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STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL
PROBLEM OF FORWARD AND BACKWARD SYSTEM
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Abstract

The maximum principle for optimal control problems of stochastic systems consisting of
forward and backward state variables is proved, under the assumption that the diffusion
coefficient does not contain the control variable, but the control domain need not be convex.

1. Introduction

The stochastic optimal control problem is important in control theory. A lot of
work has been done on the forward stochastic system. See, for example, Ahmed [2],
Bensoussan [5], Cadenillas and Karatzas [7], Elliott [8], H. J. Kushner [10], Peng [12].
Recently, another kind of stochastic system, the forward and backward stochastic
system, has been developed and studied for its applications in the financial market.
In [13], Peng studied the optimal control problem of such a system. The maximum
principle he obtained is in local form.

In this paper, we discuss a simplified problem of one in [13], in which the diffusion
coefficient does not contain control. We use the "spike variation" method to derive
the maximum principle in global form. Thus the control domain is not necessarily
convex. For the case when there are initial state constraints and final state constraints,
we also obtain a global result by using Ekeland's variational principle. Since some
financial models are in the form of forward and backward stochastic systems, our
results may have applications in the financial market.

Since the existence problem of optimal control is a different issue, we do not
incorporate it in this paper. Some results in this field can be seen in Ahmed [1], [2].

This paper is organized as follows. In Section 2, we state the problem and our
main assumptions. In Section 3, we study the variational equations and variational
inequality. In Section 4, we obtain the maximum principle in global form. In the last
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section, we show how to obtain the maximum principle in case initial and final state
contraints are imposed.

2. Statement of the problem

Let (£2, &, P) be a probability space with filtration &' and W(-) a Rd-valued
standard Wiener process. We assume &' = a{W(s) : 0 < s < t}. We consider the
following forward and backward stochastic control system:

dx = f{x, v, t)dt + a{x, t)dW,,
x(0) = xo,

dy = g(x,y,z,v,t)dt + zdW,, yj

y(T) = h(x(T)),

where

/ : R" x Rk x [0, T] - • R",

a : R" x [0, T] - • ££{Rd; R"),

g : R" x Rm x &(Rd; Rm) x Rk x [0, T] -> Rm,

h: R" -»• Rm.

Let (/ be a non-empty subset of Rk. We set

Wad = {«(•) e JSf|-(O, T; /?*) : w(0 € U, a.e., a.s.}.

Our optimal control problem is to minimize the cost function

= Ey(y(0)),

over ^ , d , where y : Rm -> /?'.
We assume:
(Ht) f, g, a, h, y are continuously differentiable with respect to (x, y, z);
(H2) the derivatives of / , g and a with respect to x, y, z are bounded,

l/,l < C, for fx = fx, ox, gx, gy, gz,

and

|JC|), \Yy\<C{\
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3. Variational equations and variational inequality

The purpose of this section is to introduce the usual first order variational equations
and to derive variational inequality. Let («(•), *(•), y(-), z(-)) be an optimal solution
of the problem. We introduce the following spike variational control:

1 u(t), otherwise,

where e > 0 is sufficiently small, v is an arbitrary &z -measurable random variable
with values in U, 0 < t < T, and supwen \v(a))\ < oo. Let (**(•), / ( • ) , z6(-)) be the
trajectory of system (1) corresponding to control M C ( ) .

We introduce the following variational equations:

f(u<)-f(u)]dt + axXidWt,

gyy\ + gzZx + g(u*) - g(u)]dt + ZidW,,

For convenience, we use the following notation in this paper.

/ , = fAx(t),u(t),t), gx 4 gx(x(t),y(t),z(t),u(t),t),
/ ( « ' ) = /(*(0,«e(0,0, f(0 = f(x(t),u(t),t), etc.

The variational inequality can be obtained from the fact /(we()) — /(«(•)) > 0. The
following lemmas are needed to establish the inequality.

LEMMA 1. Suppose (//i) and (//2) hold. For the first order variations xu ylt zu we
have the following estimations:

sup £ | ^ ( 0 | 2 < C e 2 , (3)
o</<r

sup £|*,(0|4 < Ce\ (4)
o</<r
sup £|3-,(O|2 < Ce\ (5)

0<(;7-

sup E\yi(t)\
4 < Ce\ (6)

(7)

(8)(J
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PROOF. We first prove (3) and (4). The first equation of (2) yields

E\xx(t)\
2 = E

**i ds) + E(f [/(«') - /(«)] dA + E f (a

< 6C2TE f x{
2ds+3E(f (f(ue) - /(«)) ds\ .

Applying Gronwall's inequality,

E\xt(t)\2 < Ce2, for t e [0, T] uniformly.

