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Abstract
The concurrency of edges, quantified by the number of edges that share a common node at a given time point,
may be an important determinant of epidemic processes in temporal networks. We propose theoretically tractable
Markovian temporal network models in which each edge flips between the active and inactive states in continu-
ous time. The different models have different amounts of concurrency while we can tune the models to share the
same statistics of edge activation and deactivation (and hence the fraction of time for which each edge is active)
and the structure of the aggregate (i.e., static) network. We analytically calculate the amount of concurrency of
edges sharing a node for each model. We then numerically study effects of concurrency on epidemic spreading
in the stochastic susceptible-infectious-susceptible and susceptible-infectious-recovered dynamics on the proposed
temporal network models. We find that the concurrency enhances epidemic spreading near the epidemic thresh-
old, while this effect is small in many cases. Furthermore, when the infection rate is substantially larger than the
epidemic threshold, the concurrency suppresses epidemic spreading in a majority of cases. In sum, our numerical
simulations suggest that the impact of concurrency on enhancing epidemic spreading within our model is consis-
tently present near the epidemic threshold but modest. The proposed temporal network models are expected to be
useful for investigating effects of concurrency on various collective dynamics on networks including both infectious
and other dynamics.

1. Introduction

The structure of contact networks among individuals shapes the dynamics of contagion processes in a
population such as the number of individuals infected, their spatial distributions and speed of spreading
[1–4]. For example, a heterogeneous degree distribution, where the degree is the number of neigh-
bouring nodes that a node has, and a short average distance between nodes are two factors that usually
enhance epidemic spreading on networks. In fact, empirical contact networks often vary over time on
a time scale comparable to or faster than that of epidemic dynamics, probably most famously owing to
mobility of human or animal individuals. This observation has naturally led to the investigation of how
features of such temporal (i.e., time-varying) networks and statistical properties of contact events, such
as distributions of inter-contact times, temporal correlation in inter-contact times and appearance and
disappearance of nodes and edges, affect outcomes of contagion processes [5–10].

The concurrency is a feature of temporal contact networks that has been investigated in both mathe-
matical and field epidemiology for over two decades, while many of these studies do not specifically refer
to temporal networks [11–19]. Concurrency generally refers to multiple partnerships of an individual
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Figure 1. Schematic of part of temporal networks with different amounts of concurrency. We depict
two edges sharing a node in each case. (a) Concurrent partnerships. (b) Non-concurrent partnerships.
A shaded box represents a duration for which a partnership is present on the edge. The thick lines are
examples of time-respecting paths transmitting infection from j to j′ (shown in orange) or from j′ to j
(shown in magenta). This figure is inspired by Figure 1 in ref. [15] and Figure 1 in ref. [27].

that overlap in time. Concurrency has been examined in particular in the context of sexually transmitted
infections such as HIV, specifically regarding whether or not the concurrency was high in sub-Saharan
Africa and, if so, whether or not the high concurrency enhanced HIV spreading there [11–13, 20–23].
Suppose that a partnership between individuals i and j overlaps one between i and j′ for some time. Such
concurrency may promote epidemic spreading because rapid transmission from j to j′ through i and
vice versa is possible during the concurrent partnerships (see Figure 1(a)). In contrast, if a partnership
between i and j occurs before that between i and j′ without an overlap, i.e., without concurrency, the
transmission from j to j′ can still occur in various different ways, but the transmission from j′ to j does
not (see Figure 1(b)).

Modelling studies are diverse in how to quantify the amount of concurrency. Many studies measure
the concurrency through the mean degree, or the average contact rate for nodes [19, 24–26]. However,
in these cases, it is hard to say whether an increased epidemic size owes to a high density of edges or
a large amount of concurrency [15, 27–29]. In studies of epidemic processes on static networks, it is
a stylised fact that epidemic spreading is enhanced if there are many edges with all other things being
equal. Another line of theoretical and computational approach to concurrency quantifies concurrency
by the heterogeneity in the degree distribution of the network [12, 13, 15]. However, the results that
a high concurrency in this sense enhances epidemic spreading is equivalent to an established result in
static network epidemiology that heterogeneous degree distributions lead to a small epidemic threshold,
thus promoting epidemic spreading [2–4, 30]. In some studies, the authors investigated the effect of
concurrency by carefully ensuring that the degree distribution (and hence the average degree) stays
the same across the comparisons while they manipulate the amount of concurrency [27–29]. These
studies suggest that, despite the different definitions of the concurrency employed in these studies, higher
concurrency increases epidemic spreading (but see [27] for different results). However, mathematical
models that enable us to analyse the effect of concurrency by fixing the structure of the static network
are still scarce.

In the present study, we focus on effects of concurrency on epidemic spreading for an arbitrary static
network on top of which partnerships, infection events and recovery events occur. In this manner, we
aim to study the effect of concurrency without being affected by the effect of the network structure itself.
We consider three temporal network models that have different amounts of concurrency while keeping
the probability that each edge is available the same across comparisons. In terms of a concurrency
measure, we analytically evaluate the amount of concurrency of edges sharing a node for the three
models as well as other properties of the models. Then, we numerically study effects of concurrency
on epidemic spreading using the stochastic susceptible-infectious-susceptible (SIS) and susceptible-
infectious-recovered (SIR) models.

The Python codes for generating the numerical results in this article are available at Github
(https://github.com/RuodanL/concurrency).
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2. Temporal network models

We introduce three models of undirected and unweighted temporal networks in continuous time, which
we build from independent Markov processes occurring on a given static network. We use these models
to compare temporal networks that have the same time-aggregated network but different amounts of
concurrency. Let G be an undirected and unweighted static network with node set V = {1, . . . , N} and
edge set E = {ei}M

i=1, where N is the number of nodes and M is the number of edges. We assume that the
network G has no self-loops. In the temporal network constructed based on undirected and unweighted
static network G, by definition, each edge ei ∈ E is either active (i.e., temporarily present) or inactive
(i.e., temporarily absent) at any given time t ∈R and switches between the active and inactive states
over time. We denote by G the temporal network and by G(t) the instantaneous network in G observed
at time t.

2.1. Model 1

Let τ1 and τ2 be the duration of the active state of and the inactive state of an edge, respectively. In
our model 1, we assume that τ1 is independently drawn from probability density ψ1(τ1) each time the
edge switches from the inactive to the active state. Similarly, we draw τ2 independently from probability
density ψ2(τ2) each time the edge switches from the active to the inactive state. The duration τ1 or
τ2 for different edges obeys the same distributions but is drawn independently for the different edges.
When ψ1(τ1) and ψ2(τ2) are both exponential distributions, the stochastic dynamics of the state of each
edge obeys independent continuous-time Markov processes with two states, and our model 1 reduces to
previously proposed models [31, 32].

