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ON CERTAIN SEQUENCE SPACES 

BY 

H. K I Z M A Z * 

ABSTRACT. In this paper define the spaces lœ(A), c(A), and c0(A), 
where for instance /^(A)^!* = (xk):supk \xk ~xk + l\<^}, and com
pute their duals (continuous dual, a-dual, j8-dual and y-dual). We 
also determine necessary and sufficient conditions for a matrix A to 
map /oo(A) or c(A) into lœ or c, and investigate related questions. 

1. Introduction 
Let /«,, c and c0 be the linear spaces of complex bounded, convergent and 

null sequences x = (xk), respectively, normed by 

Hxlloo^suptal 
fc 

where k eN = {1, 2 , . . . } , the positive integers. If AJC = (xk - x k + 1 ) , we define 

(i) UA) = {x = ( x k ) : A x e U ; 
(ii) c(A) = {x = (xk) :Axec}; 

(iii) c0(A) = {x = (xk):Axec0}. 
These spaces are Banach with norm ||x||A = |xx| 4-llAxlloo. Here we prove that 

(/00(A), || • ||A) is a Banach space. 
Let (xn) be a Cauchy sequence in /00(A), where xn = (*") = (x", JC£, . . . ) e L(A), 

for each neN. Then 

\\xn - xm\\A = \xï- x?\ + \\Axn - Ax"1^ -> 0 (n, m->«>). 

Therefore we obtain |x£-x™| -> 0, for n, m —» 00 and each keN. 
Hence (xk

x) = (x{, xl,...) is a Cauchy sequence in C (complex numbers) 
whence by the completeness of C, it converges to xk say, i.e., there exists 

iimxk = jck, for each keN. 
n 

Further, for each £ > 0 , there exists N=N(e), such that for all n,m>N and, 
for all keN, 

\X1 ~~ Xl I ^ £5 |*k + l """*k + l ~\Xk~ Xk ) | ^ £ 
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and 

\im\xï- x?\ = \x"- xv\< s, 
m 

lim |x£+1 — xk+i — (x£ — x k ) | = |xk + 1 — xk+l — (xk — x k ) |<e , 
m 

for all n>N. Since s is not dependent on k, 

SUp |x k + 1 - Xk + 1 - ( X k - Xk)| < 8. 
k 

Consequently we have ||xn - x | | A < 2 e , for n>N. Hence we obtain xn —» x 
(n —> oo) in /00(A), where x = (xk). 

Now we must show that x e L(A). We have 

l̂ k ~ *k + l| ~ l̂ k ~~ *k + Xk ~~ xk + l + xk + l~ xk + l\ — \xk ~ xk + l\ + \\x ~ *||A ~ ^ ( 1 ) -

This implies x = (xk) e L(A). 
Furthermore, since L(A) is a Banach space with continuous coordinates (that 

is, ||xn-x||A—>0 implies | x k - x k | - » 0 , for each keN, as n —» *>), it is a 
BK-space. 

Now we define s: L(A) —> L(A), x —> sx = y = (0, x2, x3 , . . .)• It is clear that s 
is a bounded linear operator on /^(A) and ||s||= 1. Also 

s[L(A)] - sL(A) = {x = (xk) : x G L(A), XX = 0} c: L(A) 

is a subspace of L(A) and 

llx^^llAxllooinsUA). 

On the other hand we can show that 

A:sL(A)-> L, 
(1.1) 

x = Uk) - * y = ( y k ) = (*k -*k+i) 

is a linear homeomorphism. So sL(A) and L are equivalent as topological 
spaces [1]. A and A - 1 are norm preserving and ||A|| = ||A_1||= 1. 

Let /* and [sL(A)]* denote the continuous duals of /«, and sL(A), respec
tively. We can prove that 

T:[sL(A)]*-+ 1* 

is a linear isometry. Thus [sL(A)]* is equivalent [1] to /*. In the same way, we 
can show that sc(A) and c, sc0(A) and c0 are equivalent as topological spaces 
and [sc(A)]* = [sc0(A)]*^ l ^ absolutely convergent series). 

