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Abstract

In this paper, we study a monotone process maintenance model for a multistate system
with k working states and � failure states. By making different assumptions, we can
apply the model to a multistate deteriorating system as well as to a multistate improving
system. We show that the monotone process model for a multistate system is equivalent
to a geometric process model for a two-state system. Then, for both the deteriorating
and the improving system, we analytically determine an optimal replacement policy for
minimizing the long-run average cost per unit time.
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1. Introduction

In practice, because of ageing effects and accumulated wearing, many systems deteriorate
in such a way that the successive operating times become shorter and shorter, while the repair
times become longer and longer. Therefore, the use of a monotone process model is a direct
approach to the maintenance problem of a deteriorating system. To introduce such a model,
we first introduce the concept of stochastic order.

Definition 1. A random variable X is said to be stochastically greater or less than a random
variable Y if, respectively, P(X > α) ≥ P(Y > α) or P(X > α) ≤ P(Y > α) for all real α. This
ordering is denoted by X ≥st Y or X ≤st Y , as appropriate (see Ross (1996)). Furthermore,
a stochastic process {Xn, n = 1, 2, . . .} is said to be stochastically increasing or decreasing if
Xn+1 ≥st Xn or Xn+1 ≤st Xn, respectively, for n = 1, 2, . . . .

Note that the stochastic order defined by Definition 1 is the usual one. However, the
stochastically monotone concept for a stochastic process {Xn, n = 1, 2, . . .} defined here is
simply based on the distributions of Xn and Xn+1 for n = 1, 2, . . . . This is different from
the stochastically monotone concept for a Markov process. Recall that a Markov process
{Xn, n = 1, 2, . . .} with state space {0, 1, . . .} is said to be stochastically monotone if

(Xn+1 | Xn = i1) ≤st (Xn+1 | Xn = i2)

for any 0 ≤ i1 ≤ i2 (see, e.g. Shaked and Shanthikumar (1994)). Clearly, the stochastically
monotone concept for a Markov process is defined for a Markov process and is based on the
probabilities of transition from one state to another state, conditioning on the former state.
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2 Y. LAM

However, the stochastically monotone concept for a stochastic process defined here is for a
general process, and is based on the unconditional distributions of two successive random
variables in the process.

Lam (1988a), (1988b) introduced the geometric process as a simple monotone process.

Definition 2. A stochastic process {Xn, n = 1, 2, . . .} is a geometric process (GP), if there
exists a real a > 0 such that {an−1Xn, n = 1, 2, . . .} forms a renewal process. The number a

is called the ratio of the GP.

Obviously, if 0 < a ≤ 1, the GP is stochastically increasing; if a ≥ 1, it is stochastically
decreasing; and if a = 1, the GP will reduce to a renewal process.

The GP was applied to the maintenance problem of a one-component system by Lam (1988a),
(1988b), (2003). Thereafter, the GP was also used in the study of the maintenance problem
for a two-component system; see Lam (1995), Lam and Zhang (1996), and Zhang (1999).
Furthermore, Lam (1992a), Lam and Chan (1998), and Lam et al. (2004) applied the GP model
to the analysis of data from a series of events. For further reference, see Leung and Lee (1998),
Sheu (1999), and Pérez-Ocón and Torres-Castro (2002). Moreover, see Lam (2005) for a brief
review and more references.

However, most of the research work has so far considered a two-state system only, with up
and down states, say. Little attention has been paid to the study of an improving system. In
many practical situations, a system may have more than two states. For example, the system
constituted by an electronic instrument may break down due to a short circuit or an open
circuit, in which case the system will have two failure states and one working state. Moreover,
although many practical systems are deteriorating, there do exist some improving systems.
For example, the successive operating times of a system after repair might be prolonged due
to the system operator’s accumulation of working experience and/or the replacement, during
repair, of some failed parts of the system by more advanced parts. Consecutive repair times
after failure might, furthermore, be shortened because the repair facility becomes more and
more familiar with the system. Therefore, it is necessary to study a maintenance model for
both a multistate deteriorating system and a multistate improving system. Lam et al. (2002)
considered a monotone process model for a multistate deteriorating system with k failure states
and one working state. Zhang et al. (2002) also studied a monotone process model for the
maintenance problem of a multistate system.