2.2. Model 2

In models 2 and 3, we assume that each node independently obeys a continuous-time Markov process
with two states, which we refer to as the high-activity and low-activity states. Each node independently
switches between the high-activity state, denoted by h, and the low-activity state, denoted by �. Let a
be the rate at which the state of a node changes from � to h, and let b be the rate at which the state of a
node changes from h to �. In model 2, each edge (u, v) ∈ E, where u, v ∈ V , is active at any given time
if and only if both u and v are in the h state. The dynamics of a single edge in model 2 is schematically
shown in Figure 2. The model resembles the so-called AND model in [33]. An intuitive interpretation
of model 2 is that two individuals chat with each other if and only if both of them want to.

2.3. Model 3

Model 3 is a variant of model 2. As in model 2, we assume that each node independently switches
between the high-activity and low-activity states at rates a and b. In model 3, the edge between two
nodes is active if and only if either node is in the h state (see Figure 2 for a schematic). This model
resembles the OR model proposed in [33]. The intuition behind model 3 is that one person can start
conversation with another person whenever either person wants to talk regardless of whether the other
person wants to.

3. Concurrency for the three models

In this section, we first define a concurrency index for temporal networks in which partnership on each
edge appears and disappears over time. Then, we calculate and compare the concurrency index and
related measures for models 1, 2 and 3.
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Figure 2. Schematic illustration of models 2 and 3. In model 2, edge (1, 2) is active if and only if both
node 1 and node 2 are in the h state. Otherwise, the edge is inactive. In model 3, edge (1, 2) is active if
and only if either node 1 or node 2 is in the h state.

3.1. Definition of a concurrency index

Consider a temporal network G that is constructed on the underlying static network G and defined for
time t ∈ [0, T]. We refer to G as the aggregate network. If two edges in G sharing a node in G are both
active at t ∈R, we say that the two edges are concurrent at time t; see Figure 1(a) for an example.
Consider a pair of edges sharing a node in the aggregate network, denoted by ei and ej, where ei, ej ∈ E.
In fact, the likelihood that ei and ej are concurrent at time t depends on how likely each single edge is
active at time t. We define a concurrency index that takes into account of this factor. To this end, we first
define the set of time for which an edge e ∈ E is active by

S(e) = {t ∈ [0, T]; edge e is active at time t}. (3.1)

We define the concurrency for the edge pair {ei, ej} ∈ S by

κ(ei, ej) = m
(
S(ei) ∩ S(ej)

)
min{m (S(ei)) , m

(
S(ej)

)} , (3.2)

where m denotes the Lebesgue measure, and S is the set of edge pairs that share a node in G. Note that

|S| =
N∑

i=1

ki(ki − 1)

2
, (3.3)

where ki is the degree of the ith node in G [12, 13]. The numerator on the right-hand side of equation
(3.2) is equal to the length of time for which both ei and ej are active. The denominator is a normalisation
constant to discount the fact that the numerator would be large if the two edges are active for long time.
Because any edge e in the aggregate network G should be active sometime in [0, T], the denominator is
always positive; otherwise, we should exclude e from G.

We define the concurrency index for temporal network G by

κ(G) = 1

|S|
∑

i,j such that 1≤i<j≤M and {ei ,ej}∈S
κ(ei, ej). (3.4)

It holds true that 0 ≤ κ(G) ≤ 1 because 0 ≤ κ(ei, ej) ≤ 1. For empirical or numerical data, [0, T] is the
observation time window. For a stochastic temporal network model, we calculate S(e) as the expectation
and in the limit of T → ∞ such that κ(G) is a deterministic quantity.

https://doi.org/10.1017/S095679252300027X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252300027X


434 R. Liu et al.

Differently from κ3, a concurrency index proposed in seminal studies [12, 13] (also see for [15] a
review), κ(G) is not affected by the degree distribution of the aggregate network G. It should be noted
that the calculation of κ(ei, ej) and hence κ(G) requires the information about the aggregate network,
i.e., S .

3.2. Model 1

To calculate the concurrency index for the three models of temporal networks, we first derive the prob-
ability of an arbitrary edge being active in the equilibrium for each model. In model 1, consider an
arbitrary edge in the static network G. The mean duration for which the edge is active and that for which
the edge is inactive are given by

〈τ1〉 =
∫ ∞

0

ψ1(τ1)dτ1 (3.5)

and

〈τ2〉 =
∫ ∞

0

ψ2(τ2)dτ2, (3.6)

respectively. Owing to the renewal reward theorem [34], the probability that the edge is active in the
equilibrium, denoted by q∗, is given by

q∗ = 〈τ1〉
〈τ1〉 + 〈τ2〉 . (3.7)

The concurrency index, κ(G), which we simply refer to as κ in the following text, is equal to the ratio of
the time for which the two edges sharing a node are both active to the time for which an edge is active.
Because the states of different edges are independent of each other, we obtain

κ = q∗2

q∗ = q∗ = 〈τ1〉
〈τ1〉 + 〈τ2〉 . (3.8)

The special case of model 1 in which the edge activation and deactivation occur as Poisson processes
is equivalent to previously proposed models [31, 32]. In this case, using ψ1(τ1) = λ1e−λ1τ1 and ψ2(τ2) =
λ2e−λ2τ2 , we obtain

κ = 〈τ1〉
〈τ1〉 + 〈τ2〉 = λ−1

1

λ−1
1 + λ−1

2

= λ2

λ1 + λ2

. (3.9)

3.3. Model 2

To analyse model 2, let us consider a pair of neighbouring nodes v1 and v2 in the static network G. Let p∗
h

and p∗
�

be the probability that an arbitrary node in G is in state h and � in the equilibrium, respectively.
Denote by p∗

s1s2
the probability that node vi is in state si ∈ {h, �} in the equilibrium, where i ∈ {1, 2}.

Because the duration of the high-activity state and that of the low-activity state of a node obey the
exponential distributions with mean 1/b and 1/a, respectively, we apply the renewal reward theorem
[34] to obtain

p∗
h =

1
b

1
a
+ 1

b

= a

a + b
(3.10)

and

p∗
�
=

1
a

1
a
+ 1

b

= b

a + b
. (3.11)
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Because the states of different nodes are independent, we obtain

p∗
hh = (p∗

h)2 = a2

(a + b)2
, (3.12)

p∗
h� = p∗

�h = p∗
hp∗

�
= ab

(a + b)2
, (3.13)

and

p∗
��

= (p∗
�
)2 = b2

(a + b)2
. (3.14)

Therefore, the probability that an edge is active in the equilibrium is given by

q∗ = p∗
hh = a2

(a + b)2
. (3.15)

To derive the concurrency for model 2, we consider a pair of edges sharing a node in G, denoted by
(v1, v2) and (v2, v3). Denote by ps1s2s3 the probability that node vi is in state si ∈ {h, �}, where i = 1, 2 and
3. Similar to the analysis of q∗ for model 2, we obtain the following stationary probabilities:

p∗
hhh = a3

(a + b)3
, (3.16)

p∗
hh� = p∗

h�h = p∗
�hh = a2b

(a + b)3
, (3.17)

p∗
h�� = p∗

�h� = p∗
��h = ab2

(a + b)3
, (3.18)

p∗
���

= b3

(a + b)3
. (3.19)

Therefore, we obtain

κ = p∗
hhh

q∗ = a

a + b
= √

q∗. (3.20)

3.4. Model 3

Similarly, for model 3, we obtain

q∗ = p∗
hh + p∗

h� + p∗
�h = a(a + 2b)

(a + b)2
, (3.21)

and

κ = p∗
hhh + p∗

hh� + p∗
h�h + p∗

�hh + p∗
�h�

q∗ = a2 + 3ab + b2

(a + b)(a + 2b)
= q∗ + √

1 − q∗

1 + √
1 − q∗ . (3.22)

3.5. Comparison among the three models

A large fluctuation of G(t) over time may impact concurrency [15]. In this section, we compare the
amount of concurrency between the three models.

