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NONPARAMETRIC ESTIMATION FOR A
CLASS OF PIECEWISE-DETERMINISTIC
MARKOV PROCESSES
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Abstract

In this paper we study nonparametric estimation problems for a class of piecewise-
deterministic Markov processes (PDMPs). Borovkov and Last (2008) proved a version
of Rice’s formula for PDMPs, which explains the relation between the stationary density
and the level crossing intensity. From a statistical point of view, their result suggests a
methodology for estimating the stationary density from observations of a sample path of
PDMPs. First, we introduce the local time related to the level crossings and construct
the local-time estimator for the stationary density, which is unbiased and uniformly
consistent. Secondly, we investigate other estimation problems for the jump intensity
and the conditional jump size distribution.
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1. Introduction

Let us consider a piecewise-deterministic Markov process (PDMP) driven by a drift coeffi-
cient µ, a jump intensity λ, and a jump size distribution J . We suppose that the sample path
of the PDMP strictly increases continuously between each jump and decreases only by jumps.
Furthermore, the PDMP is assumed to be stationary and ergodic with stationary density f .
This type of PDMP includes well-known stochastic models, for instance, risk processes in
mathematical insurance, stress release processes in seismology, and many others. For general
information about the PDMP, we refer the reader to Davis (1993).

Our main purpose in this paper is to study the problems of nonparametric estimation of
these characteristic functions f , λ, and J by observation of a sample path of the PDMP. One of
the motivations for this work comes from Borovkov and Last’s (2008) proof of the following
version of Rice’s formula:

ν(x) = µ(x)f (x), x ∈ R.

Here ν(x) is the continuous crossing intensity of the level x. Rice’s formula is classical in
stochastic analysis and mainly applied in engineering fields; see, e.g. Rice (1944) and Leadbetter
(1966). This theoretically important result suggests that the estimation of the stationary density
f (x) is associated with the number of crossings of level x. In a related work, the level crossing
method was developed to study the stationary distribution of queues; see Brill and Posner
(1977).

Received 19 January 2012; revision received 8 February 2013.
∗ Current address: Faculty of Economics, Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan.
Email address: takayuki-fujii@biwako.shiga-u.ac.jp

931

https://doi.org/10.1239/jap/1389370091 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370091


932 T. FUJII

In the present paper we first introduce the local time, which is related to the number of
upcrossings, and construct the local-time estimator (LTE) for the stationary density. We note
that the LTE is familiar in the context of density estimation for stationary processes; see Bosq
(1998) and Bosq and Davydov (1999). Detailed studies on the LTE have been carried out in
the case of diffusion processes (see Kutoyants (1998), (2004) and van Zanten (2000)) since
the properties of the local time of diffusion processes are well known (see, e.g. Karatzas and
Shreve (1991)). Recently, Fujii and Nishiyama (2010) obtained some properties of the LTE of
the basic stress release process. The present study is a generalization of this work.

As a preliminary step, the stochastic integral representation of the local time of a PDMP is
presented. This formula is derived by noting the simple relation that the number of upcrossings
at level x is almost equal to that of the downcrossings for our considered PDMPs, where the
number of the downcrossings is given by the random counting measure. The stochastic integral
form plays an important role in studying the properties (e.g. uniform consistency) of the LTE. By
using the LTE, we also address estimation problems for the jump intensity and the conditional
jump size distribution of PDMPs.

2. Model and assumptions

Let us first introduce the model treated in this paper. The following notation is based on that
used in Borovkov and Last (2008). Consider a marked point process � = {(Tn, Zn)}n∈N on
[0,∞) with 0 < T1 < T2 < . . . and nonnegative random variables (marks) Zn. We define the
PDMP Xt by

Xt = X0 +
∫ t

0
µ(Xs−) ds −

Nt∑
n=1

Zn, t ∈ [0, T ], (1)

where X0 is an initial random variable,

Nt = #{n ∈ N : Tn ≤ t}, t ≥ 0

(#A denotes the number of elements in a set A), and µ is a continuous function on R satisfying
infx∈R µ(x) > 0. We assume that, for any x ∈ R, there exists a unique continuous function
qx(·) : [0,∞) → R satisfying the integral equation

qx(t) = x +
∫ t

0
µ(qx(s)) ds, t ≥ 0.

