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ON QUASICAUSTICS AND THEIR LOGARITHMIC
VECTOR FIELDS

S. JANECZKO

Suppose F: ((7n+l X C, 0) —» [C, 0) is a germ of a holomorphic function, and
(S, 0) C (Cn+1, 0) is a germ of some hypersurface in (<7n+1, 0) . The quasicaustic
Q(F) of F is defined as Q(F) = {o e C; F(», a) has a critical point on S}. We
investigate the structure of quasicaustics corresponding to boundary singularities.
The procedure for calculating the modules of logarithmic vector fields is given. The
minimal set of generators for the Whitney's cross-cap singular variety is explicitly
calculated.

1. INTRODUCTION

Let H = I M X M, 7r|a; — 7rJa;J be a product symplectic space — the phase space

of geometrical optics (see [6]), where (M, w), ( M, UM are two copies of the symplectic
space of oriented lines in Euclidean space V (see [8]). Geometrically, quasicaustics
appear in diffraction on apertures (see [9]). If A C II is a Lagrangian subvariety
representing an optical instrument (say a halfplane aperture [8]) and L is an incident
system of rays, that is, also a Lagrangian subvariety of (M, u), then the Lagrangian
variety of diffracted rays is a symplectic image A(L) (see [7]). Let iry : T*V —> V be the
usual projection and L the canonical representative of A(L) in T*V (see [6]). Then the
caustic of L is denned to be a hypersurface of V formed by two components: singular
values of ny | r_s i n £. and nv[SingL) . The latter one is called the quasicaustic
of L by an optical instrument A. Let F: (Cn + 1 x Cp, 0) -> (C, 0) be a germ of a
holomorphic function generating L (see [7]). By (5, 0) C (Cn+1> 0) we denote a germ
of some hypersurface in (Cn + 1, 0) . The quasicaustic Q(F) of F is denned as

Q(F) — {ae CP;F(», a) has a critical point on 5}.

Let F represent the distance function from the general wavefront in the presence of
an obstacle formed by an aperture (see [9, 5]) with boundary S. The corresponding
quasicaustic Q(F) is built up from the rays orthogonal to the given wavefront and
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touching the boundary of the aperture. The quasicaustic is a subvariety of the usual
caustic (also called the bifurcation set [2, 3])

{o G CP;F(; a) or F \SXCP (•> a) have a critical point},

and represents the structure of shadows formed by the common, pecular positions of
aperture and incident wavefront.

In this paper we investigate the structure of quasicaustics corresponding to simple
boundary singularities [1, 2]. We also give, using the methods applied to the usual
bifurcation sets [3, 4, 12], the general method for computing the vector fields tangent
to the quasicaustic provided by the holomorphic function germs.

2. VECTOR FIELDS ON QUASICAUSTICS

Let O(y,x) denote the ring of holomorphic functions h: (C x Cn, 0) —> (C, 0).
The hypersurface S — {y = 0} corresponds to the boundary of an aperture. Following
the general scheme used in [2] for boundary singularities, we shall consider holomorphic
functions / : (C x Cn, 0) —» (C, 0) of finite codimension, that is,

dimcO( l , i l ) /A(/)<oo,

where A(/) = (y (df/dy), df/dxu . . . , df/dxn) denotes the ideal in Oly>t) gener-
ated by the partial derivatives df/dxx, ..., df/dxn and y(df/dy) (see [1, 10]). Let
go, ...,ff/i-i form a basis for O(y>x)/A(f) with g0 = 1 and g, £ -^(y,z)- Then the
miniversal deformation, in the category of deformations of functions on manifolds with
boundary, as a Morse family for the corresponding diffracted Lagrangian variety (see
[1]) is defined as follows

F: (C x C n x C"-1, 0) - • (C , 0)

F(y, x, a) = f(y, x) + Y] a{gi(y, x).

The set-germ

(Er-F, 0) = I {{x, a) € C xCp;— \s= -— |s= • • • = -5— \s= 0},

we call the restricted critical set.

Using the splitting Lemma (see [10]) and the versality property of F we have,
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PROPOSITION 2.1.

A. T ie restricted critical set (EP.F, 0) is the germ of a smooth manifold of
dimension p — 1.

B. The quasicaustic of F, (Q(F), 0) is an image of (SrF, 0) by the natural
projection ir: ETF, 0 —> C, 0 to the second factor.