Proposition 1. Model 2 is more concurrent than model 1 given that q∗ is the same between the two
models.

Proof. Because q∗ is the same between the two models and 0< q∗ < 1, we obtain
√

q∗ > q∗ using
equations (3.8) and (3.20). Therefore, model 2 is more concurrent than model 1.
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Proposition 2. Model 3 is more concurrent than model 1 given that q∗ is the same between the two
models.

Proof. Because q∗ is the same between the two models and 0< q∗ < 1, we obtain

q∗ + √
1 − q∗

1 + √
1 − q∗ − q∗ = (1 − q∗)

3
2

1 + (1 − q∗)
1
2

> 0. (3.23)

Therefore, model 3 is more concurrent than model 1.

Proposition 3. Given that q∗ is the same between models 2 and 3,

(i) model 3 is more concurrent than model 2 if 0< q∗ < 1
2
,

(ii) model 3 is less concurrent than model 2 if 1
2
< q∗ ≤ 1,

(iii) model 3 is equally concurrent to model 2 if q∗ = 1
2
.

Proof. For the sake of the present proof, let a2 and a3 be the rate at which the state of a node changes
from � to h for models 2 and 3, respectively. Likewise, let b2 and b3 be the rate at which the state of a
node changes from h to � for models 2 and 3, respectively. By imposing that q∗ is the same between the
two models, we obtain

q∗ = a3(a3 + 2b3)

(a3 + b3)2
= a2

2

(a2 + b2)
2 . (3.24)

Therefore, the difference in the concurrency between the two models, given by equations (3.20) and
(3.22), is given by

a2
3 + 3a3b3 + b2

3

(a3 + b3)(a3 + 2b3)
− a2

a2 + b2

= a2
3 + 3a3b3 + b2

3

(a3 + b3)(a3 + 2b3)
−

√
a3(a3 + 2b3)

a3 + b3

= b2
3

[
(b3 − a3)

2 − 2a2
3

]
(a3 + b3) (a3 + 2b3)

[
a2

3 + 3a3b3 + b2
3 + (a3 + 2b3)

√
a3(a3 + b3)

] .

(3.25)

Therefore, the concurrency of model 3 is larger than that of model 2 if and only if b3 > (1 + √
2)a3,

which is equivalent to q∗ = a3(a3+2b3)
(a3+b3)2 = 1+2

b3
a3(

1+ b3
a3

)2 <
1
2
.

Using equations (3.8), (3.20), and (3.22), we compare the amount of concurrency for models 1, 2,
and 3 in Figure 3. We find that, when q∗ > 1/2, the concurrency index for model 2 is only slightly larger
than that for model 3.

3.6. Fluctuations in the node’s degree

Consider the degree of individual nodes or its average over all nodes at any given time t. Let us fix their
expectation and compare their statistical fluctuations, such as the standard deviation, across different
models. In a model with a higher concurrency, edges sharing a node in the aggregate network are more
likely to be simultaneously active or inactive, which makes the statistical fluctuation of the degree larger.
Therefore, we anticipate that the concurrency of a temporal network model and the statistical fluctuation
in the node’s degree are interrelated. In this section, we establish such relationships for each of the three
models. Let A = (Aij)N×N be the adjacency matrix of static network G.

To analyse the fluctuation in the node’s degree in model 1, we define random variables by

xij(t) =
{

0 if edge (i, j) is inactive at time t,

1 if edge (i, j) is active at time t.
(3.26)
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Figure 3. Concurrency index, κ , as a function of the stationary probability that an edge is active, q∗,
for models 1, 2 and 3.

The adjacency matrix of the temporal network at time t, G(t), of model 1 is given by the N × N matrix
B(t) = (Bij(t)), where Bij(t) = Aijxij(t) (with i, j ∈ {1, . . . , N}). Let ki(t) ≡∑N

j=1 Bij(t) be the degree of the
ith node in network G(t). The average degree at time t is given by

〈k〉(t) ≡ 1

N

N∑
i=1

ki(t). (3.27)

In the following text, we omit t because we discuss the fluctuations in ki(t) and 〈k〉(t) in the equilibrium.

Proposition 4. For model 1, it holds true that ki ∼ B(ki, q∗) and 〈k〉 ∼ 2
N

B (M, q∗), where B(·, ·) repre-
sents the binomial distribution. (We remind that ki is the degree of the ith node in G and that M is the
number of edges in G.)

Proof. For a proposition C, define the indicator function by

1(C) =
{

1 if C is true,

0 if C is false.
(3.28)

For a node i, we obtain

ki =
N∑

j=1

Bij =
N∑

j=1

1(Aij = 1)xij. (3.29)

Because xij are independent and identically distributed Bernoulli random variables and ki is the sum of
ki terms, ki obeys B

(
ki, q∗).

Because we have assumed that the network is undirected, we obtain

〈k〉 = 1

N

N∑
i=1

ki

= 2

N

N∑
i=1

N∑
j=i+1

Bij

= 2

N

N∑
i=1

N∑
j=i+1

1(Aij = 1)xij. (3.30)

Because there are M terms that comprise the summation, 〈k〉 obeys 2
N

B (M, q∗).
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We denote the expectation by E and the variance by σ 2; the standard deviation is equal to σ . Using
Proposition 4, we obtain

E[ki] = kiq
∗, (3.31)

σ 2[ki] = kiq
∗(1 − q∗), (3.32)

E[〈k〉] = 2Mq∗

N
, (3.33)

σ 2[〈k〉] = 4Mq∗(1 − q∗)

N2
. (3.34)

To analyse models 2 and 3, we define

yi(t) =
{

0 if node i is in the � state at time t,

1 if node i is in the h state at time t.
(3.35)

The adjacency matrix of G(t) for model 2 is given by B(t) = (Bij(t)), where Bij(t) = Aijyi(t)yj(t). Using
this expression, we can prove the following proposition.

