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Abstract

In a sequence of independent Bernoulli trials the probability for success in the kth trial
is pk, k = 1, 2, . . . . The number of strings with a given number of failures between two
subsequent successes is studied. Explicit expressions for distributions and moments are
obtained for the case in which pk = a/(a + b + k − 1), a > 0, b ≥ 0. Also, the limit
behaviour of the longest failure string in the first n trials is considered. For b = 0, the
strings correspond to cycles in random permutations.
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1. Introduction

In an infinite sequence of independent Bernoulli trials the probability for success in the kth
trial is pk for k = 1, 2, . . . . A d-string is a string SF · · · FS of d − 1 failures between two
subsequent successes. In this paper we study the number of such strings. Explicit results are
obtained for the case in which pk = a/(a + b + k − 1), a > 0, b ≥ 0. To our knowledge only
special cases have been studied previously.

For a = 1 and b = 0, that is pk = 1/k, 1-strings correspond to double records in a
record sequence. Hahlin (1995) proved that the total number of such records is Po(1) (Poisson
distributed with mean 1). After that, an unpublished proof by Diaconis inspired a number of
studies on 1-strings; see Chern et al. (2000), Mori (2001), Joffe et al. (2004) and the references
therein. For the case in which pk = a/(a + b + k − 1), explicit expressions for the binomial
moments of the number of 1-strings in the first n trials have been derived in Holst (2006).

Sethuraman and Sethuraman (2004) studied d-strings for a = 1 and b > 0, and obtained the
joint distribution of the number of d-strings for d = 1, 2, . . . . For a > 0 and b = 0, d-strings
are closely connected with cycle lengths in a-biased random permutations; see, e.g. Arratia et
al. (2003, p. 95). In Gnedin (2007) coherent sequences of random permutations are studied,
where the probability of a ‘lower record’ in the kth permutation is pk = a/(a + b + k − 1).

In Section 2 we introduce notation and derive recursions for the binomial moments of
the number of d-strings in a finite sequence for general pks. The special case in which
pk = a/(a + k −1), connected with random permutations, is studied in Section 3. In Section 4
we derive our main result: the joint distribution of the total number of d-strings, d = 1, 2, . . . ,
and study the limit behaviour of the longest failure string in the first n trials in an infinite
Bernoulli sequence with pk = a/(a + b + k − 1).
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2. The general case: notation and moments

In the following, I1, I2, . . . is a sequence of independent Bernoulli random variables, i.e. Ik

is Be(pk), with
P(Ik = 1) = 1 − P(Ik = 0) = pk > 0.

The number of d-strings in the first n trials is

Mdn =
n−d∑
k=1

Ik(1 − Ik+1) · · · (1 − Ik+d−1)Ik+d .

Note that Mdn = 0 for d ≥ n and
∑n−1

j=1 jMjn ≤ n − 1. Implicitly, the following result gives
the distribution of (M1n, . . . , Mdn).

Proposition 1. The binomial moments

fn(r1, . . . , rd) = E

((
M1n

r1

)
· · ·

(
Mdn

rd

))

disappear for
∑d

j=1 jrj ≥ n and fulfill the following recursion:

fn+1(r1, . . . , rd)

= fn(r1, . . . , rd)

+ pn+1[fn(r1 − 1, r2, . . . , rd) − (1 − pn)fn−1(r1 − 1, r2, . . . , rd)]
+ pn+1(1 − pn)[fn−1(r1, r2 − 1, r3, . . . ) − (1 − pn−1)fn−2(r1, r2 − 1, r3, . . . )]
+ · · · + pn+1(1 − pn) · · · (1 − pn−d+2)

× [fn−d+1(r1, . . . , rd−1, rd − 1) − (1 − pn−d+1)fn−d(r1, . . . , rd−1, rd − 1)].

Proof. As
∑d

j=1 jMjn ≤ n − 1 the first assertion follows. To obtain the recursion we use
generating functions and the independence between the Iks, i.e.

