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FIRST PASSAGE PROBLEMS FOR
ASYMMETRIC WIENER PROCESSES
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Abstract

The problem of computing the moment generating function of the first passage time T

to a > 0 or −b < 0 for a one-dimensional Wiener process {X(t), t ≥ 0} is generalized
by assuming that the infinitesimal parameters of the process may depend on the sign of
X(t). The probability that the process is absorbed at a is also computed explicitly, as is
the expected value of T .
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1. Introduction

In a relatively recent paper, Chong et al. (2000) obtained results about cover times for
asymmetric random walks. The cover time is the number of steps taken by the random walk
until its range is of a given magnitude. They also studied this problem for Brownian motions.

Carlsund (2003) considered the cover time problem for sign-dependent random walks (that
is, simple random walks for which the one-step transition probabilities may be different on the
positive and negative half-lines) with exponential holding times. In addition, she computed
the moment generating function of the time of first passage to a > 0 or −b < 0, assuming
that the process starts at the origin. By using an appropriate scaling, she obtained the moment
generating function of the same first passage time for an asymmetric Brownian motion (also
starting at the origin).

Here we generalize and extend Carlsund’s results for asymmetric Brownian motions
{X(t), t ≥ 0}. In Section 2, the moment generating function of the first passage time T (x) to
a > 0 or −b < 0 will be computed explicitly for any starting value X(0) = x of the process in
the interval (−b, a). We will also calculate the probability that X(T (x)) = a and the expected
value of T (x). A few remarks conclude the paper, in Section 3.

2. Explicit results

Let {W(t), t ≥ 0} be a Wiener process with infinitesimal parameters µ and σ 2, and define

τ(w) = inf{t > 0 : W(t) = a or W(t) = −b | W(0) = w},
where w ∈ (−b, a). The distribution of the random variable τ(w) is well known, as is the
probability P[W(τ(w)) = a] (see, for example, Cox and Miller (1965, p. 222, p. 233)).

In this note, {X(t), t ≥ 0} is a Wiener process with infinitesimal parameters µ+ and σ 2+
when X(t) > 0, and µ− and σ 2− when X(t) < 0. Moreover, when the process hits the origin, it
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176 M. LEFEBVRE

goes right with probability p and left with probability q := 1 − p. Thus, {X(t), t ≥ 0} could
be called a sign-dependent Wiener process. We prefer the term asymmetric Wiener process,
because we could actually assume that its infinitesimal parameters change when it crosses any
given barrier, not necessarily the origin.

One way to obtain the process described above is to start with a sign-dependent random walk
such that, for every time unit δ+t , from any state kδ+x (with k > 0) it moves δ+x units to the
right with probability p+ and it moves δ+x units to the left with probability q+. When k < 0,
δ+, p+, and q+ are replaced by δ−, p−, and q−, respectively. Moreover, when the random
walk hits the origin, it goes right δ+x units with probability p and it goes left δ−x units with
probability q. Then, taking the limit as δ±t and δ±x decrease to zero, with (δ±x)2/δ±t = σ 2±,
we get the asymmetric Wiener process, assuming that the difference p± − q± is equal to
(µ±/σ 2±)δ±x.

The asymmetric Wiener process is related to the so-called skew Brownian motion introduced
by Itô and McKean (1974, p. 115); see also Harrison and Shepp (1981). In the case of a skew
Brownian motion, the process behaves like a standard Brownian motion with a reflecting barrier
at the origin, except that when it hits the origin it is reflected to the positive part of the real axis
with probability p and it is reflected to the negative part of the real axis with probability 1 − p,
where 0 < p < 1.

We now present an application of the asymmetric Wiener process. Suppose that X(t) is the
price of a stock or a commodity, such as gold or oil, at time t . In practice, when this price
reaches a certain threshold, it often becomes much more volatile. For example, if we accept
that a Wiener process could serve as a model for the price of gold above $400, or the price of a
barrel of oil above $50, it is reasonable to assume that the variance parameter, in particular, is
larger when the price of the commodity is above the mentioned threshold.

Next, let
T (x) = inf{t > 0 : X(t) = a or X(t) = −b | X(0) = x}, (1)

where a > 0, b > 0, and x ∈ (−b, a), and let

M(x) = E[e−αT (x)],
where α is a positive constant. The moment generating function M(x) satisfies the Kolmogorov
backward equation

1
2σ 2±M ′′(x) + µ±M ′(x) = αM(x), (2)

where the ‘+’ sign is chosen when x > 0, the ‘−’ sign is chosen when x < 0, and a prime
denotes differentiation with respect to x.