Proposition 5. For model 2, we obtain

E[ki] =ki

(
a

a + b

)2

, (3.36)

σ 2[ki] = kia2b

(a + b)3

(
1 + kia

a + b

)
, (3.37)

E[〈k〉] =2M

N

(
a

a + b

)2

, (3.38)

σ 2[〈k〉] =4M

N2

(
a

a + b

)2

+ 4M(M − 1)

N2

(
a

a + b

)3

− 8

N2

(
a

a + b

)3 b

a + b

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
� �=i,j

AijAk�

− 4M2

N2

(
a

a + b

)4

. (3.39)

We prove Proposition 5 in Appendix A.
The adjacency matrix of G(t) for model 3 is given by B(t) = (Bij(t)), where Bij =

Aij

[
1 − (1 − yi(t))

(
1 − yj(t)

)]
. Using this expression, we can prove the following proposition.

Proposition 6. For model 3, we obtain

E[ki] =kia(a + 2b)

(a + b)2
, (3.40)

σ 2[ki] =kia(a + 2b)

(a + b)2
+ ki(ki − 1)a(a2 + 3ab + b2)

(a + b)3
−
[

kia(a + 2b)

(a + b)2

]2

, (3.41)

E[〈k〉] =2Ma(a + 2b)

N(a + b)2
, (3.42)

σ 2[〈k〉] =4Ma(a + 2b)

N2(a + b)2
+ 4M(M − 1)a(a2 + 3ab + b2)

N2(a + b)3

− 8ab3

N2(a + b)4

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
� �=i,j

AijAk� − 4M2a2(a + 2b)2

N2(a + b)4
. (3.43)

We prove Proposition 6 in Appendix B.
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Now, let us compare the variance of ki and 〈k〉 among the three models under the condition that the
expectation of ki and 〈k〉 is the same across the different models. This condition is equivalent to keeping
q∗ the same across the models for each edge. The purpose of examining the variance of the node’s
degree is the following. Similar to equation (3.3), the number of concurrent edge pairs at time t is given
by
∑N

i=1 ki(ki − 1)/2. Because this expression contains the second moment of the degree, we expect that
the variance of the degree may be related to our concurrency measure.

In fact, we obtain the following results for the fluctuation of the degree, which are parallel to those
for the concurrency index.

Proposition 7. Assume that E[ki] is the same between models 1 and 2 for any i ∈ {1, . . . , N}. For any
given q∗, the variance σ 2[ki] is larger for model 2 than model 1 if ki > 1. Likewise, σ 2[〈k〉] is larger for
model 2 than model 1 if there exists i such that ki > 1.

Proof. We use subscripts 1 and 2 to represent the variance with respect to the probability distribution
for models 1 and 2, respectively. We substitute equation (3.15) in equation (3.32) and use equation (3.37)
to obtain

σ 2
2 [ki] − σ 2

1 [ki] = kia2b

(a + b)3

(
1 + kia

a + b

)
− kiq

∗(1 − q∗)

= kia2b

(a + b)3

(
1 + kia

a + b

)
− ki

(
a

a + b

)2
[

1 −
(

a

a + b

)2
]

= ki(ki − 1)
a3b

(a + b)4

> 0. (3.44)
Next, we compare the variance of the average degree. Because M is the number of edges of static

network G and there exists i such that ki > 1 in G, we obtain
N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
� �=i,j

AijAk� <
M(M − 1)

2
(3.45)

for the following reason. The right-hand side of equation (3.45) is the number of pairs of edges. The
left-hand side is the number of pairs of edges that do not share a node. These two quantities are equal
to each other if and only if there is no pair of edges sharing a node, i.e., when all nodes have the degree
at most 1.

By substituting equation (3.15) in equation (3.34) and using equations (3.39) and (3.45), we obtain

σ 2
2 [〈k〉] − σ 2

1 [〈k〉]

= 4M

N2

(
a

a + b

)2

+ 4M(M − 1)

N2

(
a

a + b

)3

− 8

N2

(
a

a + b

)3 b

a + b

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
� �=i,j

AijAk�

−
(

2M

N

)2 ( a

a + b

)4

− 4Mq∗(1 − q∗)

N2

>
4M

N2

(
a

a + b

)2

+ 4M(M − 1)

N2

(
a

a + b

)3

− 4M(M − 1)

N2

(
a

a + b

)3 b

a + b

−
(

2M

N

)2 ( a

a + b

)4

− 4M

N2

(
a

a + b

)2
[

1 −
(

a

a + b

)2
]

= 0. (3.46)
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Proposition 8. Assume that E[ki] is the same between models 1 and 3 for any i ∈ {1, . . . , N}. For any
given q∗, the variance σ 2[ki] is larger for model 3 than model 1 if ki > 1. Likewise, σ 2[〈k〉] is larger for
model 3 than model 1 if there exists i such that ki > 1.

Proof. We substitute equation (3.21) in equation (3.32) and use equation (3.41) to obtain

σ 2
3 [ki] − σ 2

1 [ki]

= ki

a(a + 2b)

(a + b)2 + ki(ki − 1)
a(a2 + 3ab + b2)

(a + b)3 −
[

ki

a(a + 2b)

(a + b)2

]2

− kiq
∗(1 − q∗)

= ki(ki − 1)
ab3

(a + b)4

> 0. (3.47)

By substituting equation (3.21) in equation (3.34) and using equations (3.43) and (3.45), we obtain

σ 2
3 [〈k〉] − σ 2

1 [〈k〉]
= 4M

N2
· a(a + 2b)

(a + b)2
+ 4M(M − 1)

N2
· a(a2 + 3ab + b2)

(a + b)3

− 8

N2
· ab3

(a + b)4

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
� �=i,j

AijAk� −
(

2M

N

)2 a2(a + 2b)2

(a + b)4
− 4Mq∗(1 − q∗)

N2

>
4M

N2
· a(a + 2b)

(a + b)2 + 4M(M − 1)

N2
· a(a2 + 3ab + b2)

(a + b)3

− 4M(M − 1)

N2
· ab3

(a + b)4 −
(

2M

N

)2 a2(a + 2b)2

(a + b)4
− 4M

N2

ab2(a + 2b)

(a + b)4

= 0. (3.48)

Proposition 9. Assume that E[ki] is the same between models 2 and 3 for any i ∈ {1, . . . , N}. For any
given q∗, if ki > 1, we obtain

(i) σ 2
3 [ki]>σ 2

2 [ki] if 0< q∗ < 1
2
,

(ii) σ 2
3 [ki]<σ 2

2 [ki] if 1
2
< q∗ ≤ 1,

(iii) σ 2
3 [ki] = σ 2

2 [ki] if q∗ = 1
2
.

Furthermore, σ 2[〈k〉] satisfies the same relationships if there exists i such that ki > 1.

We prove Proposition 9 in Appendix C.