The set of logarithmic vector fields of Q(F) at 0 is defined (see [11, 12]) to be the
set of germs of holomorphic vector fields on Cp at 0, tangent to the nonsingular part
of Q(F); it is an 0(o)-module

PROPOSITION 2 . 2 . Let (e Derlog Q(F); then it is n-hftable, that is, for some

germ of a vector field £, on Cn x Cp, tangent to S r F at 0 we have

£ o 7T = dir o £.

PROOF: ( lifts uniquely by it at every point a £ Cp — T(ir | S , F ) - Hence £ lifts
to a holomorphic vector field £i on Cn X Cp, tangent to S r F and defined off a set of
codimension 2 in C n X Cp. By Hartog's theorem £i extends to a holomorphic vector
field f tangent to S r F . D

Now using the 7T-lowerable vector fields £ tangent to ErF we will construct the
module Derlog Q(F). Letting F be as above, we define the ideal

: yiplx, a), [x, a), . . . , (x,

where i/> and F are given by decomposition

F(y, x, a) = F(0, x, a) + yiftx, a) + y2
5(y, x, a), F(x, a) := F(0, x, a).

Let f = it/3i(d/dxi) + £ y^d/dai), 0it ji € O( l , a ) , be the germ of a vector
t = l

field at O e C x C , tangent to E r F . Then we have
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i

For our F(y, x, a) — f(y, x) + X) *tff»(y, x) we have

So we need E & l ^ + E ^ I T l°*C"e

i=i a a ; i i=i O ! /

^

where ~g(x) := ̂ (0, x). Thus we obtain

LEMMA 2 . 3 . I is a iifting o/ £ € Derlog Q(F), £ = E oti(a)(d/dai) if and only

if for some /3j 6 C(j;,o)> (* = 1> • • •» n ) w e Aave *~

(2.1) * '

We have chosen the normal form for F in such a way that the variables aM, . . . , ap

(p ^ fj. — 1) do not appear in F. Now following the general scheme used in [3, 4] for
ordinary bifurcation sets, we can propose the procedure for constructing the tangent
vector fields to quasicaustics.

By the Preparation Theorem (see [10]), the module

where A(F) = (y - dF/dy, dF/dxlt ..., dF/dxn)OiyiX,a), is a free O(a)-module (see
[1]) generated by 1, gi, ..., g^-i. So for any h £ C(y,IlO) we can write

(2.2) h(y, x, a) = 0(y, x, a)y^-{y, x, a) + £ # ( y , x, 0)^7(2/, *, o)

E ai(a)9j(y, x) + «(°).

for some ^ 6 O(Via!,a), « i
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P R O P O S I T I O N 2 . 4 . Let h e 0 ( S , I ) 0 ) satisfy

-5- I O X C X C P G I[F), —— I O X C X C P G -f(-F')) » = 1, . . . , n .
ay or;

p
TAen the vector field £ = 5^a,-(9/9oi), wAere a,-, i = 1, . . . , y. — 1, are defined in

.2) and ctj, t = /* , . . . , p are arbitrary holomorphic functions from O(o) , is tangent
p53pto tie quasicaustic Q(F) = 7r(Er.F). Conversely; suppose £ = 53a,-(9/9oj) is tangent

to Q(F); then there is some h € O(y)il0) as above with l~

and 5A/5xi IOXCXCPG / (F) , dh/dy |OXC-XCPG

PROOF: For derivatives of h we have

g
dh ^dfr dF A

where S = {(y, x, a) £ C x Cn x Cp;y — 0}, But, on the basis of assumptions, these

conditions are equivalent to (2.1), so Y2 a<(9/den), is tangent to Q(F). The converse
statement is straightforward. *~ D

We see that the set of all such h with dh/dy \j£ I(F), dh/dx, \j£ I(F), 1 < i < n
form an C(a)-module. In fact it is the kernel of the O(o)-module homomorphism,

dh\ ( O,yxa) \ n + 1dh dh\ ( O,yx

5 T K M i
A(F) C /(i^) + (y)M(yiXia) and clearly the set of tangent vector fields to Q(F) is a
finitely generated C(o)-module.
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3. QUASICAUSTICS OF SIMPLE BOUNDARY SINGULARITIES