In this paper, we will study a monotone process model for a one-component multistate system
with k+� states, namely k working states and � failure states. By making different assumptions,
the model can be applied to a multistate deteriorating system as well as to a multistate improving
system. The replacement policy N is applied, by which the system will be replaced following
the N th failure. Then, we shall show that the monotone process model for the multistate system
is equivalent to a GP model for a two-state system in the sense that two systems will have the
same long-run average cost per unit time and the same optimal replacement policy. Finally, the
optimal replacement policy is determined analytically for both the deteriorating system and the
improving system.

2. The monotone process model

Suppose that we are given a one-component multistate system. We will first describe the
probability structure of the model. To do this, we note that the system state at time t can be
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denoted by

S(t) =
{

i if the system is in the ith working state at time t (i = 1, . . . , k),

k + i if the system is in the ith failure state at time t (i = 1, . . . , �).

The set of working states is W = {1, . . . , k}, the set of failure states is F = {k + 1, . . . , k + �},
and the state space is � = W ∪ F . Initially, assume that a new system in working state 1 is
installed. Whenever the system fails, it will be repaired. Let tn be the completion time of the
nth repair, n = 0, 1, . . . , with t0 = 0, and let sn be the time of the nth failure, n = 1, 2, . . . .

Then, clearly we have
t0 < s1 < t1 < · · · < sn < tn < · · · .

Furthermore, assume that the transition probability from working state i, i = 1, . . . , k, to failure
state k + j , j = 1, . . . , �, is given by

P(S(sn+1) = k + j | S(tn) = i) = qj ,

with
∑�

j=1 qj = 1. Moreover, the transition probability from failure state k + i, i = 1, . . . , �,
to working state j , j = 1, . . . , k, is given by

P(S(tn) = j | S(sn) = k + i) = pj ,

with
∑k

j=1 pj = 1.
Let X1 be the operating time of a system after installation. In general, let Xn, n = 2, 3, . . . ,

be the operating time of the system after the (n − 1)th repair and let Yn, n = 1, 2, . . . , be the
repair time after the nth failure. Assume that there exist a lifetime distribution U(t) and an
ai > 0, i = 1, . . . , k, such that

P(X1 ≤ t) = U(t)

and
P(X2 ≤ t | S(t1) = i) = U(ait), i = 1, . . . , k.

In general,

P(Xn ≤ t | S(t1) = i1, . . . , S(tn−1) = in−1)

= U(ai1 . . . ain−1 t), ij = 1, . . . , k, j = 1, . . . , n − 1. (1)

Similarly, there exist a lifetime distribution V (t) and a bi > 0, i = 1, . . . , �, such that

P(Y1 ≤ t | S(s1) = k + i) = V (bit)

and, in general,

P(Yn ≤ t | S(s1) = k + i1, . . . , S(sn) = k + in)

= V (bi1 . . . bin t), ij = 1, . . . , �, j = 1, . . . , n. (2)

We now make additional assumptions on the policy used, the cost structure, and the mono-
tonicity conditions of the model.

Assumption 1. A replacement policy N is applied, by which the system is replaced by a new
(identical) one following the N th failure.
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Assumption 2. If a system in working state i is operating, the reward rate is ri, i = 1, . . . , k.
If the system in failure state k + i is under repair, the repair-cost rate is ci, i = 1, . . . , �.
The replacement cost comprises two parts: one part is the basic replacement cost R and the
other is proportional to the replacement time Z at rate cp. In other words, the replacement
cost is given by R + cpZ.