3.7. Duration for the edge being inactive in model 2

In model 2, an edge is active if and only if both nodes forming the edge are in the h state, and the
state of each node (i.e., h or �) independently obeys a continuous-time Markov process with two states.
Therefore, the duration of the edge being active obeys an exponential distribution with rate 2b. In
contrast, the duration of the edge being inactive does not obey an exponential distribution, which we
characterise as follows.

Proposition 10. The probability density function of the duration of the edge being inactive in model 2
is the mixture of two exponential distributions given by

f (t) = C1λ1e
−λ1 t + C2λ2e

−λ2 t, (3.49)
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where

λ1 =1

2

(
3a + b − √

a2 + 6ab + b2
)

, (3.50)

λ2 =1

2

(
3a + b + √

a2 + 6ab + b2
)

, (3.51)

C1 =
a

(
1 + a−b√

a2+6ab+b2

)
3a + b − √

a2 + 6ab + b2
, (3.52)

and

C2 =
a

(
1 − a−b√

a2+6ab+b2

)
3a + b + √

a2 + 6ab + b2
. (3.53)

Note that it is straightforward to check C1 + C2 = 1, C1 > 0, C2 > 0 and λ1 > 0.

Proof. Consider a three-state continuous-time Markov process described as follows. Let z (with z = 0,
1, or 2) denote the number of nodes forming an edge that are in the h state. We refer to the value of z
as the state of the three-state Markov chain without arising confusion with the single node’s state (i.e.,
h or �) or edge’s state (i.e., active or inactive). We initialise the stochastic dynamics of nodes by setting
z = 2, which corresponds to the edge being active. Consider a sequence of the state z that starts from
z = 2 at time 0 and return to z = 2 for the first time. Let In be such a sequence of the z values visiting
z = 0 in total n times before returning to z = 2 for the first time, which we denote by

In = (2, 1, 0, 1, . . . , 0, 1︸ ︷︷ ︸
n repetitions of 0 and 1

, 2).

The duration of the edge being inactive is the difference between the time of the first passage to z = 2
and the time of leaving z = 2 last time. We denote this duration by Tn for the case in which z = 0 is
visited n times before z = 2 is revisited for the first time.

For general n, we obtain

Tn = τ ′
1,1 + τ ′′

0,1 + τ ′
1,2 + · · · + τ ′′

0,n + τ ′
1,n+1, (3.54)

where τ ′
1,i is the ith duration of z = 1, which obeys the exponential distribution with rate a + b; τ ′′

0,i is
the ith duration of z = 0, which obeys the exponential distribution with rate 2a. Variables τ ′

1,1, . . ., τ ′
1,n+1,

τ ′′
0,1, . . ., τ ′′

0,n are independent of each other. Therefore, the Laplace transform of the distribution of Tn is
given by

Ln(s) =E[e−sTn ]

=E[e−sτ ′
1,1 ]E[e−sτ ′′

0,1 ]E[e−sτ ′
1,2 ]E[e−sτ ′′

0,2 ] · · ·E[e−sτ ′′
0,n ]E[e−sτ ′

1,n+1 ]

=
(

a + b

s + a + b

)n+1 ( 2a

s + 2a

)n

. (3.55)

The probability that sequence In occurs is given by

q̃(n) = 1 ·
(

b

a + b

)n

· 1n · a

a + b
= abn

(a + b)n+1
. (3.56)
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(a) (b)

Figure 4. Distributions of the duration of the edge being inactive in model 2. The shaded bars represent
numerically obtained distributions calculated on the basis of 5 × 105 samples. The solid lines represent
the mixture of two exponential distributions, i.e., equation (3.49). The dashed lines represent the expo-
nential distribution whose mean is the same as that for equation (3.49). (a) a = 2.0, b = 1.0. (b) a = 1.0,
b = 2.0.

Let T be the duration for which the edge is inactive. Using equations (3.55) and (3.56), we obtain the
Laplace transform of the distribution of T as follows:

L(s) =
∞∑

n=0

q̃(n)E[e−sTn ]

=
∞∑

n=0

abn

(a + b)n+1

(
a + b

s + a + b

)n+1 ( 2a

s + 2a

)n

= a(s + 2a)

s2 + (3a + b)s + 2a2

= a
(
s + 3a+b

2
+ a−b

2

)
(
s + 3a+b

2

)2 −
(√

a2+6ab+b2

4

)2 . (3.57)

Therefore,

L−1(s) = a

[
e− 3a+b

2 t cosh

(√
a2 + 6ab + b2

4
t

)
+ a − b√

a2 + 6ab + b2
e− 3a+b

2 t sinh

(√
a2 + 6ab + b2

4
t

)]

= C1λ1e
−λ1 t + C2λ2e

−λ2 t. (3.58)

We verify equation (3.49) with numerical simulations for two parameter sets. The results are shown
in Figure 4. The dashed curves represent the exponential distributions whose mean is the same as that of
the corresponding mixture of two exponential distributions. The figure suggests that the actual duration
for the edge to be inactive is distributed more heterogeneously than the exponential distribution for both
parameter sets.

For model 3, the duration for the edge being inactive, which is equivalent to the time for which the
same three-state Markov process stays in state z = 0, obeys an exponential distribution with rate 2a.
The duration for the edge being active is the first passage time to z = 0 since the Markov chain has left
z = 0. Therefore, the duration for the edge being active for model 3 obeys the mixture of two exponential
distributions given by equation (3.49), but with a and b being swapped.
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4. Impact of concurrency on the dynamics of the SIS and SIR models
4.1. Numerical results
4.1.1. Methods
To examine the effect of concurrency on epidemic spreading, we run the stochastic SIS and SIR models
on three static networks. On each static network, we run stochastic dynamics of partnership according to
model 1, 2 or 3 and compare the extent of epidemic spreading among the models. Each node takes either
the susceptible, infectious, or recovered state, and the node’s state may change over time. In both SIS and
SIR models, an infectious node infects each of its susceptible neighbour independently at rate β, which
we call the infection rate, and an infectious node recovers at rate μ, which we call the recovery rate,
independently of the other nodes’ states. The infection and recovery events occur as Poisson processes
with the respective rates. Once an infectious node recovers, it turns into the susceptible state in the case
of the SIS model and the recovered state in the case of the SIR model. Recovered nodes in the SIR model
do not infect other nodes and are not infected by other nodes.

We consider three static networks. First, we use the Erdős-Rényi (ER) random graph with N = 200
nodes. We independently connect each pair of nodes with probability 0.05. We iterated generating a
network from the ER random graph until we obtained a connected network with M = 1000 edges. The
second network is a network with N = 200 nodes that has a degree distribution with a power-law tail
that is proportional to k−3, where k is the degree, generated by the Barabási–Albert (BA) model [35].
We assume that each incoming node has five edges to be connected to already existing nodes according
to the proportional preferential attachment rule. In other words, the probability that an existing node,
denoted by v, forms a new edge with an incoming node is proportional to v’s degree. The initial network
is a star graph on 6 nodes. The network is connected and contains M = 975 edges. Third, we use the
largest connected component of a collaboration network among researchers who had published papers
in network science up to 2006 [36]. The network has N = 379 nodes and M = 914 edges. The edge
represents the presence of at least one paper that two authors have coauthored. We use this network as
an unweighted network.