Ovaskainen and Cornell (2003) considered Kolmogorov equations of the type shown in
(2), and gave the appropriate boundary conditions at the origin when the corresponding diffu-
sion process is obtained as the limiting process of a particular continuous-time, discrete-state
stochastic process. They also gave general results about hitting probabilities and occupancy
times for multidimensional diffusion processes with possible discontinuities across interior
boundaries. These processes have applications in biology.

Now, to compute the quantities of interest for the asymmetric Wiener process, we will modify
it as follows. We assume that when the process hits the origin, it jumps to δ > 0 with probability
p and to −δ with probability q, where δ is smaller than a and −b. Let Tδ(x) be the random
variable corresponding to T (x) in this case and let Mδ(x) be its moment generating function.
We can show, in particular, that

M(x) = lim
δ↓0

Mδ(x).
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We define

F : the event that the process X(t) hits a before 0 from x ∈ (0, a),

G : the event that the process X(t) hits −b before 0 from x ∈ (−b, 0),
(3)

and
T +

x,a : the time taken by X(t) to go from x ∈ (0, a) to a without hitting 0,

T +
x,0 : the time taken to go from x ∈ (0, a) to 0 without hitting a,

T −
x,−b : the time taken to go from x ∈ (−b, 0) to −b without hitting 0,

T −
x,0 : the time taken to go from x ∈ (−b, 0) to 0 without hitting −b.

(4)

2.1. Moment generating function of T (x)

We may write, for 0 < x < a,

Mδ(x) := E[e−αTδ(x)]
= E[e−αTδ(x) | F ] P[F ] + E[e−αTδ(x) | F c] P[F c]
= E[e−αT +

x,a ] P[F ] + E[e−α(T +
x,0+Tδ(0))] P[F c]

= Mx,a + Mx,0Mδ(0) (by independence),

where
Mx,a := E[e−αT +

x,a ] P[F ] and Mx,0 := E[e−αT +
x,0 ] P[F c]. (5)

Similarly, we define, for −b < x < 0,

Nx,−b = E[e−αT −
x,−b ] P[G] and Nx,0 = E[e−αT −

x,0 ] P[Gc].
Then, we have

Mδ(0) = pMδ(δ) + qMδ(−δ),

with
Mδ(δ) = Mδ,a + Mδ,0Mδ(0),

Mδ(−δ) = N−δ,−b + N−δ,0Mδ(0).

It follows that

Mδ(x) = Mx,a + Mx,0
pMδ,a + qN−δ,−b

1 − pMδ,0 − qN−δ,0
.

Finally,

M(x) = lim
δ↓0

Mδ(x) = Mx,a + Mx,0 lim
δ↓0

pMδ,a + qN−δ,−b

1 − pMδ,0 − qN−δ,0
, for 0 < x < a. (6)

The limit is obtained by using l’Hôpital’s rule.
Now, as a function of x, the function Mx,a satisfies the Kolmogorov backward equation

1
2σ 2+M ′′

x,a + µ+M ′
x,a = αMx,a, (7)

subject to the boundary conditions

Mx,a|x=a = 1 and Mx,a|x=0 = 0. (8)
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Similarly,
1
2σ 2+M ′′

x,0 + µ+M ′
x,0 = αMx,0,

subject to
Mx,0|x=a = 0 and Mx,0|x=0 = 1. (9)

When x is negative, we have

1
2σ 2−N ′′

x,−b + µ−N ′
x,−b = αNx,−b,

subject to
Nx,−b|x=−b = 1 and Nx,−b|x=0 = 0,

and
1
2σ 2−N ′′

x,0 + µ−N ′
x,0 = αNx,0,

subject to
Nx,0|x=−b = 0 and Nx,0|x=0 = 1.

We can easily solve the ordinary differential equations satisfied by the functions Mx,a , Mx,0,
etc. Let

β± = 2µ±
σ 2±

, λ± =
√

β2± + 8α

σ 2±
, (10)

γ ±
1 = −β± − λ±

2
, γ ±

2 = −β± + λ±
2

.

We find that

Mx,a = eγ +
1 x − eγ +

2 x

eγ +
1 a − eγ +

2 a
, Mδ,a = Mx,a|x=δ, (11)

Mx,0 = eγ +
1 (x−a) − eγ +

2 (x−a)

e−γ +
1 a − e−γ +

2 a
, Mδ,0 = Mx,0|x=δ, (12)

Nx,−b = eγ −
1 x − eγ −

2 x

e−γ −
1 b − e−γ −

2 b
, N−δ,−b = Nx,−b|x=−δ,

Nx,0 = eγ −
1 (x+b) − eγ −

2 (x+b)

eγ −
1 b − eγ −

2 b
, N−δ,0 = Nx,0|x=−δ.