Assumption 3. We assume that

1 = a1 ≤ a2 ≤ · · · ≤ ak, (3)

1 = b1 ≥ b2 ≥ · · · ≥ b� > 0. (4)

Under the additionalAssumptions 1–3, we shall argue that the model is a maintenance model
for a multistate deteriorating system. For a multistate improving system, Assumption 3 will be
replaced by the following assumption.

Assumption 3′. We assume that

1 = a1 ≥ a2 ≥ · · · ≥ ak > 0, (5)

1 = b1 ≤ b2 ≤ · · · ≤ b�. (6)

Note that the equalities in (5) and (6) do not all hold simultaneously.

Remarks. The use of policy N has a long history (see, e.g. Morimura (1970) and Park (1979)).
However, in maintenance problems, replacement policy T – by which the system is replaced at
a stopping time T – is also used, where T is the total operating time. It is interesting to compare
policies N and T . In studying the long-run average cost per unit time, Stadje and Zuckerman
(1990) and Lam (1991b) showed that, under some mild conditions, an optimal policy N∗ is at
least as good as an optimal policy T ∗. In the case of the total expected discounted cost, the
same result was proven by Lam (1991a), (1992b). The implementation of a policy N is also
much simpler than that of a policy T . These are the reasons we are using policy N here.

Since the system has k different working states, it follows that in each one it should have
a different reward rate. Similarly, in different failure states, the system should have different
repair-cost rates.

Under Assumption 3, for two working states 0 ≤ i1 < i2 ≤ k, we have

(X2 | S(t1) = i1) ≥st (X2 | S(t1) = i2).

Therefore, working state i1 is better than working state i2 in the sense that the system in state i1
has a stochastically larger operating time than it does in state i2. Consequently, the k working
states are arranged in decreasing order, such that state 1 is the best working state and state
k is the worst working state. Similarly, for two failure states k + i1 and k + i2 such that
k + 1 ≤ k + i1 < k + i2 ≤ k + �,

(Y1 | S(s1) = k + i1) ≤st (Y1 | S(s1) = k + i2).

Therefore, failure state k + i1 is better than failure state k + i2 in the sense that the system in
state k+ i1 has a stochastically smaller repair time than it does in state k+ i2. Thus, the � failure
states are also arranged in decreasing order, such that state k + 1 is the best failure state and
state k + � is the worst failure state.
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In particular, if p1 = q1 = 0, a2 = · · · = ak = a, and b2 = · · · = b� = b, then the system
reduces to a two-state system. In fact, (1) and (2) now become P(Xn ≤ t) = U(an−1t) and
P(Yn ≤ t) = V (bnt), respectively. Thus, {Xn, n = 1, 2, . . .} will form a GP with ratio a ≥ 1
and X1 ∼ U , while {Yn, n = 1, 2, . . .} will form a GP with ratio 0 < b ≤ 1 and Y1 ∼ G

where G(t) = V (bt). As a result, our model reduces to the GP model for the one-component
two-state system introduced by Lam (1988a), (1988b).

Under Assumption 3′, for two working states 0 ≤ i1 < i2 ≤ k a similar argument shows that
working state i1 is worse than working state i2 since the system in state i1 has a stochastically
smaller operating time than it does in state i2. This means that the k working states are arranged
in increasing order, such that state 1 is the worst working state and state k is the best working
state. On the other hand, for two failure states k + 1 ≤ k + i1 < k + i2 ≤ k + �, failure state
k + i1 is worse than failure state k + i2 since the system in state k + i1 has a stochastically
larger repair time than it does in state k + i2. Therefore, the � failure states are also arranged in
increasing order, such that state k + 1 is the worst failure state and state k + � is the best failure
state. Note that if all the equalities in (5) and (6) hold, this will be a special case of (3) and (4).
In this case, Assumption 3 will hold and it should be excluded from Assumption 3′.

Now we shall demonstrate that our model is a monotone process model for the multistate
system. To start with, we first observe that

P(X2 ≤ t) =
k−1∑
i=0

P(X2 ≤ t | S(t1) = i) P(S(t1) = i) =
k∑

i=1

piU(ait).