We set μ= 1 without loss of generality; multiplying the same constant to β, μ, a1, b1, a2, b2, a3, and
b3 only rescales the time; ai and bi represent parameters a and b for model i. We run 5000 simulations
for each epidemic process model (i.e., SIS or SIR), each static network, each partnership model (i.e.,
model 1, 2, or 3), and each parameter set. In each simulation of the SIS model, we started from the
initial condition in which all nodes are infectious. This initial condition is not realistic. However, we use
it with the aim of identifying the quasi-stationary fraction of infectious nodes without being affected
by rapid extinction of infectious nodes that may happen with an initial condition having only a small
number of infectious nodes even if the infection rate is large. In the SIS model, we measure the fraction
of infectious nodes at time t = 104 and average it over 103 simulations at each β value. In each simu-
lation of the SIR model, just one node selected uniformly at random is initially infectious, and all the
other nodes are susceptible. For each static network, the initially infectious node is the same over the
different partnership models and the different β values. For each β value, we average the fraction of
recovered nodes at the end of the simulation over the 5000 simulations, which we call the final epidemic
size.

We run the simulation with model 1 using the Laplace Gillespie algorithm [37, 38], which is an
extension of the direct method of Gillespie to the case in which inter-event times are allowed to obey
a mixture of exponential distributions like equation (3.49). For models 2 and 3, we run the simulation
using the direct method of Gillespie because these models only involve exponential distributions of
inter-event times.

Apart from the variation in the β value, we consider four sets of parameter values for both SIS and
SIR models. In the first set of simulations, we set a1 = 1, b1 = 9, a2 = 0.5(

√
10 + 1) ≈ 2.08, b2 = 4.5,

a3 = 0.5, and b3 = 1.5(
√

10 + 3) ≈ 9.24. Then, we obtain q∗ = 0.1 for all the three partnership models.
In this manner, we compare the final epidemic size for the three partnership models, which yield different
amounts of concurrency, under the condition that each edge is active for the same amount of time on
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average. It should be noted that a large q∗ value will obviously lead to a larger final epidemic size with
the other things being equal, and so it is necessary to compare the models with the q∗ value being fixed.
We obtain a second parameter set by making the values of a1, b1, a2, b2, a3, and b3 for the first parameter
set five times smaller, which implies that the nodes and edges flip their states five times more slowly than
in the case of the first parameter set. Because multiplying these six parameters by the same constant does
not change q∗, we retain q∗ = 0.1 for the second parameter set. We refer to the first and second parameter
sets as the fast and slow edge dynamics, respectively. The third parameter set is defined by a1 = 1, b1 = 1,
a2 = 0.5(

√
2 + 1) ≈ 1.21, b2 = 0.5, a3 = 0.5, and b3 = 0.5(

√
2 + 1) ≈ 1.21 such that q∗ = 0.5. We also

consider a slower variant of edge dynamics by dividing these a1, b1, a2, b2, a3, and b3 values by five. In
summary, for each of the three networks and each partnership model, we have four cases each of which
consists of the combination of q∗ ∈ {0.1, 0.5} and either the fast or slow edge dynamics.

4.1.2. Results for the SIS model
In this section, we examine the SIS model with partnership models 1, 2, and 3. We first compare between
partnership models 1 and 2. We recall that model 2 has a higher concurrency than model 1 when each
edge is active with the same probability in the two models. To exclude the possible effects of the distri-
bution of the duration for which the edge is active and that for which the edge is inactive, we use model
1 with ψ1(τ1) = 2b2e−2b2τ1 and ψ2(τ2) = C1λ1e−λ1τ2 + C2λ2e−λ2τ2 , where λ1, λ2, C1, and C2 are given by
equations (3.50), (3.51), (3.52), and (3.53), respectively, with a = a2 and b = b2. In this manner, models
1 and 2 have the identical distribution of the duration of the edge being active (i.e., ψ1) and that of the
edge being inactive (i.e., ψ2), whereas they are different in terms of the amount of concurrency.

In Figure 5(a)–(d), we show the relationships between the infection rate and fraction of infectious
nodes at t = 104 for a network generated by the ER random graph. Figure 5(a) and (b) corresponds to
q∗ = 0.1; Figure 5(c) and (d) corresponds to q∗ = 0.5. Figure 5(a) and (c) corresponds to the slow edge
dynamics; Figure 5(b) and (d) corresponds to the fast edge dynamics. Figure 5(a)–(d) indicates that, in
each of these combinations of a value of q∗ and speed of the edge dynamics, the epidemic threshold is
smaller for model 2 than model 1. As a result, the fraction of infectious nodes is larger for model 2 than
model 1 when the infection rate is near the epidemic threshold. These results suggest that concurrency
decreases the epidemic threshold and promotes epidemic spreading when the infection rate is near the
epidemic threshold, which is consistent with the main conclusions of previous studies [28, 29, 39].
However, the epidemic threshold and the fraction of infectious nodes near the epidemic threshold are
almost the same between models 1 and 2 when q∗ = 0.5 (see Figure 5(c) and (d)). Furthermore, the
concurrency decreases the fraction of infectious nodes when the infection rate is sufficiently larger than
the epidemic threshold, with both q∗ = 0.1 and q∗ = 0.5.

The results for a network generated by the BA model, shown in Figure 5(e)–(h), and those for the
collaboration network, shown in Figure 5(i)–(l), are qualitatively the same as those for the ER model.
Quantitatively, when q∗ = 0.1, the relative difference in the epidemic threshold between models 1 and
2 for the BA model (see Figure 5(e) and (f)) and the collaboration network (see Figure 5(i) and (j)) is
smaller than for the ER random graph (see Figure 5(a) and (b)).

Now we compare models 1 and 3. We use model 1 with ψ1(τ1) = C1λ1e−λ1τ1 + C2λ2e−λ2τ1 , where the
four parameters are given by equations (3.50), (3.51), (3.52), and (3.53), respectively, with a = b3 and
b = a3, and ψ2(τ2) = 2a3e−2a3τ2 . In this manner, models 1 and 3 have the identical ψ1 and ψ2, whereas
model 3 has a larger amount of concurrency than model 1 does.