Therefore, between each jump, the PDMP (1) is represented by

Xt = qXTn (t − Tn) on t ∈ [Tn, Tn+1) for n ≥ 0,

where we set T0 = 0. We note that the drift function µ(x) can always be assumed to be known,
since it is obtained by taking the right limit

lim
δ→0

Xt+δ −Xt

δ
= lim
δ→0

1

δ

∫ t+δ

t

µ(Xs−) ds = µ(Xt).

This is a reason for the name ‘piecewise deterministic’.
Let us introduce some assumptions on the jump intensity and the jump size distribution for

PDMP (1). The occurrence of jumps is governed by the stochastic jump intensity λ(Xt ), which
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is assumed to be measurable and locally bounded, and to satisfy
∫ ∞

0
λ(qx(t)) dt = ∞, x ∈ R. (2)

For n ≥ 0, the conditional distributions of Tn+1 − Tn given XTn are specified by

P(Tn+1 − Tn ≤ t | XTn) = 1 − exp

{
−

∫ t

0
λ(qXTn (s)) ds

}
P-a.s. (3)

So assumption (2) implies that the jump epochs Tn are all finite almost surely (a.s.). The
conditional distribution functions of the jump size are given by

P(Zn ∈ A | XTn−) = J (XTn−, A) P-a.s., n ≥ 1, (4)

where A is a measurable subset on [0,∞). We also suppose that J (x, {0}) = 0 for all x ∈ R,
that is, Zn �= 0 for all n ≥ 1.

In general, the marked point process is characterized by a random counting measure given
by

�(t, A) = #{n ∈ N | Tn ≤ t, Zn ∈ A},
where t ≥ 0 andA is a measurable subset on [0,∞). By using this counting measure, PDMP (1)
can be rewritten as the stochastic integral

Xt = X0 +
∫ t

0
µ(Xs−) ds −

∫ t

0

∫ ∞

0
z�(ds, dz), t ∈ [0, T ].

We define Ft to be the filtration generated by X. Then, from (3) and (4), we have

E

[∫ ∞

0

∫ ∞

0
h(s, z)�(ds, dz)

]
= E

[∫ ∞

0

∫ ∞

0
h(s, z)J (Xs−, dz)λ(Xs−) ds

]
(5)

for any predictable process h(s, z), and, furthermore, if the predictable process h(s, z) satisfies

E

[∫ t

0

∫ ∞

0
|h(s, z)|J (Xs−, dz)λ(Xs−) ds

]
< ∞, t ≥ 0,

then the process
∫ t

0

∫ ∞

0
h(s, z){�(ds, dz)− J (Xs−, dz)λ(Xs−) ds}, t ≥ 0,

becomes an Ft -martingale; see Chapter 8 of Brémaud (1981) and Chapter 4 of Last and Brandt
(1995).

In the following, we assume that PDMP (1) is ergodic with invariant density f . Also,
PDMP (1) is assumed to be stationary, that is, the initial random variableX0 is governed by f .
We note that the condition

lim inf
x→−∞(µ(x)− λ(x)m(x)) > 0 > lim sup

x→∞
(µ(x)− λ(x)m(x)),

where

m(x) =
∫ ∞

0
zJ (x, dz),
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is well known and reasonable for the ergodicity. We now further assume that

∫
R

λ(x)f (x) dx < ∞. (6)

Precise sufficient conditions for these two assumptions are discussed inAppendixA of Borovkov
and Last (2008); see also Last (2004).

3. Local time of the PDMP

In this section we provide some auxiliary results for the local time �T (x) of PDMP (1).

Definition 1. The local time �T (x) of PDMP (1) is defined by

�T (x) = 1

µ(x)
#{t : Xt = x, 0 ≤ t ≤ T }. (7)

The local time�T (x) is regarded as the occupation density, since, for any Borel measurable
function g(x), we have

∫ T

0
g(Xt ) dt =

∞∑
n=1

∫
[Tn−1∧T ,Tn∧T )

g(Xt ) dt

=
∞∑
n=1

∫
[Tn−1∧T ,Tn∧T )

g

(
XTn−1 +

∫ t

Tn−1

µ(Xs) ds

)
dt

=
∞∑
n=1

∫
[XTn−1∧T ,XTn∧T )

g(x)
1

µ(x)
dx

=
∫

R

g(x)�T (x) dx.

For all T > 0, the local time (7) is right continuous with a left limit in x and can be used as
the occupation density of its left limit process since �T (x) = �̃T (x) for almost all x, where
�̃T (x) is the local time for the left limit process Xt−, defined similarly as in (7).

