{m} x_{m+1}
$$

where

$$
\gamma_{n}=\sum_{k=1}^{n} \alpha_{k} .
$$

Hence

$$
\lim _{m} \sum_{k=1}^{m} a_{n k} y_{k}=A_{n}(y)=\sum_{k=1}^{\infty} a_{n k}\left(x_{k}-x_{k+1}\right) \gamma_{k}+\sum_{k=1}^{\infty}\left(a_{n k}-a_{n, k+1}\right) \gamma_{k} x_{k+1},
$$

for each $n \in \mathbb{N}$. Thus we get $\lim _{n} A_{n}(y)=0$.
Theorem 3.6. $A \in\left(M_{s}\left(M_{0}\right), c\right)$ if and only if
(i) $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$,
(ii) $\lim _{n} a_{n k}$ exists, for each $k \in \mathbb{N}$,
(iii) $\sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k+1}\right|$ converges uniformly in n.

The proof is easy.
Ackncwledgement. The author would like to thank Professor D. Borwein for his kind assistance and encouragement in the Summability Seminar at The University of Western Ontario. The author also thanks Professor Borwein and The University of Western Ontario for the hospitality extended to him.

References

1. I. J. Maddox, Elements of Functional Analysis, Cambridge, 1970.
2. D. J. H. Garling, The β - and γ-duality of sequence spaces, Proc. Camb. Phil. Soc. 63 (1967), 963.
3. G. Das, Banach and other limits, J. London Math. Soc. (2) 7 (1973), 501-507.
4. S. L. Devi, Banach limits and infinite matrices, J. London Math. Soc. (2) 12 (1976), 397-401.
5. M. Stieglitz and H. Tietz, Matrixtransformationen von Folgenräumen eine Ergebnisübersicht, Math. Z. 154 (1977), 1-16.
K.T.U.

Matematik Bölümü
Trabzon, Turkey

[^0]: * This research was supported in part by a scholarship from the Karadeniz Teknik Universitesi, Trabzon, Turkey, and by Grant A-2983 of the Natural Sciences and Engineering Research Council Canada.

 Received by the editors March 20, 1979 and, in revised form, July 9, 1979