Similarly (4) holds.
We next estimate ji and zx. Squaring both sides of

= -hx{x{T))x{(T) + j (gxX] + gyyi + gzz{ + g(u() - g(u)) ds,

and using the fact that

EydO / zx(s)dWs = 0,

we get

,2
E\yi{t)\*

( fT V
= E t-hAx(T))xx(T) + I (gxXl + gyyi + gzzx + g(u') - g(u)) ds\

<5C2Ex2(T) + 5C2TE f x2(s)ds + 5C2TE f y2(s)ds

+5C2(T -t)E I z2(s)ds + 5E[ [ (g(ue) - g(u))ds) .
Ji \Jt /

Thus

E\yx(t)\
2 + \E f z2(s)ds<5C2Ex2(T) + 5C2TE f x2(s)ds

1 Ji Jo

+5C2TEj y2(s)ds + 5E(f (g(u<) - g(u))ds\ ,
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Applying Gronwall's inequality,

E\yx(t)\
2<Ce2, t€[T-S,T],

rT

E z2(s)ds<Ce2, te[T-8,T].

Similarly we have

fT'6 ( j . j_ j . t ^ n U/ (g**i + gyy\ + gzZi +g(u)- g(u)) ds.
Jt

= -r,(r -8) +

So

/

T-S /.r-5

z\(s)ds<5E\yx{T-8)\2 + 5C2TE I x2(s)ds
+5C2TE ( y2(s)ds

/

T-S

z2(s)ds

+5£f/" (g(u*)-g(u))ds\ .

Thus
E\ydt)\2 <Ce2, te[T-28,T],

pT-S

E / z2As)ds < Ce2, t e [T - 28, T].

After a finite number of iterations, (5) and (7) are obtained. (6) and (8) can be proved
by using a similar method and the inequality

2

, p >o.

LEMMA 2. Suppose (//i) and (H2) hold. Then we have the following estimations:

sup E\xf(t) -x(t)-Xi(t)\
2<C(e

2, Ce^0, (9)
0<r<r
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sup E | / ( 0 - v(0 - v,(0|2 < C(€
2, Ce -* 0, (10)

o<«<r

E f \z<(t)-z(j)-zx(t)\
2ds<C(e

2 Ce-• 0. (11)
Jo

PROOF. TO prove (9), we observe that

f(x+xuu
()ds+ I o{x+x<)dWs

Jo

dWs

dWs

Aeds+ [ B'dWs
Jo

= I \f(x,u()+f fA

+ [ \<r

= f f(x,u)ds+ f ff{x)dW,+ f' [fxxx+f(ue)-f(u)]ds
Jo Jo Jo

+ f axxidW,+ [ Afds+ f
Jo Jo Jo

= x(0-*o + *i(0+ f
Jo

in which

A'= I [fx(x + X*i,««) - fx{x,u)]dXxu
Jo

B' = I [aAx + kxt) - crAx)] dkxx.
Jo

It follows easily from Lemma 1 that

osup̂  E I (j A* ds\ + ( I B* dWs\ = o(e2). (12)

Since

x((t)-xQ= f f(x(,u<)ds+ f a(x')dWs,
Jo Jo

we get

Jf«(O-jf(O-Jt1(O= / Ct(sKxt-x-xl)ds+ f De(s)(xf-x-Xl)dWs
Jo Jo

+ [ A'ds +f A(ds+ f BedWs,
Jo Jo
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with

C'(s) = [ /jr(*+jt,+A.(jce-jc-jt,),iie)rfA,
Jo

De(s)= f oAx + x^+ktf-x-xx),u
€)dk.

Jo

Using Gronwall's inequality, (9) follows from the above relation and (12).
We next prove (10) and (11). It can be easily checked that

where

So we have

-(f(t)-y(O

Thus it follows

£|/(0 -

= E

>Ax + X l , y -

= h{x{T))

= f (sA
Jo

Jo

+ /'(.
Jo

-y i (O) =

that

-.U + U, . , .

-(A(jce(T))-
fT

+ / U(^./

r & s

rT

y«)-yAt)\2 + E 1 \z

{ - (h(x<(T

-Jo[hA

fT

+ 1 [gO
Ji

))-h(x(T)-

x(T) + kx\(l

Cf, / , Ze, Mf)

+• Xyi, z + kz

f Xyi, z + kz

- *(*(r))) 4

, z % « e ) - g (

yi(O+ / Geds,
Jt

:i,«6)-5y)^)'i

i ,« f ) -gz)dA.zi .

^ + JCI , v + j i , z + z\, u()\ds

— z(s) — z{(s))dWs + I G* ds.