E[tM1,n+1
1 · · · tMd,n+1

d ]
= E[tM1n

1 · · · tMdn

d (1 + (t1 − 1)InIn+1)(1 + (t2 − 1)In−1(1 − In)In+1) · · · ]
= E[tM1n

1 · · · tMdn

d (1 + (t1 − 1)InIn+1 + (t2 − 1)In−1(1 − In)In+1 + · · · )]
= E[tM1n

1 · · · tMdn

d ] + (t1 − 1)pn+1 E[tM1n

1 · · · tMdn

d (1 − (1 − In))]
+ (t2 − 1)pn+1 E[tM1n

1 · · · tMdn

d (1 − (1 − In−1))(1 − In)] + · · ·
= E[tM1n

1 · · · tMdn

d ] + (t1 − 1)pn+1[E(t
M1n

1 · · · tMdn

d ) − (1 − pn) E(t
M1,n−1
1 · · · tMd,n−1

d )]
+ (t2 − 1)pn+1(1 − pn)[E(t

M1,n−1
1 · · · tMd,n−1

d ) − (1 − pn−1) E(t
M1,n−2
1 · · · tMd,n−2

d )]
+ · · · .

Expansion in series around t1 = 1, . . . , td = 1 proves the second assertion.

Including the string SF · · · F with d −1 failures after the last success in the count, we obtain
the random variable

Ndn = Mdn + In−d+1(1 − In−d+2) · · · (1 − In).
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Proposition 2. For the binomial moments

E

((
N1n

r1

)
· · ·

(
Ndn

rd

))

= E

((
M1n

r1

)
· · ·

(
Mdn

rd

))
+ 1

pn+1

(
E

((
M1,n+1

r1

)
· · ·

(
Md,n+1

rd

))

− E

((
M1n

r1

)
· · ·

(
Mdn

rd

)))
.

Proof. By the law of total probability we have

E
(
t
M1,n+1
1 · · · tMd,n+1

d

)
= pn+1 E

(
t
N1n

1 · · · tNdn

d

)
+ (1 − pn+1) E

(
t
M1n

1 · · · tMdn

d

)
,

from which the assertion follows by an expansion in series.

In an infinite sequence the total number of d-strings

Md∞ =
∞∑

k=1

Ik(1 − Ik+1) · · · (1 − Ik+d−1)Ik+d < +∞

with probability 1 if and only if

E(Md∞) =
∞∑

k=1

pk(1 − pk+1) · · · (1 − pk+d−1)pk+d < +∞.

Indeed, by splitting the series for Md∞ into d + 1 (independent) series this follows from the
Borel–Cantelli lemmas; see Mori (2001, p. 834).

3. The case in which pk = a/(a + k − 1)

Following Knuth (1992) we denote descending and ascending factorials by

xn = x(x − 1) · · · (x − n + 1), xn̄ = x(x + 1) · · · (x + n − 1) =
n∑

k=1

[
n

k

]
xk,

where [ n
k ] is a cycle number or signless Stirling number of the first kind. In the rest of this

section we assume that pk = a/(a + k − 1) with a > 0. Closed simple formulae can be
obtained for the binomial moments. Note that

∑n−1
j=1 jMjn ≤ n − 1 and

∑n
j=1 jNjn = n.

Proposition 3. With m = ∑d
j=1 jrj ,

E

((
M1n

r1

)
· · ·

(
Mdn

rd

))
= fn(r1, . . . , rd) = I (m ≤ n − 1)

(n − 1)m

(a + n − 1)m

d∏
j=1

(a/j)rj

rj ! .
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Proof. By telescoping sums we obtain, for d ≤ n − 1,

E(Mdn) =
n−d∑
k=1

a

a + k − 1

(
1 − a

a + k

)
· · ·

(
1 − a

a + k + d − 2

)
a

a + k + d − 1

= a

d

n−d∑
k=1

[(
1 − a

a + k + d − 1

)
−

(
1 − a

a + k − 1

)]

×
(

1 − a

a + k

)
· · ·

(
1 − a

a + k + d − 2

)

= a

d

(
1 − a

a + n − d

)
· · ·

(
1 − a

a + n − 1

)

= a

d

(n − 1)d

(a + n − 1)d
.

Hence, the proposition holds for E(Mdn).
With pk = a/(a + k − 1) and fn as in the assertion, we can verify that the right-hand side

of the recursion in Proposition 1 can be written

fn(r1, . . . , rd) +
d∏

j=1

(a/j)rj

rj !
(

n

a + n
− n − m

a + n − m

)
(n − 1)m−1

(a + n − 1)m−1

= fn(r1, . . . , rd) + (fn+1(r1, . . . , rd) − fn(r1, . . . , rd))

= fn+1(r1, . . . , rd).