Note that the number of upcrossings at level x is almost equal to that of the downcrossings,
which can be represented by

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}�(dt, dz),

where 1A is the indicator function of the set A. Then the first jump overcounts for upcrossings
if X0 > x. On the other hand, the last upcrossing cannot be counted by the jump if XT > x;
see Figure 1 for an illustration. Hence, we provide the stochastic integral representation of the
local time �T (x) as

�T (x) = 1

µ(x)

{
1{XT >x} − 1{X0>x} +

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}�(dt, dz)

}
. (8)
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Figure 1: Relation between the upcrossing at level x and the jump.

4. Results

First, we consider the nonparametric estimation of the stationary density f of PDMP (1)
in the situation where the conditional intensity λ(·) and the jump size distribution J (·, ·) are
unknown. We denote the LTE f ◦

T (x) for the stationary density of PDMP (1) by

f ◦
T (x) = �T (x)

T
. (9)

As mentioned in Bosq and Davydov (1999), the LTE f ◦
T (x) is an unbiased estimator of f (x),

i.e. f (x) = E[f ◦
T (x)] for any T . Therefore, by (5) and (8), we obtain the relation

f (x) = 1

T

1

µ(x)
E

[∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}�(dt, dz)

]

= 1

µ(x)

∫
R

∫ ∞

0
1{x<y≤x+z} J (y, dz)λ(y)f (y) dy. (10)

We now show the uniform consistency of LTE (9). For this proof, we recall the definition of
bracketing numbers of a seminormed space (�, ‖ · ‖). Given two functions � and u, each of
which may or may not belong to �, the bracket [�, u] is the set of all functions ψ ∈ � with
� ≤ ψ ≤ u. An ε-bracket is a bracket [�, u] such that ‖� − u‖ < ε. The bracketing number
N[ ](ε,�, ‖·‖) is the minimum number of ε-brackets needed to cover�. For more information
of this method, we refer the reader to van der Vaart and Wellner (1996). In the following, we
always consider the limit T → ∞.

Theorem 1. The LTE f ◦
T is uniformly consistent, i.e.

sup
x∈R

|f ◦
T (x)− f (x)| P−→ 0.

Proof. For the proof, it is sufficient to show that

sup
x∈R

|µ(x)f ◦
T (x)− µ(x)f (x)| P−→ 0,
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since infx∈R µ(x) > 0. We note that

|µ(x)f ◦
T (x)− µ(x)f (x)|

≤ 1

T
| 1{XT >x} − 1{X0>0} |

+
∣∣∣∣ 1

T

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z} J (Xt−, dz)λ(Xt−) dt − µ(x)f (x)

∣∣∣∣
+

∣∣∣∣ 1

T

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}{�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

∣∣∣∣ (11)

and take the supremum over all x ∈ R. The first term on the right-hand side of (11) obviously
converges to 0. In order to evaluate the other two terms, we introduce the class

H = {h(y, z) = 1{x<y≤x+z}, x ∈ R}.
By Theorem 2.7.5 of van der Vaart and Wellner (1996), for any ε > 0, the class H satisfies
N(ε) = N[ ](ε,H , ‖ · ‖) < ∞, where the seminorm is given by

‖h‖ =
∫

R

∫ ∞

0
h(y, z)J (y, dz)λ(y)f (y) dy.

Then there exist N(ε)-brackets [lk, uk], k = 1, . . . , N(ε), such that

εk =
∫

R

∫ ∞

0
|uk(y, z)− lk(y, z)|J (y, dz)λ(y)f (y) dy < ε.

For the second term in (11), it follows from (10) that, for any h ∈ [lk, uk],
1

T

∫ T

0

∫ ∞

0
h(Xt−, z)J (Xt−, dz)λ(Xt−) dt − µ(x)f (x)

≤ 1

T

∫ T

0

∫ ∞

0
uk(Xt−, z)J (Xt−, dz)λ(Xt−) dt

−
∫

R

∫ ∞

0
lk(y, z)J (y, dz)λ(y)f (y) dy.