In general,

P(Xn ≤ t) =
k∑

i1=1

· · ·
k∑

in−1=1

P(Xn ≤ t | S(t1) = i1, . . . , S(tn−1) = in−1)

× P(S(t1) = i1, . . . , S(tn−1) = in−1)

=
k∑

i1=1

· · ·
k∑

in−1=1

pi1 · · · pin−1U(ai1 · · · ain−1 t) (7)

=
∑

{j1,...,jk∈Z+: ∑k
i=1 ji=n−1}

(n − 1)!
j1! · · · jk!p

j1
1 · · · pjk

k U(a
j1
1 · · · ajk

k t) (8)

and, similarly,

P(Yn ≤ t) =
�∑

i1=1

· · ·
�∑

in=1

P(Yn ≤ t | S(s1) = k + i1, . . . , S(sn) = k + in)

× P(S(s1) = k + i1, . . . , S(sn) = k + in)

=
�∑

i1=1

· · ·
�∑

in=1

qi1 · · · qinV (bi1 · · · bin t) (9)

=
∑

{j1,...,jl∈Z+: ∑l
i=1 ji=n}

n!
j1! · · · j�!q

j1
1 · · · qj�

� V (b
j1
1 · · · bj�

� t). (10)
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Second, we will show that, under the additional Assumption 3, {Xn, n = 1, 2, . . .} is
stochastically decreasing while {Yn, n = 1, 2, . . .} is stochastically increasing. This is the
following theorem.

Theorem 1. Under Assumption 3, for n = 1, 2, . . . , we have Xn ≥st Xn+1 and Yn ≤st Yn+1.

Proof. For any t > 0, it follows from (7) that

P(Xn+1 ≤ t) =
k∑

i1=1

· · ·
k∑

in=1

pi1 · · · pinU(ai1 · · · ain t)

=
k∑

i1=1

· · ·
k∑

in−1=1

pi1 · · · pin−1

[ k∑
in=1

pinU(ai1 · · · ain−1ain t)

]

≥
k∑

i1=1

· · ·
k∑

in−1=1

pi1 · · · pin−1

[ k∑
in=1

pinU(ai1 · · · ain−1 t)

]

=
k∑

i1=1

· · ·
k∑

in−1=1

pi1 · · · pin−1U(ai1 · · · ain−1 t) = P(Xn ≤ t).

Thus, Xn ≥st Xn+1. By a similar argument, from (9) we can prove that Yn ≤st Yn+1.
This completes the proof of Theorem 1.

Theorem 1 shows that, under the additional Assumptions 1–3, the model is a monotone
process model for a multistate deteriorating system. However, under Assumption 3′, instead of
Theorem 1, we have the following result.

Theorem 2. Under Assumption 3′, for n = 1, 2, . . . , we have Xn ≤st Xn+1 and Yn ≥st Yn+1.

The proof is similar to that of Theorem 1.
Therefore, according to Theorem 2, under the additional Assumptions 1, 2, and 3′, our model

is a monotone process model for a multistate improving system.

3. Long-run average cost per unit time

In this section, we shall derive results based on the probability structure of the model and
the additional Assumptions 1 and 2 only. To derive the long-run average cost per unit time, we
should first evaluate the expected values of Xn and Yn. To do this, let

∫ ∞
0 t dU(t) = λ and∫ ∞

0 t dV (t) = µ. Then, from (8), we have

E(Xn) =
∑

{j1,...,jk∈Z+: ∑k
i=1 ji=n−1}

(n − 1)!
j1! · · · jk!p

j1
1 · · · pjk

k

∫ ∞

0
t dU(a

j1
1 · · · ajk

k t)

=
∑

{j1,...,jk∈Z+: ∑k
i=1 ji=n−1}

(n − 1)!
j1! · · · jk!