Hence, the recursion is satisfied by fn with E(Mdn) as starting values. The assertion follows
from this.

Proposition 4. With m = ∑d
j=1 jrj ,

E

((
N1n

r1

)
· · ·

(
Ndn

rd

))
= I (m ≤ n)

nm

(a + n − 1)m

d∏
j=1

(a/j)rj

rj ! ,

and, for
∑n

j=1 jxj = n,

P(N1n = x1, . . . , Nnn = xn) = n!
an̄

n∏
j=1

(a/j)xj

xj ! .

Proof. Using Propositions 2 and 3, the first assertion follows from an elementary calculation.
Using generating functions, we have

E(t
N1n

1 · · · tNnn
n ) = E((1 + (t1 − 1))N1n · · · (1 + (tn − 1))Nnn)

=
∑

E

((
N1n

r1

)
· · ·

(
Nnn

rn

))
(t1 − 1)r1 · · · (tn − 1)rn

=
∑ ∑

E

((
N1n

r1

)
· · ·

(
Nnn

rn

))
(−1)r1−x1 · · · (−1)rn−xn

×
(

r1

x1

)
· · ·

(
rn

xn

)
t
x1
1 · · · txn

n .
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As
∑n

1 jNjn = n, the binomial moments disappear for
∑n

1 jrj > n. Therefore, for
∑n

1 jxj =
n, we have rj = xj in the summation. Thus,

P(N1n = x1, . . . , Nnn = xn) = E

((
N1n

x1

)
· · ·

(
Nnn

xn

))
,

proving the second assertion.

The distribution of (N1n, . . . , Nnn) is the famous Ewens Sampling Formula. Furthermore,
Ndn is the number of d-strings in 1I2I3 · · · In1. Using this, Propositions 3 and 4 can be derived
by combinatorial arguments; see Arratia et al. (2003, p. 95). In this context, Ndn is interpreted
as the number of cycles of length d in a random permutation of 1, 2, . . . , n biased by aKn ,
where Kn = ∑n

k=1 Ik is the number of cycles with

P(Kn = j) =
[
n

j

]
aj

an̄
, j = 1, 2, . . . , n.

The moment convergence

E

((
M1n

r1

)
· · ·

(
Mdn

rd

))
→

d∏
j=1

(a/j)rj

rj ! , n → ∞,

implies the following result, which is well known for a-biased random permutations; seeArratia
et al. (2003, p. 96).

Proposition 5. The number of strings M1∞, M2∞, . . . are independent Poisson random vari-
ables with E(Md∞) = a/d .

4. The case in which pk = a/(a + b + k − 1)

In this section we assume that pk = a/(a + b + k − 1) with a > 0 and b > 0. Clearly

Md∞ =
∞∑

k=1

Ik(1 − Ik+1) · · · (1 − Ik+d−1)Ik+d < +∞

with probability 1. Mori (2001) derived the distribution of M1∞. For the special case in which
a = 1, Sethuraman and Sethuraman (2004) obtained the joint distribution of M1∞, M2∞, . . . .
Using different methods, we generalise their result to any a > 0. Let U be Beta(a, b), that is
a random variable with density

fU(u) = �(a + b)

�(a)�(b)
ua−1(1 − u)b−1, 0 < u < 1.

Theorem 1. Conditional on a Beta(a, b) random variable U , the number of strings M1∞,

M2∞, . . . are independent Poisson random variables with

E(Md∞ | U) = a

d
(1 − (1 − U)d), d = 1, 2, . . . .

Proof. We introduce the following mixture of Pólya’s and Hoppe’s urn models. An urn
contains initially one white ball and one black ball of weights a and b, respectively. Balls are
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drawn at random proportional to weights. The white ball and the black ball are replaced together
with a new ball of a colour not present in the urn, other balls are replaced together with one new
ball of the same colour. All new balls have weight 1. Let Ik = 1 if we obtain the white ball at
drawing k, else Ik = 0. Obviously the Iks are independent and P(Ik = 1) = a/(a +b+k −1).

Next, generate a sequence of W s and Bs. We obtain a W if drawing the white ball or a
ball of a colour emanating from a draw of the white, else we get a B. This sequence is as
drawing from an ordinary Pólya urn. Note that the sequence is exchangeable. Therefore, by de
Finetti’s theorem the sequence can be thought of as having been generated by first observing
a Beta(a, b) random variable U and then, conditional on the outcome U = u, generating a
sequence of independent Be(u) random variables, with W corresponding to 1 and B to 0.