Therefore, the ergodicity of Xt− leads to

sup
x∈R

{
1

T

∫ T

0

∫ ∞

0
h(Xt−, z)J (Xt−, dz)λ(Xt−) dt − µ(x)f (x)

}

≤ max
1≤k≤N(ε)

{
1

T

∫ T

0

∫ ∞

0
uk(Xt−, z)J (Xt−, dz)λ(Xt−) dt

−
∫

R

∫ ∞

0
lk(y, z)J (y, dz)λ(y)f (y) dy

}

→ max
1≤k≤N(ε)

{∫
R

∫ ∞

0
uk(y, z)J (y, dz)λ(y)f (y) dy

−
∫

R

∫ ∞

0
lk(y, z)J (y, dz)λ(y)f (y) dy

}

< ε.
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By an analogous argument for the lower bound

inf
x∈R

{
1

T

∫ T

0

∫ ∞

0
h(Xt−, z)J (Xt−, dz)λ(Xt−) dt − µ(x)f (x)

}

≥ min
1≤k≤N(ε)

{
1

T

∫ T

0

∫ ∞

0
lk(Xt−, z)J (Xt−, dz)λ(Xt−) dt

−
∫

R

∫ ∞

0
uk(y, z)J (y, dz)λ(y)f (y) dy

}
,

we obtain

sup
x∈R

∣∣∣∣ 1

T

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z} J (Xt−, dz)λ(Xt−) dt − µ(x)f (x)

∣∣∣∣ P−→ 0,

since the choice of ε is arbitrary.
The proof is completed by showing that

sup
x∈R

∣∣∣∣ 1

T

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}{�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

∣∣∣∣ P−→ 0,

which can be done similarly. That is,

sup
x∈R

{
1

T

∫ T

0

∫ ∞

0
1{x<Xt−≤x+z}{�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

}

≤ max
1≤k≤N(ε)

{
1

T

∫ T

0

∫ ∞

0
uk(Xt−, z){�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

}

+ max
1≤k≤N(ε)

{
1

T

∫ T

0

∫ ∞

0
{uk(Xt−, z)− lk(Xt−, z)}J (Xt−, dz)λ(Xt−) dt

}

P−→ 0 + max
1≤k≤N(ε) εk

< ε,

where the convergence of the martingale part is obtained by using Doob’s inequality (see, e.g.
Theorem 1.9.1 of Liptser and Shiryaev (1989)), i.e. for each k and η > 0,

P

(
1

T
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

∫ ∞

0
uk(Xt−, z){�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

∣∣∣∣ > η

)

≤ 1

T

1

η2

∫
R

∫ ∞

0
uk(y, z)

2J (y, dz)λ(y)f (y) dy

→ 0,

since 0 ≤ uk(·, ·) ≤ 1.

Based on the results of the LTE, we consider nonparametric estimation problems for the
jump intensity λ(x) and the jump size distribution function J (x, y) of PDMP (1), where we
use the shortened notation J (x, y) for the conditional jump size distribution J (x, [0, y]). In
the following, we assume that the intensity function λ(x) and the jump size distribution J (x, y)
are continuous on any compact interval on R and R × [0,∞), respectively.
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As an estimator for the jump intensity function λ(x), we define

λ̂T (x) = ÃT (x)

f ◦
T (x)

,

where f ◦
T (x) is the LTE for the stationary density and

ÃT (x) = 1

T

∫ T

0

∫ ∞

0

1

bT
K

(
Xt− − x

bT

)
�(dt, dz). (12)

Here kernel K is a continuous function of bounded variation on I = [α, β] which vanishes
outside I and has integral 1, and bT is the bandwidth satisfying

bT → 0 and T b2
T → ∞ as T → ∞.

To prove the uniform consistency of λ̂T (x), we need the following lemma.

Lemma 1. For any compact interval [γ1, γ2],
sup

x∈[γ1,γ2]
|ÃT (x)− λ(x)f (x)| P−→ 0.

Proof. With obvious notation, we write

ÃT (x) = 1

T

∫ T

0

∫ ∞

0

1

bT
K

(
Xt− − x

bT

)
J (Xt−, dz)λ(Xt−) dt

+ 1

T

∫ T

0

∫ ∞

0

1

bT
K

(
Xt− − x

bT

)
{�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}

= 1

T
UT + 1

T
VT .

It then follows from Theorem 1 that

1

T
UT = 1

T

∫ T

0

1

bT
K

(
Xt− − x

bT

)
λ(Xt−) dt

= 1

T

∫
R

1

bT
K

(
y − x

bT

)
λ(y)�T (y) dy

=
∫

R

1

bT
K

(
y − x

bT

)
λ(y)f (y) dy +

∫
R

1

bT
K

(
y − x

bT

)
λ(y)

(
�T (y)

T
− f (y)

)
dy

P−→ λ(x)f (x) uniformly in x ∈ [γ1, γ2],
since both λ and f are uniformly continuous on any compact interval.