(
p1

a1

)j1

· · ·
(

pk

ak

)jk

λ

= λ

(
p1

a1
+ · · · + pk

ak

)n−1

= λ

an−1 ,
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where a−1 = ∑k
i=1 pi/ai . Similarly, from (10), we have

E(Yn) = µ

(
q1

b1
+ · · · + q�

b�

)n

= µ

bn
,

where b−1 = ∑�
i=1 qi/bi .

Second, we should calculate the expected reward earned after the (n − 1)th repair and the
expected repair cost incurred after the nth failure. For this purpose, define Rn, the reward rate
after the (n − 1)th repair, as

Rn = ri if S(tn−1) = i, i = 1, . . . , k.

Because S(t0) = 1, we have R1 = r1 and, so, the expected reward after installation or one
replacement is given by

E(R1X1) = E(r1X1) = r1λ.

In general, for n ≥ 2, the expected reward after the (n − 1)th repair is

E(RnXn) =
k∑

i1=1

· · ·
k∑

in−1=1

E(RnXn | S(t1) = i1, . . . , S(tn−1) = in−1)

× P(S(t1) = i1, . . . , S(tn−1) = in−1)

=
k∑

i1=1

· · ·
k∑

in−1=1

pi1 · · · pin−1

∫ ∞

0
rin−1 t dU(ai1 · · · ain−1 t)

=
( k∑

i1=1

· · ·
k∑

in−2=1

pi1 · · · pin−2

ai1 · · · ain−2

)( k∑
in−1=1

rin−1pin−1

ain−1

)
λ

= rλ

(
p1

a1
+ · · · + pk

ak

)n−2

= rλ

an−2 ,

where

r =
k∑

i=1

ripi

ai

. (11)

To evaluate the expected repair cost incurred after the nth failure, define Cn, the repair-cost
rate after the nth failure, as

Cn = ci if S(sn) = k + i, i = 1, . . . , �.

By a calculation similar to that of E(RnXn), the expected repair cost after the nth failure is
found to be

E(CnYn) = cµ

(
q1

b1
+ · · · + q�

b�

)n−1

= cµ

bn−1 ,

where

c =
�∑

i=1

ciqi

bi

. (12)
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Now suppose that a replacement policy N is adopted. We say that a cycle is completed if a
replacement is completed; in other words, a cycle is the time interval between the installation
and the first replacement or between two successive replacements. Thus, the successive cycles,
and the costs incurred in each one, form a renewal reward process (see, e.g. Ross (1996)).
Let τ = E(Z) be the expected replacement time. Then, by applying a standard result on
renewal reward processes, the long-run average cost per unit time (or, simply, the average cost)
is given by

C(N) = expected cost incurred in a cycle

expected length of a cycle

= E(
∑N−1

n=1 CnYn + R + cpZ − ∑N
n=1 RnXn)

E(
∑N

n=1 Xn + ∑N−1
n=1 Yn + Z)

= cµ
∑N−1

n=1 (1/bn−1) + R + cpτ − [r1λ + rλ
∑N

n=2(1/an−2)]
λ

∑N
n=1(1/an−1) + µ

∑N−1
n=1 (1/bn) + τ

= cµ
∑N−1

n=1 (1/bn−1) − rλ
∑N

n=1(1/an−2) + R′

λ
∑N

n=1(1/an−1) + µ
∑N−1

n=1 (1/bn) + τ
(13)

or

C(N) = bc(µ/b)
∑N−1

n=1 (1/bn−1) − arλ
∑N

n=1(1/an−1) + R′

λ
∑N

n=1(1/an−1) + (µ/b)
∑N−1

n=1 (1/bn−1) + τ
, (14)

where
R′ = R + cpτ − (r1 − ar)λ. (15)

Clearly, a and b are two important constants in (13) and (14). To understand the meaning
of a and b better, we now introduce the harmonic mean of a random variable.

Definition 3. Given a random variable X with E(1/X) 	= 0, mH = [E(1/X)]−1 is the harmonic
mean of X.

The harmonic mean has the following properties.