((s)-z(s)-

+ xdT)))

-* (*+* , 3

-zds)\2ds

fT

))]dkxi(T)+ / Geds
Jt
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From Lemma 1 and (9), we see that

sup E( f G(ds] =o(e2),
o<(<r \Ji )

E[h(xHT)) - Hx{T) + xl(T))f = o(e2).

We get (10) and (11) by applying the iterative method used in Lemma 1 to the above
relation.

LEMMA 3. Under the assumptions (H{) and (H2), the following variational inequality
holds:

Eyy(y(0))yi(0)>o(€).

PROOF. From Lemma 2, we have the estimation

E[y(f(0)) - y(y(0) + j,(0))] = o(e).

Therefore

0 < E[y(y(0) + y,(0)) - y(>-(0))] + o(e)

4. The maximum principle in global form

We introduce the adjoint equations and the Hamilton function for our problem.
From the variational inequality obtained in Lemma 3, the maximum principle can be
proved by applying It6's formula.

The adjoint equations are

-dp = (f;p + g*q + cx*xk)dt - kdW,,
p(T) =-h*x(x(T))q(T),
-dq = g*yqdt + g*qdW,,

g(0) = -yy(y(0)),

and the Hamiltonian function is

H(x, v, z, v, p, q, k, t) = {p, f(x, v, ?)) + (q, g(x, y, z, v, t)) + (k, o(x)),

where

H : R" x Rm x i f (Rd; Rm) x Rk x R" x Rm x 3f(Rd; Rn)
x[0, T]^ R".
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Relations (13) can be rewritten as

-dp = Hxdt - kdW,,
p{T) = -h*x(x(T))q(T),
-dq = Hydt + H2dW,, y }

= -Yy(y(Q))-

From (14) and Lemma 3, we have

THEOREM 1. Suppose (//,) and (//2) hold. Let («(•),*(•)> y(-), z()) be an optimal
control and its corresponding trajectory of (1), (/?(•). q(-), k(-)) be the corresponding
solution of (14). Then the maximum principle holds, that is

H{x(t), y(t), z(t), v, p{t),q{t), k(t), t)

> H(x(t), y(t), z(t), u(t), p{t), q(t), *(/), 0, Vu 6 U, a.e., a.s. (15)

PROOF. By applying Ito's formula to (p, Xi) and (q, y^), it follows from (2) and (14)
that

o(€) < Eyy(y(0))yi(.0)

= E f [H(x(t),y(t),z(t),ue(t),p(t),q(t),k(t))
Jo

-H(x(t), y(t), z(0, «(0, P(.O, q(t), k{t)] dt.

From the above inequality, (15) can be easily derived.

5. Problem with state constraints

In this section, we discuss briefly the case when there are initial state constraints
and final state constraints on the state variables:

Gi :

Go :

r (T, (YiTW

EGo(y(O))

Rn - + /?"',

A —^ A ,

= 0,
= 0,

«1 <

mi < m.

where

We assume
(7/3) Go, G\ are continuously differentiable and Go*, G\x are bounded;
(//4) the control domain U is closed.
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We apply Ekeland's variational principle to solve this optimal control problem. We
first define the metric in °l/ad. For «(•), v(-) e ^ad, let

<*(«(•), «(•)) = £mes{f € [0, T] : u(t) # v(f)}.

With this metric, if2^ad, d(-, •)) is a complete space.
Let («(•), *(•)> >>(•), z(0) be an optimal solution of the problem. For v(-) e ^d,

we define

j))\2 + E\Go(y(.O; v))\2

+[£y(y(O; v)) - Ey(y(Q)) + pf)k.

It can be checked that Jp(v(-)) : %d -> R1 is continuous, and

/„(«(•)) > 0, Vw(.) e % , ,

/p («(•)) = P.

Obviously, we have

From Ekeland's variational principle, there exists vp(-) € attad such that

(1) Jp(vp(-)) < Jp(u(-)) = p,

p (16)

(3) yp(u>(-)) > />„(• ) ) - y/pd(w(-), vp(-)), for u,(.) 6 ^ .

Making "spike variation"

„•(,) = { "' ^ '^ T + €-
" \ vp(t), otherwise,

for vp as in Section 3, it follows from (16) that

O; wP(0) > 0. (17)

Let (*p. Jp» Zp) and (J:*, 3;*, z^()) be the corresponding trajectories to vp (•) and v*()
respectively. The variational equations is the same as the one in Section 3, with (JC() ,

>"(•). *(•)) = (xp(-), y p ( ) , z p ( ) ) , M(-) = u p ( ) . Similarly to the approach in Lemma 2,
it can be shown that

sup E\x;(t) -xp(t) -xpl(t)\
2 < C(e\ Ce - • 0,

o</<r
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sup E\y<p{t) - yp(t) - ypl(t)\
2 < C(e\ C( -* 0,

o</<r

fT

E / \zp(t) - zp{t) - zpl(t)\
2 < C(e\ C€ -* 0.