The simple singularities of functions on the boundary {y = 0} of a manifold with
boundary were classified in [2], (see [l], p.281). Their miniversal unfoldings are:

t = i

C,,

(1-2

± y + x\x2 ± Xj"1 + ^2 aix\ + a^-ixi, /x ̂  4,
i=l

± y + x\ ± x\ + aixi + a2x2

E? : ± y + xj + X1X2

E% : ± y + x\ + x\ + 01X1 + a2x2 + 03X2 + a4xiz2 + asXj + a%xxx\ + 07X1X2,

Fi : ±y2 + xs + a2y + a3x

Thus we have, after direct checking, the following.

PROPOSITION 3 . 1 . The quasicaustics for simple boundary singularities are:

IM, 5M) Ek : Q(F) = 0,

F4 : Q(F) = {a£ Cs; a\ + -ojoj = 0}, (that is Whitney's cross-cap).
3

Thus we need to calculate only the module of vector fields tangent to Q{Ft). Let
us define the germ, at zero, of the variety X := Q(F4) U {at = 0}. We see that the
vector fields tangent to (X, 0) lie in Derlog C?(F4).

P R O P O S I T I O N 3 . 2 . The vector Gelds

1 . d d
Vi =--a\— +a2 —,

6 oa.2 oa.3
d d

V2 =0.!—+^ — ,
aa\ aa2

T/ 1 a , 2 0
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form a free basis for the O(aymodule Derlog X.

Before we prove this theorem we need the following.

PROPOSITION 3 . 3 . For corank two boundary singularities F: (C xC x Cp, 0)
(C, 0), t i e space of functions h £ O(y,r,o) reconstructing t i e O(aymodule of vector

fields tangent to quasicaustic Q(F) has the following form

fx /' dF dF \
h(y, x, a) = J { — ( 0 , J, a)^{s, a) + -^-(0, s, a)i>2{s, a)\ ds

+ y2i(y, *, a),

where V-i G O(«>o), (» = 1, 2), ( G O ( , , . , a ) .

PROOF: Every function h £ O(v,i ,o) can be written in the form

h(y, x, a) = J/2(Z, a) + J/T?I(X, a) + y2rj(y, x, a),

and thus -H-(°> x> a ) = Vi(x> a)> Q - ( ° » Z> °) = -fl^(z> a )
ay ox ox

By Proposition 2.4, we can take

171 (x, a) £ I ( f ) , and rj2(x, a) = f g(s, a)ds, g £ I(F),
Jo

obtaining all functions

T)2(x, a) + yrji(x, a) + y2r)(y, x, a) (mod A(F)) ,

defining the 0(o)-module of vector fields tangent to Q(F). Now we see that

772(3;, a) + yrn{x, a) + y2r}(y, x, a) = T)2{x, a)

( a 171 FIT? \

mod ^y~BHt y~a~)°(v<x<a'>)>
where ^ G O(y)1>0). Adding an element of {y)J(F), (J(F) is an ideal of 0(VlI )0)
generated by: dF/dy, dF/dxi, ..., dF/dxn) does preserve the space of functions and
does not affect the resulting vector field. D

P R O O F OF PROPOSITION 3.2: /(.F4) = {aix + a2, 3x2 + a3)O(Xia). By Proposition

3.3, taking V"i, i>2, £ ^ 11 we have

hi(x, a) - x 0 !* 2 + a 2 * = ~QaiV +

h2(x, a) = y2 = -axxy - a2y (mod
j 2

h3(x, a) = xs + xa3 — --a^xy + -a3x
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Then the corresponding Vi belongs to DeilogQ(Fi), (i = 1, 2, 3). By simple compu-
tation we obtain

Vi(«i) = 0, V2{a1) = -au

so Vi 6 DerlogX as well. We also have

i(o), V2(a), V3(a)) = - ^ (a} + ±

is a reduced equation for (X, 0) , so by the results of Saito [11] (see also [4]) we find
that (X, 0) is a free divisor. D

We define the following ideals of 0(V l I) and O(y,»,o) respectively,

a n d fir

For determining all fields tangent to the quasicaustic we need the following.