1. If X is a discrete, uniformly distributed random variable such that X = xi with probability
1/n, i = 1, . . . , n, then the harmonic mean mH = n/

∑n
i=1(1/xi) is the harmonic mean

of the numbers x1, . . . , xn.

2. If 0 < α ≤ X ≤ β then α ≤ mH ≤ β.

3. If X is nonnegative with E(X) > 0 then mH ≤ E(X). This is because h(x) = 1/x is a
convex function, from which the result follows by the Jensen inequality.

Thus, in our model, a is the harmonic mean of random variable A with P(A = ai) = pi ,
i = 1, . . . , k, and b is the harmonic mean of random variable B with P(B = bi) = qi ,
i = 1, . . . , �. For this reason, we may call a and b the harmonic means of a1, . . . , ak and
b1, . . . , b�, respectively.

Our problem now is to determine an optimal replacement policy for minimizing the average
cost C(N). To this end, we first observe from (14) that

C(N) = D(N) − ar,

https://doi.org/10.1239/jap/1110381366 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381366


A monotone process maintenance model 9

where

D(N) = (bc + ar)(µ/b)
∑N−1

n=1 (1/bn−1) + R′ + arτ

λ
∑N

n=1(1/an−1) + (µ/b)
∑N−1

n=1 (1/bn−1) + τ
.

Obviously, the problem of minimizing C(N) is equivalent to the problem of minimizing D(N).
Therefore, consider

D(N+1) − D(N)

=
{
(bc+ar)µ

[
λ

( N∑
n=1

an −
N−1∑
n=1

bn

)
+ τaN

]
− (R′+arτ)[λbN + µaN ]

}

×
{
aNbN

[
λ

N∑
n=1

1

an−1 + µ

b

N−1∑
n=1

1

bn−1 + τ

]
×

[
λ

N+1∑
n=1

1

an−1 + µ

b

N∑
n=1

1

bn−1 + τ

]}−1

.

(16)

For R′ + arτ 	= 0, we define an auxiliary function

g(N) = (bc + ar)µ[λ(
∑N

n=1 an − ∑N−1
n=1 bn) + τaN ]

(R′ + arτ)[λbN + µaN ] (17)

while, for R′ + arτ = 0, we define

g0(N) = (bc + ar)µ

[
λ

( N∑
n=1

an −
N−1∑
n=1

bn

)
+ τaN

]
. (18)

As the denominator of D(N +1)−D(N) (i.e. the quantity in braces in (16)) is always positive,
it is clear that the sign of D(N + 1) − D(N) is the same as that of its numerator. Consequently,
we have the following lemma.

Lemma 1. 1. If R′ + arτ > 0 then

D(N + 1) > D(N) ⇔ g(N) > 1,

D(N + 1) = D(N) ⇔ g(N) = 1,

D(N + 1) < D(N) ⇔ g(N) < 1.

2. If R′ + arτ < 0 then

D(N + 1) > D(N) ⇔ g(N) < 1,

D(N + 1) = D(N) ⇔ g(N) = 1,

D(N + 1) < D(N) ⇔ g(N) > 1.

3. If R′ + arτ = 0 then

D(N + 1) > D(N) ⇔ g0(N) > 0,

D(N + 1) = D(N) ⇔ g0(N) = 0,

D(N + 1) < D(N) ⇔ g0(N) < 0.
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Lemma 1 shows that the monotonicity of D(N) can be determined by the value of either
g(N) or g0(N).

Let h(N) = λbN + µaN . Then, for R′ + arτ 	= 0, it follows from (17) that

g(N + 1) − g(N) = (bc + ar)µ

(R′ + arτ)h(N)h(N + 1)

×
{
λ2bN(1 − b)

N∑
n=1

an + λ2bN(aN+1 − b) + λµaN(a − bN)

+ λµaN(a − 1)

N−1∑
n=1

bn + λτaNbN(a − b)

}
. (19)

For R′ + arτ = 0, it follows from (18) that

g0(N + 1) − g0(N) = (bc + ar)µ{λ(aN+1 − bN) + τ(aN+1 − aN)}. (20)

Note that, in this section, the results are all developed under the probability structure of
the model and the additional Assumptions 1 and 2 only. Therefore, all the results, including
Lemma 1, are true for our model of deteriorating systems and improving systems.