2. Dual spaces 
In this section we determine the a-, j3-, and 7-duals of sL(A), and obtain 

some results useful in the characterization of certain matrix maps. 
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LEMMA 1. supK |X K -X K + 1 |<oo if and only if 

(i) sup k_1 |jck|<oo and (ii) sup \xk -k(k + l)~1xk+1\<°°. 
k k 

Proof. Let supk \xk -xk+1\<<*>. Then 

171 

1*1 xk + l\ X (xv-xv+1) < X \xv-xv+1\ = 0(k). 

This implies supk k x \xk\<°oy 

\xk-k(k + ir1xk+1\ = \k(k + l)-1(xk-xk+1)^(k^l)-1xk\ = 0(l). 

Now suppose (i) and (ii) hold. Then 

^-kik+ir'x^i^kik+iy'^-x^i-ik+ir1^]. 
This implies supk |xk ~xk+1\<°°. 

Now let (Pn) be a sequence of positive numbers increasing monotonically to 
infinity. 

LEMMA 2. If 

sup Z cJ<oo, then sup(pn £ ^ r - i ) < c 

. . - - 1 M V \ Lr - = 1 X„ll, ' l k = l " n + k 

Proof. Using Abel's partial summation, we get 

k = l x n + k k = l v i > = l ' v x n + k r n + k + l 

and 

Z
C n + k - l 
P 

k = l rn+k 
O(l). 

LEMMA 3. 7/ the series Yk = i ck is convergent, then 

lim(p„£^) = 0. 
n \ L. — 1 X », J-t-= 1 * n + k 

Proof. Since | ^ = 1 cn+v_i| = I S ^ " 1 cv\ = o(l\ for every k e N . Using (2.1) 
we get 

Z
C n + k - l 

D 
1 *n + k 

= o{\). 

COROLLARIES. Let (Pn) be as above 

(1) If supn | I " = 1 P„a„j < », then sup„ \Pn YZ=n+1 a k | < « . 
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Proof. We put Pk+-[ak+l instead of ck in Lemma 2. We get 

PnlC-f^ = Pn l ak = 0(l). 
k = l *n+k k = n + l 

(2) If Ik = i Pkak is convergent, then limn Pn Y£=n+i <*k = °-

Proof. We put Pk+lak+1 instead of ck in Lemma 3. 
(3) £k = i k% is convergent if and only if Xk = i ^k IS convergent with nRn = 

o(l), where jRn =Ik°= n + i ak. 

Proof. Use Abel's summation formula and put Pn = n in Corollary (2), we 
get 

n n 

Z kak+i= Z Rk-nRn+1. 
k = i k - i 

DEFINITION 2.1. If X is a sequence space we define [2]: 
(i) X a ={a = (a k ) :£ k = 1 |akxk|<<», I o r e a c n xeX}; 

(ii) X p ={a = (ak):Xk = i #kxk is convergent, for each x e X } ; 
(iii) X 7 ={a = (ak):supn|Xk = i akxk |<o°, for each xeX}. 

X", X*3, and X 7 are called the a- (or Kôthe-Toeplitz), |8- (or generalized 
Kôthe-Toeplitz), and y -dual spaces of X, respectively. We can show that 
X" c X*3 c X7. If X c Y then Y4" c X4; for -i- = a, ft or 7. 

THEOREM 2.1. 