Next we show that VT /T uniformly converges to 0 by checking the conditions in Theorem
3.2 of Nishiyama (2000). For condition [C2] of Nishiyama (2000), by the assumption that
T b2

T → ∞ and (6), we have
〈

1

T
V·

〉
T

= 1

T 2

∫ T

0

1

b2
T

K

(
Xt− − x

bT

)2

λ(Xt−) dt

≤ L2

T b2
T

1

T

∫ T

0
λ(Xt−) dt

P−→ 0,
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where L = supx∈[α,β] |K(x)| < ∞. Analogously, condition [L2] of Nishiyama (2000),

∫ T

0
|W̄t |2 1{W̄t>ε} λ(Xt−) dt

P−→ 0,

is easily obtained, where

W̄t = sup
x∈[α,β]

{
1

T

1

bT
K

(
Xt− − x

bT

)}
= L

T bT
.

Finally, we check condition [PE] of Nishiyama (2000). For any ε > 0, choose some finite
points γ1 = x0 < x1 < · · · < xN(ε) = γ2 such that xk−xk−1 ≤ ε2 withN(ε) ≤ (constant)ε−2.

Then the entropy condition
∫ 1

0

√
logN(ε) dε < ∞ also holds. The proof is completed by

showing that

sup
ε>0

max
1≤k≤N(ε)

1

ε2

1

(T bT )2

∫ T

0
sup

u,v∈[xk−1,xk]

∣∣∣∣K
(
Xt− − u

bT

)
−K

(
Xt− − v

bT

)∣∣∣∣
2

λ(Xt−) dt

= OP(1). (13)

Since the kernel function K has bounded variation on I = [α, β], the Lebesgue–Stieltjes
integral yields the representation

K(x)−K(α) =
∫
I

1{z<x} dK(z).

Furthermore, the kernel function can be decomposed as K = K1 −K2, where K1 and K2 are
nondecreasing functions having bounded variation on I . Therefore, we obtain∣∣∣∣K

(
Xt− − u

bT

)
−K

(
Xt− − v

bT

)∣∣∣∣
≤

∫
I

| 1{z<(Xt−−u)/bT } − 1{z<(Xt−−v)/bT } | d(K1(z)+K2(z)).

By Hölder’s inequality, it follows that

sup
u,v∈[xk−1,xk]

∣∣∣∣K
(
Xt− − u

bT

)
−K

(
Xt− − v

bT

)∣∣∣∣
2

≤ |K|TV

∫
I

| 1{z<(Xt−−xk−1)/bT } − 1{z<(Xt−−xk)/bT } | d(K1(z)+K2(z)),

where |K|TV means the total variation of K . Thus, we have

max
1≤k≤N(ε)

1

T

∫ T

0
sup

u,v∈[xk−1,xk]

∣∣∣∣K
(
Xt− − u

bT

)
−K

(
Xt− − v

bT

)∣∣∣∣
2

λ(Xt−) dt

≤ |K|TV max
1≤k≤N(ε)

∫
I

∫
R

1{xk−1+zbT <x≤xk+zbT } λ(x)
�T (x)

T
dx d(K1(z)+K2(z))

≤ |K|2TV sup
x∈[γ1+αbT ,γ2+βbT ]

{
λ(x)

�T (x)

T

}
ε2.

Hence, (13) holds since supz{�T (z)/T } is stochastically bounded.
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As a direct consequence of this lemma and Theorem 1, we have the following result.

Theorem 2. For any ε > 0,

sup
x∈Iε

|λ̂T (x)− λ(x)| P−→ 0,

where Iε = {x : f (x) ≥ ε}.
Next, for the conditional jump size distribution J (x, y), we propose the estimator

ĴT (x, y) = B̃T (x, y)

ÃT (x)
,

where ÃT is given by (12) and

B̃T (x, y) = 1

T

∫ T

0

∫ y

0

1

bT
K

(
Xt− − x

bT

)
�(dt, dz).

Here the kernel function K and bandwidth bT are selected similarly as for ÃT . Then the
following result holds.

Theorem 3. For any ε > 0,

sup
(x,y)∈Hε×R+

|ĴT (x, y)− J (x, y)| P−→ 0,

where Hε = {x : λ(x)f (x) ≥ ε} and R+ = [0,∞).