4. The optimal policy for the deteriorating system

Under Assumption 3, it follows from property 2 of the harmonic mean that

1 = a0 ≤ a ≤ ak−1 and bk−1 ≤ b ≤ b0 = 1. (21)

Consider a GP model for a two-state (up and down, say) deteriorating system. Assume that
the successive operating times after repair {X′

n, n = 1, 2, . . .} form a GP with ratio a ≥ 1 and
E(X′

1) = λ. Assume further that the consecutive repair times after failure {Y ′
n, n = 1, 2, . . .}

constitute a GP with ratio 0 < b ≤ 1 and E(Y ′
1) = µ/b. The replacement time is still Z, with

E(Z) = τ . The reward rate is ar , the repair-cost rate is bc, and the replacement cost is R′.
Then, under policy N , an argument similar to that presented in the previous section will show
that the average cost for the two-state system is exactly the same as that given by (14) (see Lam
(1988a), (1988b), and (2003) for details). In other words, the monotone process model for a
multistate system is equivalent to a GP model for the two-state system, in the sense that they will
have the same average cost and, hence, the same optimal maintenance policy. In conclusion,
we have proved the following theorem.

Theorem 3. The monotone process model for a one-component multistate deteriorating system
is equivalent to a GP model for a one-component two-state deteriorating system in the sense that
they will have the same average cost and the same optimal replacement policy. The successive
operating times after repair {X′

n, n = 1, 2, . . .} of the two-state system will form a GP with
ratio a ≥ 1 (the harmonic mean of a1, . . . , ak) and E(X′

1) = λ. The consecutive repair times
after failure {Y ′

n, n = 1, 2, . . .} will constitute a GP with ratio 0 < b ≤ 1 (the harmonic mean
of b1, . . . , b�) and E(Y ′

1) = µ/b. The reward rate of the two-state system is ar with r given by
(11), the repair-cost rate is bc with c given by (12), and the replacement cost is R′, given by
(15).

From (19), (20), and (21), the proof of the following lemma is straightforward.
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Lemma 2. 1. If R′ + arτ > 0 then g(N) is nondecreasing in N .

2. If R′ + arτ < 0 then g(N) is nonincreasing in N .

3. The function g0(N) is nondecreasing in N .

The combination of Lemmas 1 and 2 yields the following theorem.

Theorem 4. 1. For R′ + arτ > 0, an optimal replacement policy N∗
d for the multistate

deteriorating system is given by

N∗
d = min{N | g(N) ≥ 1}. (22)

The optimal policy N∗
d is unique if and only if g(N∗

d ) > 1.

2. For R′ +arτ < 0, an optimal replacement policy N∗
d for the multistate deteriorating system

is given by
N∗

d = min{N | g(N) ≤ 1}.
The optimal policy N∗

d is unique if and only if g(N∗
d ) < 1.

3. For R′ +arτ = 0, an optimal replacement policy N∗
d for the multistate deteriorating system

is given by
N∗

d = min{N | g0(N) ≥ 0}.
The optimal policy N∗

d is unique if and only if g0(N
∗
d ) > 0.

In applications of Theorem 4, we should determine the value of R′ + arτ first. As an
example, suppose that R′ + arτ > 0; we then determine N∗

d from (22), and we have

g(N) < 1 ⇔ N < N∗
d

and
g(N) ≥ 1 ⇔ N ≥ N∗

d .

Thus, N∗
d is the minimum integer satisfying (22). By Lemma 1, we have

D(N) > D(N∗
d ) if N < N∗

d

and
D(N) ≥ D(N∗

d ) if N ≥ N∗
d .

In other words, policy N∗
d is indeed an optimal replacement policy. Clearly, it is unique if and

only if g(N∗
d ) > 1.