Then, using (6) and l’Hôpital’s rule, we obtain the following proposition.

Proposition 1. The moment generating function of the random variable T (x) defined in (1) is

M(x) = Mx,a + Mx,0

[(
p

γ +
2 − γ +

1

eγ +
1 a − eγ +

2 a
+ q

γ −
1 − γ −

2

e−γ −
1 b − e−γ −

2 b

)

×
(

p
γ +

1 e−γ +
1 a − γ +

2 e−γ +
2 a

e−γ +
1 a − e−γ +

2 a
− q

γ −
1 eγ −

1 b − γ −
2 eγ −

2 b

eγ −
1 b − eγ −

2 b

)−1]
, (13)

for 0 < x < a, where Mx,a and Mx,0 are given by (11) and (12), respectively.
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Remark 1. The value of M(0) is deduced from (8) and (9). That is, M(0) is the expression
between the square brackets in (13). Furthermore, the formula for the case when −b < x < 0
is obtained by replacing Mx,a by Nx,−b, and Mx,0 by Nx,0 in (13).

Remark 2. If we take a = b, p = q = 1
2 , µ± = 0, and σ± = σ , we have γ ±

1 = −γ ±
2 = γ :=

−√
2α/σ , and we retrieve the well-known formula

E[e−αT (x)] = eγ x + e−γ x

eγ a + e−γ a
= cosh γ x

cosh γ a
,

which is valid for −a ≤ x ≤ a.

Remark 3. The function M(x) in the case when there is a single barrier can be deduced from
(13) by taking the limit as b or a tends to infinity.

2.2. The probability of hitting a before −b

Let
πa(x) = P[X(T (x)) = a]

and
πδ

a (x) = P[X(Tδ(x)) = a].
Furthermore, let πx,a = P[F ] and νx,0 = P[Gc], where F and G are defined in (3). For
0 < x < a, we may write

πδ
a (x) = πx,a + (1 − πx,a)π

δ
a (0),

where
πδ

a (0) = pπδ
a (δ) + qπδ

a (−δ).

We have
πδ

a (δ) = πδ,a + (1 − πδ,a)π
δ
a (0)

and
πδ

a (−δ) = ν−δ,0π
δ
a (0),

implying that

πδ
a (x) = πx,a + (1 − πx,a)

pπδ,a

1 − p(1 − πδ,a) − qν−δ,0
.

As a function of x, the function πx,a satisfies the following Kolmogorov backward equation:

1
2σ 2+π ′′

x,a + µ+π ′
x,a = 0,

subject to
πx,a|x=a = 1 and πx,a|x=0 = 0.

We find that

πx,a = 1 − e−β+x

1 − e−β+a
, if µ+ �= 0, (14)

and
πx,a = x

a
, if µ+ = 0. (15)

https://doi.org/10.1239/jap/1143936251 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1143936251


180 M. LEFEBVRE

Similarly,
1
2σ 2−ν′′

x,0 + µ−ν′
x,0 = 0,

subject to
νx,0|x=0 = 1 and νx,0|x=−b = 0,

which implies that

ν−δ,0 = eβ−δ − eβ−b

1 − eβ−b
, if µ− �= 0,

and

ν−δ,0 = b − δ

b
, if µ− = 0.

Hence (after a little bit of work), we obtain the following result.

Proposition 2. If µ± �= 0, then the probability πa(x) that the stochastic process {X(t), t ≥ 0},
starting from X(0) = x, is absorbed at a is

πa(x) = lim
δ↓0

πδ
a (x) = πx,a + (1 − πx,a)

pβ+(1 − eβ−b)

pβ+(1 − eβ−b) + qβ−(e−β+a − 1)
, (16)

for 0 ≤ x < a, where πx,a is given in (14).
In the case when µ+ = µ− = 0, we have

πa(x) = x

a
+

(
1 − x

a

)
pb

pb + qa
. (17)

Remark 4. If a = b, p = q = 1
2 , µ± = µ (�= 0), σ± = σ , and β := 2µ/σ 2, then

πa(x) = eβa − e−βx

eβa − e−βa
, for − a ≤ x ≤ a,

which is correct. With µ = 0 and σ = 1, we obtain

πa(x) = x + a

2a
,

which can also be deduced from

1
2π ′′

a (x) = 0, with πa(a) = 1 and πa(−a) = 0.