Proof. As with the case for the intensity estimation, we show that, for any compact interval
[γ1, γ2],

sup
(x,y)∈[γ1,γ2]×R+

{B̃T (x, y)− J (x, y)λ(x)f (x)} P−→ 0. (14)

We write

B̃T (x, y) = 1

T

∫ T

0

∫ y

0

1

bT
K

(
Xt− − x

bT

)
J (Xt−, dz)λ(Xt−) dt

+ 1

T

∫ T

0

∫ y

0

1

bT
K

(
Xt− − x

bT

)
{�(dt, dz)− J (Xt−, dz)λ(Xt−) dt}.

It follows, from the uniform continuity of λ, f , and J , that the first term converges in probability
toJ (x, y)λ(x)f (x)uniformly on (x, y) ∈ [γ1, γ2]×R+. As above, we prove that the martingale
part converges to 0 in probability. Conditions [C2] and [L2] in Theorem 3.2 of Nishiyama (2000)
can be checked analogously. For condition [PE] of Nishiyama (2000), we use the following
partitioning. For any ε > 0, choose some finite point γ1 = x0 < x1 < · · · < xN1(ε) = γ2 such
that xk − xk−1 ≤ ε2 with N1(ε) ≤ (constant)ε−2 and, for the same ε, choose 0 = z0 < z1 <

· · · < zN2(ε) = ∞ such that

sup
y∈R

∫ zj

zj−1

J (y, dz) < ε2,

with N2(ε) ≤ (constant)ε−2. Then the total number of partitions N (ε) for [γ1, γ2] × R+
satisfies N (ε) = N1(ε)×N2(ε) ≤ (constant)ε−4. Therefore, it holds that∫ 1

0

√
log N (ε) dε < ∞.
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Set �k,j = (xk−1, xk] × (zj−1, zj ] for 1 ≤ k ≤ N1(ε) and 1 ≤ j ≤ N2(ε). We show that

sup
ε>0

max
k,j

1

ε2

1

(T bT )2

∫ T

0

∫ ∞

0
sup

(u,ξ),(v,η)∈�k,j

∣∣∣∣1{z≤ξ}K
(
Xt− − u

bT

)
− 1{z≤η}K

(
Xt− − v

bT

)∣∣∣∣
2

× J (Xt−, dz)λ(Xt−) dt

= OP(1).

It is obvious that, for any (u, ξ), (v, η) ∈ �k,j ,

∣∣∣∣1{z≤ξ}K
(
x − u

bT

)
− 1{z≤η}K

(
x − v

bT

)∣∣∣∣
≤

∣∣∣∣K
(
x − u

bT

)
−K

(
x − v

bT

)∣∣∣∣ + | 1{z≤ξ} − 1{z≤η} |K
(
x − u

bT

)
.

Note that

max
k,j

1

T

∫ T

0

∫ ∞

0
sup

ξ,η∈[zj−1,zj ]
u∈[xk−1,xk]

| 1{z≤ξ} − 1{z≤η} |2K
(
Xt− − u

bT

)2

J (Xt−, dz)λ(Xt−) dt

≤ sup
x∈[γ1+αbT ,γ2+βbT ]

{
λ(x)

�T (x)

T

}
L2ε2,

so, by taking account of (13), we have

sup
ε>0

max
k,j

1

ε2

1

(T bT )2

∫ T

0

∫ ∞

0
sup

(u,ξ),(v,η)∈�k,j

∣∣∣∣1{z≤ξ}K
(
Xt− − u

bT

)
− 1{z≤η}K

(
Xt− − v

bT

)∣∣∣∣
2

× J (Xt−, dz)λ(Xt−) dt

≤ sup
ε>0

max
k,j

22

ε2

1

T b2
T

{
1

T

∫ T

0
sup

u,v∈[xk−1,xk]

∣∣∣∣K
(
Xt− − u

bT

)
−K

(
Xt− − v

bT

)∣∣∣∣
2

λ(Xt−) dt

+ 1

T

∫ T

0

∫ ∞

0
sup

ξ,η∈[zj−1,zj ]
u∈[xk−1,xk]

| 1{z≤ξ} − 1{z≤η} |2K
(
Xt− − u

bT

)2

× J (Xt−, dz)λ(Xt−) dt

}

= OP(1).

Hence, we obtain the uniform convergence (14). Together with Lemma 1, this completes the
proof.
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