LEMMA 3 . 4 . The space O(ViX)/Q(f) is finite dimensional. Its C-basis also gen-

erates the quotient space O(y<7.ta)/Q(F) as an O(aymodule.

PROOF: ©(/) D A ( / ) and / is finitely determined as a boundary singularity.
Thus O( V ,SB) /Q( / ) is C-finite dimensional with the basis {<7i, . . . , <7AT}- Let us define
the mapping

* : (C x Cn x C, 0) -» (C x Cn x C^r11 x Cp, o),

, / dF. . dF, , dF . .
, x , a) = \y-Q-{y, *>, a ) , y ^ - C ^ z . a)» • • •»y^~(^ ' z ' a ) >

—(y, x, a) — (y, x, a), a) ,

with 1 ^ i, j 4: n; i ^ j , and ordered set of pairs (i, j ) . Thus we have

By the Preparation Theorem (see [10]) every element h of O(y<x%a) has the form:

, , ^ ^ , ( d F , s d F , ^ dF i s
h(y, x,a) = 2 ^ & ( y-Q-{y, x, a), J / ^ - ( y . *, « ) . • • • . y ^ " ^ ' z ' a ) >

^ ( y . *. a ) ^ r ( y ' z« a ) > a ) 5/(y. z ) -
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Thus

= |

which completes the proof of Lemma 3.4. U

Let {gi, . . . , gpr} be a C-basis for O(V,JS)/©(/)- ^n general we have:

PROPOSITION 3 . 5 . Functions h e 0(v,*,a) which reconstruct the O(aymodule
of vector Gelds tangent to Q(F), can be written as:

N

h(y, x, a) = ^2 "t(a)3«(y. z ) .
t=i

where f^a^aJ^O, «) €

PROOF: By Lemma 3.4, any h G C(ViI,a) can be written as

N dF
h(y, x, a) = ^ ai(a)gi(y, x) +/3(y, x, a)y—(y, x, a)

Qjp

0i(y> x> a)y-^—{y, x, a)

d F , ^ d F i

4,/=l

where aj G C(o)> fl • -Pji Pkt 6 O(y, r,o) • By simply checking the assumptions of Propo-
sition 2.4, we see that the three last terms in the above formula do not affect on the
resulting vector field belonging to T)eilogQ(F). This proves Proposition 3.5. D

PROPOSITION 3 . 6 . O(aymodule T>erlogQ(Fi), that is, the module of holo-
morphic vector fields tangent to Whitney's cross-cap, is generated by the following
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fields:

1 0 2 0
3aid^ + 3a3d

d i d

which satisfy the relation

-aiV4 + 2a3 Vi - 3a2V3 = 0.

PROOF: We have G(/) = (y2, x2y, *4)O(,(,), and

O(,,«)/e(/) £ [1, x, y, x\ x\ xy]c.

By Proposition 3.5, all functions h £ C(j,lI)O) leading to the construction of Derlog Q(F^)
can be written in the form:

h(y, x, a) = ai(a) + a2(a)x + as(a)y + a6{a)xy + a3(a)x2 + a^(a)x3,

where at- 6 O(a), i = 1, . . . , 6 are such that

aB(o) + Q6(a)z G 7(F4),

a2(a) + 2a3(a)z + 3a4(a)x2 G /(i^)-

By simple calculations we check that Vj, t — 1, . . . , 4 are tangent to Whitneys's cross-
cap. Calculations using power series or a homogeneous filtration show that these are
the only vector fields generating Derlog Q(Fi). In fact

h — ai--a3a3+( a2 - -04(13 jx+(as - oa3ai Jy+fa6 - - a 4 a ! Jzy (mod

Hence all vector fields belonging to Derlog Q(Ft) can be written in the form:

where a 4 , as , ag , a's, a'6 £ O(o) > satisfy the following equations:

os + atxem),

a'a+a'txeI[FA),
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which axe simple rewritten versions of (6.2). Here we use the formula

x2 = - i
O

Solving (6.4) using power series, we obtain an expression for (6.3), which involves only
V{t i = 1, 2, 3, 4, namely:

V = A0V2 + A1Vi + V2

+ F4 f ) A2i+1 ( - ^ ) l + CoVx - l a i d (v, + |

t'=l

where Ait d, a4 G O(a). D
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