(1) (SLco(A))a={a = ( a k ) : I ^ 1 f c | a k | <oo}=D 1 , 
(2) (sL(A))3 ={a = (ak):YZ=i kak is convergent, Yl=i |i*k |<°°}=D2, 
(3) ( sL (A) ) 7 ={a - ( a k ) : sup n E^ 1 ka k | <oo ,Xr . 1 |R k | <oo}=D 3 , 

where 

Rk = Z a^ 
v = k + l 

Proof. (1) If aeD1 then £ k = 1 |akxk | = I k = 1 k \ak\ (|xk|/k)<oo (Lemma 1) for 
each XGS/OO(A). This implies ae ( s l (A) ) a . If a G(sL(A))a, then £ k = 1 \akxk\<™, 
for each xes/oc(A). So we take 

0, k = l 

k, k > 2 
then 

kil+ Z kk^kl= Z k \ak\<œ-
k = l k - 1 

(2) Suppose that aeD2. If X G S L ( A ) , then there exists one and only one 
y = (yk)e/00, such that ((1.1)) 

k 

*k = - Z yv-i, y0 = o. 
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Then 

n n / k \ n—1 n —1 

(2.2) I akxk = - Z ak[ Z y„-i) = - Z ^ y k + ̂ n Z yk. 
k = l k = l V v = l 7 k = l k = l 

Since 2k = i ^kyk *s absolutely convergent and Rn Y^Z\ yk -» 0 (n —» oo) 
(Corollary (3)) the series ]T£=1

 ak*k is convergent for each x e sL(A); this yields 
ae(sL(A)f. 

If a <E (sL(A))^, then ££= 1 &kxk is convergent, for each xeslœ(A). We take 

_ f 0 , fc = l 

* k U , k>l 
thus £ £ = 1 fcafc is convergent. This implies nRn = o(l) (Corollary (3)). If we use 
(2.2) we get 

Z ak*k = - Z Rkyk 
k = l k = l 

convergent, for all y e L - So we have Xk = i | ^ k | < 0 ° and aeD2. 
(3) The proof of (3) is the same as above. 
It is easy to check that (sL(A))+ = (sc(A))\ for 4- = a, ft or ym 

Now let E be one of the sequence spaces L(A), c(A) or c0(A). We can show 
that 

(SE^ = E\ for 4- - a , ft or 7. 

3. Matrix maps. 

Let each of E and F denote one of the sequence spaces L and c, and let E' and 
F ' denote one of the sequence spaces L(A) and c(A). Let (X, Y) denote the set 
of all infinite matrices A which map X into Y 

THEOREM 3.1. Ae(E\F) if and only if 
(i) (anl) e F, and (An(k)) e F, 

(ii) K e ( E , F ) , 
where 

A n (k)= Z k^nk and JR = (rnk)= Z O -
k = l V v = k + 1 ' 

Proof. If Ae(E\F) then the series An(x) = YZ=i ank*k a r e convergent and 
(An(x))eF, for each n e N and all xeE'. The necessity of (i) is trivial. We just 
put x = (1, 0, 0 , . . . ) and x = (k). Furthermore we have Xk = i \rnk\ < 0 ° I o r e a c n 

n e N (Theorem 2.1). Now let xesE'^E'. 

m m —1 m —1 

( 3 . 1 ) A n ( m , x ) = Z tfnkXk^-Z ' r ^ k + r n m Z yk 
k = l k = l k = l 
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where y e E , y0 = 0 such that 
k 

xk = - I yr-i-
r = l 

Hence 

limAn(m,jc) = An(x) = - X rnkVk, 
m fe = l 

for each n e N (Corollary 3). Thus, we get (JRn(y)) = Œk = i rnkyk)eF, f ° r e a c r i 

y e E. This yields JR G (E, F). 
Now suppose (i) and (ii) hold. 

If xeE\ 

*k = \ , , , where x' = (x'k)GsE'. 
IxL k > l k lx'k, k > l 

We write again (3.1) and get 

An(x) = o n l x 1 - X rnkyk-
k = i 

This implies the An(x) exist for each xeE' and A e ( E ' , F). 

THEOREM 3.2. A G ( F , F') if and only if 

(i) Zk = i lankl<00
? / o r e a c ^ rae^, 

(ii) Be(E,F\ 
where 

B = (bnk) = (ank-an+hk). 

The proof is trivial. 