Remark 5. If we set x = 0 in (16), the general formula for πa(x), we retrieve the corresponding
formula of Carlsund (2003).

Remark 6. The function πa(x) for −b < x < 0 is given by

πa(x) = νx,0πa(0).

Remark 7. If µ− is positive, then so is β− := 2µ−/σ 2−. Taking the limit of πa(x) as b tends
to infinity, we find that πa(x) = 1, as expected. However, if µ− is negative, we find that

lim
b→∞ πa(x) = πx,a + (1 − πx,a)

pβ+
pβ+ + qβ−(e−β+a − 1)

.

Therefore, it is not certain that the process will be absorbed (at a) in this case.
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Remark 8. To prove that πa(x) = limδ↓0 πδ
a (x), as claimed in Proposition 2, we can compute

first the probability of hitting a/δ+x before −b/δ−x, starting from x/δ+x, for the sign-
dependent Markov chain defined at the beginning of this section, and then find the limiting
probability. In the case when p± = 1

2 , using the well-known results on the gambler’s ruin
problem, we may write (for 0 ≤ x ≤ a)

πx/δ+x,a/δ+x = x/δ+x

a/δ+x
= x

a
.

It follows that

πa/δ+x

(
x

δ+x

)
= x

a
+

(
1 − x

a

)
πaδ+x(0),

where
πa/δ+x(0) = πa/δ+x(δ+x)p + πa/δ+x(−δ−x)q.

Since

πa/δ+x

(
x

δ−x

)
=

(
1 + x

b

)
πa/δ+x(0),

for −b ≤ x < 0, we find, taking the limit as δ+x and δ−x decrease to 0 simultaneously, that

πa/δ+x

(
x

δ+x

)
→ x

a
+

(
1 − x

a

)
pb

pb + qa
.

Hence, we can assert that (17) is valid.
Next, in the asymmetric case, we have

πx/δ+x,a/δ+x = 1 − (q+/p+)x/δ+x

1 − (q+/p+)a/δ+x
,

for 0 ≤ x ≤ a. Furthermore, as mentioned previously, p± −q± must be equal to (µ±/σ 2±)δ±x,
implying that

πx/δ+x,a/δ+x

=
(

1 −
(

2

(µ+/σ 2+)δ+x + 1
− 1

)x/δ+x)(
1 −

(
2

(µ+/σ 2+)δ+x + 1
− 1

)a/δ+x)−1

.

Taking the limit as δ+x decreases to 0, we find that (see (10) and (14))

πx/δ+x,a/δ+x → 1 − e−β+x

1 − e−β+a
.

It is then rather straightforward to retrieve (16).

2.3. The expected value of T (x)

We will compute the expected value of T (x) directly. We let m(x) = E[T (x)] and mδ(x) =
E[Tδ(x)], and we define (see (3) and (4))

mx,a = E[T +
x,a] P[F ],

mx,0 = E[T +
x,0] P[F c],

nx,−b = E[T −
x,−b] P[G],

nx,0 = E[T −
x,0] P[Gc].
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Then we may write (for 0 < x < a)

m(x) = lim
δ↓0

mδ(x) (18)

= mx,a + mx,0 + πx,0 lim
δ↓0

p(mδ,a + mδ,0) + q(n−δ,−b + n−δ,0)

1 − pπδ,0 − qν−δ,0
.

Next, the function Mx,a defined in (5) is given by

Mx,a := E[e−αT +
x,a ] P[F ]

=: E[e−αT +
x,a ]πx,a

= {1 − α E[T +
x,a] + · · · }πx,a

= πx,a − αmx,a + · · · .

Substituting this into the ordinary differential equation (7), we deduce that

1
2σ 2+m′′

x,a + µ+m′
x,a = −πx,a.

The function πx,a is given in (14) (for µ+ �= 0) and the boundary conditions are

mx,a|x=a = mx,a|x=0 = 0. (19)

Similarly, we may write (with νx,0 = P[Gc]; see Section 2.2)

1
2σ 2+m′′

x,0 + µ+m′
x,0 = −πx,0 = −1 + πx,a, with mx,0|x=0,a = 0,

1
2σ 2−n′′

x,0 + µ−n′
x,0 = −νx,0, with nx,0|x=0,−b = 0,

1
2σ 2−n′′

x,−b + µ−n′
x,−b = −νx,−b = −1 + νx,0, with nx,−b|x=0,−b = 0.