Of course, Theorem 4 can be applied not only to a multistate deteriorating system but also
to a two-state deteriorating system.

5. The monotone process model for an improving system

Now, under Assumption 3′, we have

ak ≤ a ≤ a1 = 1 and 1 = b1 ≤ b ≤ b�. (23)

Also, the equalities in (23) do not all hold simultaneously.
As in the case of the multistate deteriorating system, we can consider a GP model for a two-

state improving system. Consequently, we have the following theorem, which is analogous to
Theorem 3.
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Theorem 5. The monotone process model for a one-component multistate improving system
is equivalent to a GP model for a one-component two-state improving system in the sense that
they have the same average cost and the same optimal replacement policy. The successive
operating times after repair {X′

n, n = 1, 2, . . .} of the two-state system will form a GP with
ratio 0 < a ≤ 1 (the harmonic mean of a1, . . . , ak) and E(X′

1) = λ. The consecutive repair
times after failure {Y ′

n, n = 1, 2, . . .} will constitute a GP with ratio b ≥ 1 (the harmonic mean
of b1, . . . , b�) and E(Y ′

1) = µ/b. The reward rate of the two-state system is ar with r given by
(11), the repair-cost rate is bc with c given by (12), and the replacement cost is R′, given by
(15).

Note that, for an improving system, the average cost due to the adoption of a replacement
policy N is also given by (14). Moreover, we can also determine an optimal replacement policy
for the improving system on the basis of Lemma 1. To do so, recall that not all equalities in
(23) will hold simultaneously. Then, from (19), (20), and (23), g(N) and g0(N) are clearly
strictly monotone. Thus in analogy with Lemma 2, we have the following result.

Lemma 3. 1. If R′ + arτ > 0 then g(N) is decreasing in N .

2. If R′ + arτ < 0 then g(N) is increasing in N .

3. The function g0(N) is decreasing in N .

Now we are available to determine the optimal replacement policy for the multistate im-
proving system.

Theorem 6. For the multistate improving system, if

r1 ≤ ri, i = 2, . . . , k, (24)

then N∗
i = ∞ is the unique optimal replacement policy.

Proof. We shall prove Theorem 6 by considering three cases.

Case 1. For R′ + arτ > 0, g(N) is decreasing, so let

N+ = min{N | g(N) ≤ 1}.
Thus, we have

g(N) > 1 ⇔ N < N+
and

g(N) ≤ 1 ⇔ N ≥ N+.

By Lemma 1, it is easy to see that C(N) and D(N) are unimodal and will take their maxima at
N+. This implies that the minimum of C(N) must be given by min{C(1), C(∞)}. Note, from
(24), that r1 ≤ ar . Then (14) yields

C(1) = R + cpτ − r1λ

λ + τ
> C(∞) = −ar.

Consequently,
min C(N) = min{C(1), C(∞)} = C(∞) = −ar.

Therefore, N∗
i = ∞ is the optimal replacement policy. The optimal policy is also unique

because, from Lemma 3, g(N) is strictly decreasing.
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Case 2. For R′ + arτ < 0, the proof is similar.

Case 3. For R′ + arτ = 0, because g0(N) is decreasing there exists an

N0 = min{N | g0(N) ≤ 0}.
Thus, we have

g0(N) > 0 ⇔ N < N0

and
g0(N) ≤ 0 ⇔ N ≥ N0.

An argument similar to the above shows that C(N) and D(N) will attain their maxima at N0
and, consequently, that N∗

i = ∞ is the unique optimal replacement policy.

This completes the proof.

Because the k working states are arranged in increasing order (in the sense defined above)
with state 1 the worst, the worse the working state is, the lower is the reward rate. Therefore,
condition (24) is a natural and reasonable assumption. Consequently, for most practical
multistate improving systems, Theorem 6 is applicable. As a result, we should continually
repair the system as it ages, without ever replacing it.

Like Theorem 4, Theorem 6 can apply not only to a multistate improving system but also to
a two-state improving system.
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