THEOREM 3.3. (1) LHc(A) = LPi c0(A) = M0 

= {x = (xk) : x G L, lim (xk - xk+1) = 0}, 
k 

(2) (Mo,U = Oo,U, 
(3) Ae(L,M0) if and only if 
0) sup n£ k = 1 |an k |<oo, 

(ii) l im n I k = 1 | a n k - a n + 1 , k | = 0. 

Proof. (1) If XG LHc(A), XG L and xk — xk+1 -> / (k —» oo), xk — xfc+1 = Z + ek 

(ek -» 0, k —>oo). This implies 

Xn+i = ^ i - w / - X ek and i = — — — — X ek-
k==1 n n nk = 1 
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This yields Z = 0 and x e lœ H c0(À). 
(2) The proof is trivial. 
(3) The necessity of (i) follows follows from the fact that it is necessary for 

A e (/«,, Zoo). Other parts are trivial 
If we write 

m0 = {x = (xk) : x e M0 and xk eU} (M real numbers) 

we have that [3], [4], for any positive integer p and integer 0 < nx < n2< * * * < 

1 p 

inf sup— YJ xk+m =l imsupxk on m0. 
ni,n2, . . . ,np k P i = i k 

THEOREM 3.4. If Ae(c,c) and supn£k = 1 \rnkI<00> then Ae(M0,c), where 
rnk ~ Lv = k + 1 &nv 

Proof. 

m m m —1 

2 J a n k * k = Xl La ank~ Lt Tnk (Xk ~~ Xk + l) + (*1 ~ Xm )rnm> 
k = l k = l k = l 

m oo oo 

lim X flnk*k = An(x) = Xi X <*nk ~ Z rnk(xk - xk+1), for each x e M0. 
m k = l k = l k = l 

Since supn £ k = 1 knkI<0° a n d limn rnk exists, these imply R = (rnk)e(c0, c) and 
lin^n Ik = i rnk(xk - x k + i ) exists. Thus we get A G ( M 0 , C). 

Now let £ and F be sequence spaces. We define 

E(F) = {x:xk = ykzk, yeE, zeF] 

by pointwise multiplication. Let Ms denote the space of all x for which 
supn Ek = i *k I < °°- It is easy to check that Ms ={y : yk = xk - xk_1? x G Zœ, x0 = 0}. 

A matrix is called strongly regular if it is regular and 

lim X k k - a n k + i l = 0. 
n k = l 

It is known [3] that, if A is regular, then for all x e lœ, 

limAn(y) = lim X «nkVk=0 
n n k = i 

if and only if A is strongly regular, where yk = xk —xk+1. 
Now we consider the set MS(M0). It is clear that MS<=MS(M0) and this 

inclusion is strict. 

THEOREM 3.5. Let A be a regular matrix. limn An(y) = 0 for all y e MS(M0) if 
and only if A is strongly regular. 
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Proof. If limnAn(y) = 0 for all yeM s(M0) then Ae(Ms(M0), c0), this im
plies A G(Ms, c0). Hence we get limn ££ = 1 |ank - ank+1 | - 0 [5]. 

Now let A be strongly regular. If y€M s(M0) , then yk = akxk, aeMs and 
xeM0. 

m m m 

2 J ankyk ~ L, ank\Xk ~Xk + l)yk + 2 J \ank ~ a n ,k + l ) Tk^k + l + fln,m + l W m + l 
k = l k = l k = l 

where 
n 

Tn = Z <*k-
k = l 

Hence 
m oc oo 

K m £ ^ n k y k = A n ( y ) = X a n k ( * k - * k + l h k + Z O n k - ^ k + l h k X k + l , 
m k = l k = l k = l 

for each n e N . Thus we get limn An(y) = 0. 

THEOREM 3.6. Ae(Ms(M0), c) if and only if 
0) sup n Ik = 1 | o n k | < o o , 

(ii) limn ank exists, for each keN, 
(iii) Xk = i \ank~ an,k+i\ converges uniformly in n. 

The proof is easy. 
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