We show the fraction of infectious nodes at t = 104 for models 1 and 3 for the same three underlying
static networks, two values of q∗, and two speeds of edge dynamics in Figure 6. The results are qualita-
tively similar to the comparison between models 1 and 2 shown in Figure 5. These results with models
1 and 3 further support that concurrency decreases the epidemic threshold, whereas this effect is small
for the BA model and collaboration network as well as for denser networks (i.e., q∗ = 0.5 compared to
q∗ = 0.1).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Comparison of the quasi-equilibrium fraction of infectious nodes in the SIS model between
models 1 and 2. (a)–(d) ER random graph. (e)–(h) BA model. (i)–(l) Collaboration network. In panels
(a), (e) and (i), we set q∗ = 0.1 and use the slow edge dynamics. In panels (b), (f) and (j), we set q∗ = 0.1
and use the fast edge dynamics. In panels (c), (g) and (k), we set q∗ = 0.5 and use the slow edge dynamics.
In panels (d), (h) and (l), we set q∗ = 0.5 and use the fast edge dynamics. “Collabo.” is a shorthand for
the collaboration (i.e., co-authorship) network.

4.1.3. Results for the SIR model
In this section, we examine the SIR model with the three partnership models. When comparing between
models 1 and 2 and between models 1 and 3, we use the same distributions of inter-event times for model
1 as those used in Section 4.1.2.

In Figure 7(a)–(d), we show the relationships between the infection rate and final epidemic size for a
network generated by the ER random graph. Figure 7(a) and (b) corresponds to q∗ = 0.1; Figure 7(c) and
(d) corresponds to q∗ = 0.5. Figure 7(a) and (c) corresponds to the slow edge dynamics; Figure 7(b) and
(d) corresponds to the fast edge dynamics. Figure 7(a)–(d) indicates that, in each of these combinations
of a value of q∗ and speed of the edge dynamics, the final epidemic size is larger for model 2 than model
1 when the infection rate is near the epidemic threshold. This result suggests that concurrency promotes
epidemic spreading near the epidemic threshold. However, the final epidemic size near the epidemic
threshold is only slightly larger for model 2 than model 1 when q∗ = 0.5 (see Figure 7(c) and (d)).
Furthermore, the concurrency suppresses the epidemic spreading when the infection rate, and hence the
final epidemic size, is larger for both q∗ = 0.1 and q∗ = 0.5. All these results are similar to those for
the SIS model shown in Figure 5(a)–(d) except that there is no noticeable difference in the epidemic
threshold between models 1 and 2 in the case of the SIR model.

The results for the BA model, shown in Figure 7(e)–(h), are similar to those for the ER random
graph. The results for the collaboration network, shown in Figure 7(i)–(l), are similar to those for the ER
random graph and the BA model except that, when q∗ = 0.1, the final epidemic size is larger for model
2 than model 1 across the entire range of the infection rate, β, that we investigated; see Figure 7(i)
and (j). Because the final epidemic size has approximately plateaued for both models 1 and 2 at the
largest β value that we investigated, it is unlikely that model 1 yields a larger final epidemic size than
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Comparison of the quasi-equilibrium fraction of infectious nodes in the SIS model between
models 1 and 3. (a)–(d) ER random graph. (e)–(h) BA model. (i)–(l) Collaboration network. In panels
(a), (e) and (i), we set q∗ = 0.1 and use the slow edge dynamics. In panels (b), (f) and (j), we set q∗ = 0.1
and use the fast edge dynamics. In panels (c), (g) and (k), we set q∗ = 0.5 and use the slow edge dynamics.
In panels (d), (h) and (l), we set q∗ = 0.5 and use the fast edge dynamics.

model 2 when β is larger. These numerical results suggest that the effect of concurrency on enhancing
epidemic spreading at q∗ = 0.1 is stronger for the collaboration network than for the ER and BA models.
In contrast, when q∗ = 0.5, the final epidemic size is not noticeably larger for model 2 than model 1 when
β is near the epidemic threshold and smaller for model 2 than model 1 when β is larger (see Figure 7(k)
and (l)). This result is qualitatively the same as that for the ER and BA models shown in Figure 7(c),
(d), (g), and (h).

In Figure 8, we compare the final epidemic size in the SIR model between models 1 and 3 for the
same three underlying static networks, two values of q∗, and two speeds of edge dynamics. The results
are largely similar to the comparison between models 1 and 2. A notable difference from the comparison
between models 1 and 2 is that, for the ER random graph and BA model combined with q∗ = 0.1 and
the slow edge dynamics, model 3 yields a larger final epidemic size than model 1 across the entire range
of the infection rate values investigated (see Figure 8(a) and (e)).

4.2. Theoretical results

We analytically derived an expression of the epidemic threshold for the SIS model on arbitrary under-
lying static networks combined with partnership models 1, 2 and 3. We assume that each network
composed of partnership edges lasts for time h before switching to another partnership network and
that the static network G(t) in each time window of length h is generated as an i.i.d. In fact, our partner-
ship models 1, 2 and 3 imply that G(t) at different times are correlated with each other. Therefore, the
i.i.d. assumption is for facilitating theoretical analysis.

We found that, to the first order of h, the epidemic threshold is the same for the three models. We
show the detail in Appendix D. This result is apparently not consistent with the numerical results for
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Figure 7. Comparison of the final epidemic size in the SIR model between models 1 and 2. (a)–(d)
ER random graph. (e)–(h) BA model. (i)–(l) Collaboration network. In panels (a), (e) and (i), we set
q∗ = 0.1 and use the slow edge dynamics. In panels (b), (f) and (j), we set q∗ = 0.1 and use the fast edge
dynamics. In panels (c), (g) and (k), we set q∗ = 0.5 and use the slow edge dynamics. In panels (d), (h)
and (l), we set q∗ = 0.5 and use the fast edge dynamics. The inset of (i) shows the magnification of the
main panel because the final epidemic size is small in the entire range of the infection rate in this case.

the SIS model shown in Figures 5 and 6, which support that the epidemic threshold decreases as the
concurrency increases. In fact, the i.i.d. assumption made for our theoretical analysis corresponds to the
limit of infinitely fast switching of edges. This is because a faster edge dynamics for a fixed value of h
implies that G(t) and G(t′), where t′ �= t, are less correlated with each other for given t and t′. Therefore,
we carried out additional numerical simulations by making the values of a1, b1, a2, b2, a3 and b3 five times
larger than those for the fast edge dynamics, i.e., 25 times larger than those for the slow edge dynamics.
Then, we found that the epidemic threshold for the SIS model in the case of high concurrency (i.e.,
models 2 and 3) is much closer to the epidemic threshold in the case of low concurrency (i.e., model 1),
as compared to when the edge dynamics are slower (i.e., Figures 5 and 6). See Figure 9 for numerical
results. We conclude that the theoretical results in this section explain our numerical results when the
edge dynamics are sufficiently faster than the epidemic dynamics.