In the subsequence of W s in the original sequence I1, I2, . . . , the probability of getting the
white ball at the j th trial is p∗

j = a/(a + j − 1). According to Proposition 5 the number of
d-strings in the subsequence, M∗

d∞, is Po(a/d) and M∗
1∞, M∗

2∞, . . . are independent.

Now recall the following well-known fact about disintegration of a Poisson process. If
the random variable ξ is Po(µ) and independent of the independent Be(p) random variables
ε1, ε2, . . . , then

∑ξ
j=1 εj and

∑ξ
j=1(1 − εj ) are independent Po(µp) and Po(µ(1 − p)),

respectively.

Consider the M∗
1∞ 1-strings in the subsequence of W s. Each such 1-string is also a 1-string

in the original sequence I1, I2, . . . , provided it is not interrupted by a B. Conditional on
U = u the sequence of W s and Bs can be considered as independent Be(u)-trials. Hence, the
probability for interruption is 1 −u. As M∗

1∞ is Po(a), it follows from the above disintegration
with ξ = M∗

1∞ and the εs independent Be(u) random variables, that the number of 1-strings in
the original sequence, M1∞, is Po(au) and independent of the number of interrupted 1-strings,
M∗

1∞ − M1∞, which is Po(a(1 − u)).

For the number of 2-strings, M2∞, we can argue in a similar way. First we have the
M∗

1∞ − M1∞ interrupted 1-strings in the subsequence of W s. Such a 1-string is a 2-string in
the original sequence provided it is only interrupted by one B. The probability for only one
interruption is (1 − u)u, so by the disintegration the number of such strings is Po(au(1 − u)).
The number of 2-strings in the subsequence of W s, M∗

2∞, is Po(a/2). Such a 2-string is also a
2-string in the original sequence if it is not interrupted. The probability for this is u2. Hence, by
disintegration the number of such 2-strings is Po(au2/2). As M∗

1∞ and M∗
2∞ are independent,

it follows that the random variable M2∞ is Poisson with mean

a(1 − u)u + a

2
u2 = a

2
(1 − (1 − u)2),

and independent of M1∞.

The arguments extend to show that the random variable Md∞ conditional on U = u is
Poisson with mean

a

d
ud + a

d − 1

(
d − 1

1

)
ud−1(1 − u) + a

d − 2

(
d − 1

2

)
ud−2(1 − u)2 + · · · + au(1 − u)d−1

= a

d
(1 − (1 − u)d),

and independent of M1∞, M2∞, . . . , Md−1,∞.
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Finally, consider long strings of failures. Let the last success in the first n trials occur at trial
n + 1 − A1n; if there is no success let A1n = 0. We have, for j = 1, 2, . . . , n,

P(A1n > j) =
(

1 − a

a + b + n − j

)
· · ·

(
1 − a

a + b + n − 1

)

= (b + n − j)j̄

(a + b + n − j)j̄
= �(b + n)

�(b + n − j)

�(a + b + n − j)

�(a + b + n)
.

For j, n → ∞ such that j/n → x, 0 < x < 1, Stirling’s formula gives

P

(
A1n

n
>

j

n

)
→ (1 − x)a, n → ∞,

that is A1n/n converges in distribution to Beta(1, a).
In a similar way, we find, for the number of trials between the last and the second to last

success, A2n, that

(A1n, A2n)

n
→ (U1, (1 − U1)U2), n → ∞,

in distribution, where U1, U2 are independent Beta(1, a) random variables. The procedure can
be repeated in a like manner for the second to last and the third to last success, etc.

The limit behaviour of the long strings is as if A1n, A2n, . . . had been cycle lengths in an
a-biased random permutation; see Arratia et al. (2003, Section 5.4). The limit distribution
of the normalized size ordered As is the Poisson–Dirichlet distribution with parameter a. In
particular, we have the following result.

Theorem 2. For the longest string of failures in the first n trials, we find that

max(A1n, A2n, . . . )

n
→ L1 = max(U1, (1 − U1)U2, (1 − U1)(1 − U2)U3, . . . ), n → ∞,

in distribution, where U1, U2, . . . are independent Beta(1, a) random variables.

Various formulae connected with the random variable L1 can be found in Arratia et al. (2003,
Section 5.5).
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