Jo
Thus

/P
2K(-)) - Jp(vP(-)) = 2{EGdxP(T)), EGu(xp(T))xpl(T))

), EG0x(yP(0))yPi(0)) (18)

Let

re 2EGoQv(O))

h€ ^ 2 £ [ y ( y p ( 0 ) ) - y ( y ( 0 ) ) + p ]

Since

Jp(v(-))>0, JMp(-))>0, JP(vp(-))-+Jp(vp(-)), 6 ^ 0 ,

it follows from (17) and (18) that

(hpX, EG,Axp(T))xpi(T)) + (hpl, EG0AyP(0))yPi(0))

+(hp0, Eyy(yp(0))ypl(fl)) +ejp~ + o(e) > 0. (19)

Let (pp, kp, qp) be the solution of

-dpp = lf*(xp, vp)pp + g*x(xp, yp, zp, vp)q
(
p + a*(xp)k

e
p]dt - kpdWt,

(20)
= Gix(xP(J))hpx'-h*(xp{T))qHJ),

-dqP = g*y(xp, yp,zp, vp)qpdt + gz(xp, yp,zp, vp)qpdW,,

Using Ito's formula, (19) can be rewritten as

E f [H(xp,yp,zp,vl,pP,qP,k(
p) (21)

Jo
-H(xp, yp, zp, vp, pp, qp, kp)] dt + e Jp + o(e) > 0,
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where

H(x, y, z, v, p, q, k) = (p, f(x, v)) + (q, g(x, y, z, v)) + (k, o(x)).

Since

there exists a convergent subsequence (h(
p0, he

pl, hp2) with

O, hpU hp2), e - • 0, (22)

Let (pp, qp, kp) be the solution of

-dpp = [f*(Xp, vp)pp + g*(Xp, yp,zp, Vp)qp + o*(xp)kp\ dt - kpdW,,
pp(T) = Glx(xP(T))hpl - h*x(xp(T))qp(T),
-dqP = g*(xp, yp, Zp, vp)qpdt + g*(xp, yp, zp, vp)qpdWt,
<?P(0) = -(G0x(yp(0))hp2 + Yy(yp(O))hpo).

It can be easily proved that

pp - * pp in J$£(O, T, R"),

qp -+ qp in JfJr(O, T, Rm),

ke —>• k in SP2 CO T ^(Rd R"W

So from (21) we have

H{xp, yp, zp, v, pp, qp, kp)

- H(Xp,yp,zp,Vp, pp,qp,kp) + ^/p>0. Vv e U, a.e.,a.s. (23)

Similarly from (22), there exists a subsequence of (hp0, hp\, hp2) which converges to
(h0, hi, h2) with

Since vp(-) -+ u() p -> 0, consequently,

xP(-) -> Jr(-) in S%(0, T, R"),

yp(-) —*• y(-) in Sf^(0, T, Rm),

XP1\') — ' -* lV/ in -*_^Wi 1 i "• )>

~> yi(-) in ^(0,T,Rm),

->z,(-) in JSfi(0.1
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where (x{ (•), yt (•), z{ (•)) is the solution of the variational equations whose forms are
the same as (2).

We introduce the adjoint equations of the above variational equations as

-dp = [/;(*, u)p + g*(x, y, z, u)q + a*x{x)k]dt - kdW,,
p(T) = G

(24)
-dq =g*(x,y,z,u)qdt +g*(x,y,z,u)qdW,,

9(0) = -(GoAy(O))h2 + yy(y(O))ho).

It can be proved that

PP(-) -> p(0 in ifJr(O, 7\ /?"),

9/>(0 ->• 9(0 in ifJr(O, r , /?m),

MO -* *(0 in JS£(O, 7\ i f (/?d, /?"))•

Let p - • 0 in (23). Then the following inequality holds.

H(x(t), y(t), z(t), v, p(t), q{t), k(t)) -

H(x(t),y(t),z(t),u(t),p(t),q(t),k(t))>O, WveU, a.e.,a.s. (25)

So we have the following theorem.

THEOREM 2. Assume (//,), (//2), (H3) and (//4) hold. Let (M( ), JC(-), y(-), z(0) be an
optimal solution of the optimal control problem stated at the beginning of this section,
and (p{-), 9 ( ) , £(0) be the corresponding solution of the adjoint equations (24). Then
the maximum principle (25) holds.

Remark

For the forward stochastic system in which control enters into the diffusion co-
efficient, the maximum principle in global form can be found in Arkin and Saksonov
[4], Bismut [6], Cadenillas and Karatzas [7], and Peng [12]. But for the forward and
backward stochastic system, such an optimal control problem is still an open problem.
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