When µ± �= 0, we must solve an ordinary differential equation of the form

h′′(x) + ch′(x) = d + ke−cx, (20)

where c �= 0, d , and k are constants, subject to h(0) = 0 and h(a) = 0 (or h(−b) = 0). The
functions mx,a , mx,0, nx,0, and nx,−b can now be obtained by making use of the following
proposition.

Proposition 3. The solution of (20) that satisfies the boundary conditions h(0) = 0 and
h(a) = 0 is

h(x) = dx

c
− kx

c
e−cx + 1 − e−cx

1 − e−ca

{
−da

c
+ ka

c
e−ca

}
.

Moreover, we replace a by −b if the boundary condition is h(−b) = 0 rather than h(a) = 0.

When µ+ = 0, we have (see (15))

1
2σ 2+m′′

x,a = −πx,a = −x

a
.

We find that

mx,a = (a2 − x2)x

3aσ 2+
, for 0 < x < a. (21)
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In a similar way, we can compute mx,0 when µ+ = 0, and nx,0 and nx,−b when µ− = 0.
We find that

mx,0 = (2a2 + x2)x

3aσ 2+
− x2

σ 2+
, for 0 < x < a,

nx,0 = −(2b2 + x2)x

3bσ 2−
− x2

σ 2−
, for − b < x < 0,

nx,−b = −(b2 − x2)x

3bσ 2−
, for − b < x < 0.

Making use of these formulae, we find that, when σ± = 1 and a = b, the function m(x) is
given by (see (18))

m(x) = a2 − x2, for 0 < x < a. (22)

Actually, this solution is valid for x ∈ [−a, a].
Now, in the case of the standard Brownian motion, m(x) satisfies the ordinary differential

equation
1
2m′′(x) = −1, for − a < x < a,

subject to the boundary conditions m(±a) = 0. We find at once that the function obtained
above is indeed the solution to this ordinary differential equation that satisfies the appropriate
boundary conditions.

Remark 9. Instead of proceeding as above, we can use

mx,a = − lim
α↓0

∂

∂α
Mx,a

and the corresponding formulae for mx,0, nx,0, and nx,−b. This will work but is quite tedious.
For instance, if we take µ+ = 0 and σ+ = 1, then the function Mx,a becomes

Mx,a = sinh
√

2αx

sinh
√

2αa
,

and we find (after some work) that

− lim
α↓0

∂

∂α
Mx,a = (a2 − x2)x

3a
,

which agrees with the result (21), with σ+ = 1. Note that this justifies the boundary condition
(see (19)) mx,a|x=0 = 0.

Remark 10. To prove that m(x) = limδ↓0 mδ(x), we can use the formulae in Feller (1968,
p. 348) for the expected duration of the game in the gambler’s ruin problem. In the symmetric
case, this expected duration, denoted by D, is

D(x) = x(a − x), for 0 < x < a.

The corresponding formula for the sign-dependent random walk (with δ±x = δx) between
−a/δx and a/δx is

D

(
x

δx

)
=

[
−

(
x

δx

)2

+ A + B

(
x

δx

)]
δt, for − a

δx
< x <

a

δx
,
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where A and B are chosen to satisfy the boundary conditions

D

(
± a

δx

)
= 0.

We find that

B = 0 and A = a2

(δx)2 ;

thus, when (δx)2 = δt , taking the limit as δx decreases to 0 yields

D

(
x

δx

)
→ a2 − x2,

and we retrieve (22) for m(x).
In the asymmetric case, we could also use the appropriate expressions found in Feller (1968)

to compute the value of m(x), in the same way as we did for the probability πa(x).

3. Conclusion

We have generalized the classical formula giving the moment generating function of the first
passage time T (x) out of the interval (−b, a) for a one-dimensional Wiener process. In our
case, the infinitesimal parameters of the process {X(t), t ≥ 0} are constants that may depend
on the sign of X(t).

To further generalize the results obtained in this note, we could assume that the infinitesimal
parameters µ and σ 2 can take more than two different values each. We could also consider the
case when µ and σ 2 are both random variables in distinct parts of the real line. If µ and σ 2 are
random variables such that each takes a single value over the whole real line, then we simply
have to use conditional expectation to obtain the moment generating function of T (x).

We can also, of course, try to derive the formulae that correspond to the ones presented
here for other diffusion processes, such as the Ornstein–Uhlenbeck process. Although these
problems are not very complicated mathematically, the explicit solutions, especially in the case
of the Ornstein–Uhlenbeck process, will probably be quite involved.
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