5. Discussion

We investigated three models of edge dynamics. They allow us to generate cases with different amounts
of concurrency while keeping the probability that each edge is active (i.e., q∗) and the structure of the
aggregate network the same. We theoretically evaluated the concurrency of each model and compared
it among the models. Then, we numerically observed using the stochastic SIS and SIR models that
quasi-equilibrium fractions of infectious nodes and the final epidemic size, respectively, were larger for
the edge dynamics models with the higher concurrency (i.e., models 2 or 3 compared to model 1) if the
infection rate was near the epidemic threshold. In the SIS model, the epidemic threshold was also smaller

https://doi.org/10.1017/S095679252300027X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252300027X


448 R. Liu et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Comparison of the final epidemic size in the SIR model between models 1 and 3. (a)–(d)
ER random graph. (e)–(h) BA model. (i)–(l) Collaboration network. In panels (a), (e) and (i), we set
q∗ = 0.1 and use the slow edge dynamics. In panels (b), (f) and (j), we set q∗ = 0.1 and use the fast edge
dynamics. In panels (c), (g) and (k), we set q∗ = 0.5 and use the slow edge dynamics. In panels (d), (h)
and (l), we set q∗ = 0.5 and use the fast edge dynamics.

when the concurrency was higher. These effects of the concurrency surrounding the epidemic threshold
were larger when the edge dynamics is slower, i.e., with q∗ = 0.1 than with q∗ = 0.5. At the same time,
we found that the effect of concurrency on epidemic spreading was modest up to our numerical efforts. It
was particularly the case for the BA model and the collaboration network, which are more realistic than
the ER random graph in terms of the heterogeneity in the node’s degree. Furthermore, high concurrency
suppressed epidemic spreading at large infection rates.

A previous study numerically showed that concurrency has a greater effect on increasing an epidemic
potential in sparser networks [11]. They measured the epidemic potential defined by the proportion of
ordered pairs of nodes that are reachable in the sense that it is possible to travel from one node to the other
node along a time-respecting path in the given temporal network composed of time-stamped edges. Our
results are consistent with theirs because the effect of concurrency on enhancing epidemic spreading is
stronger when q∗ is smaller in all the cases investigated (see Figures 5, 6, 7, and 8). The larger effect of
concurrency on epidemic spreading for sparser networks may be because networks with large q∗, which
leads to a large number of edges, have more time-respecting paths from an infectious node to susceptible
nodes transmitting infection even in the absence of concurrency [11].

Another previous study concluded that the impact of concurrency on the epidemic size is fairly limited
except in an early stage of epidemic dynamics [27]. Despite the dependence of epidemic spreading on
the density of contacts, which we discussed in the last paragraph, our findings are at large consistent
with theirs. In other words, we found that the presence of concurrency little affected or even decreased
the quasi-equilibrium fraction of infectious nodes in the SIS model and the final epidemic size in the
SIR model in many cases, in particular for the BA model and collaboration networks. The reason why
high concurrency decreases epidemic spreading at large infection rates is unclear. This phenomenon
may be because, at high infection rates, infection can easily spread from nodes to nodes even without
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Figure 9. Comparison of the quasi-stationary fraction of infectious nodes in the SIS model among
models 1, 2 and 3 under faster edge dynamics. We use the edge dynamics that are five times faster than
the fast edge dynamics used in Figures 5 and 6. (a)–(d) ER random graph. (e)–(h) BA model. (i)–(l)
Collaboration network. In panels (a), (e) and (i), we set q∗ = 0.1 and compare models 1 and 2. In panels
(b), (f) and (j), we set q∗ = 0.5 and compare models 1 and 2. In panels (c), (g) and (k), we set q∗ = 0.1
and compare models 1 and 3. In panels (d), (h) and (l), we set q∗ = 0.5 and compare models 1 and 3.
We remind that we cannot compare models 1, 2 and 3 in a single figure panel because we need to use
different variants of model 1 in the comparison with models 2 and 3 to make the comparison fair.

concurrency, such that many contact events on different edges, which would occur at close times in
the case of high concurrency, are wasted. Note that our modelling framework guarantees that the total
number of contact events on each edge is the same between low and high concurrency cases on average.
Our analytical result showing that the epidemic threshold is independent of the concurrency (i.e., see
Section 4.2) also supports that the impact of concurrency on enhancing epidemic spreading may not be
large.

In contrast, our previous study analytically showed that the concurrency enhances epidemic spread-
ing in terms of the epidemic threshold value for the SIS model [28, 39]. The diversity of these results
may be due to different strategies for modeling concurrency. For example, the authors of ref. [27]
designed their dynamic network models by ensuring that the number of partners that an individual has
in a long term is the same across the individuals, rendering the aggregate network the complete graph.
A different study that also carefully controlled the amount of interaction for each edge to be the same
across comparisons made the same homogeneity assumption [29]. In contrast, refs. [28, 39] and the
present study have assumed that the number of partners that an individual has in a long term may be
heterogeneously distributed. Examining similarities and differences between these existing models of
concurrency, including the model proposed in the present study, is an outstanding question. This being
said, an overall conclusion based on the present numerical results is that the concurrency only modestly
or little influences extents of epidemic spreading in many cases. This result indicates that other factors
such as static network structure [1–4] and burstiness [5–7, 40] may be a larger contributor to epidemic
dynamics than concurrency. Further comparing the impact of concurrency on epidemic spreading and
that of other network factors warrants future work.
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Concurrency is not only relevant to sexually transmitted infections, as most studies of concurrency
have focused on [15, 20–23, 41], or even to epidemic spreading in general. Other network dynamics such
as opinion formation, synchronisation and information spreading and cascading on social networks may
also be affected by concurrency. Our assumption that the partnership between any given pair of individ-
uals can reoccur after it has disappeared is unrealistic in most cases of sexual partnerships. However,
this assumption is considered to be natural for describing other types of dynamic social contacts such
as face-to-face encounters and online communications, which underlie social dynamics apart from sex-
ually transmitted infections. Investigating impacts of concurrency on these different social dynamics
using the present models also warrants future work.
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Appendix A: Proof of Proposition 5

In model 2, random variable yi obeys a Bernoulli distribution with expected value E[yi] = a/(a + b)
because yi = 1 with probability a/(a + b) and yi = 0 with probability b/(a + b). Because yi and yj, where
i �= j, are independent of each other, we obtain

E[ki] =E

[
yi

N∑
j=1

Aijyj

]
=

N∑
j=1
j �=i

AijE[yi]E[yj] = ki

(
a

a + b

)2

(A.1)
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We also obtain
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Appendix B: Proof of Proposition 6

For model 3, we obtain
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2

=E

[
N∑

j=1

Aij(yi + yj − yiyj)

]
+E

⎡
⎢⎣ N∑

j=1
j �=i

N∑
k=1
k �=i,j

AijAik(yi + yjyk − yiyjyk)

⎤
⎥⎦− (E[ki])

2

= kia(a + 2b)

(a + b)2
+ ki(ki − 1)a(a2 + 3ab + b2)

(a + b)3
−
[

kia(a + 2b)

(a + b)2

]2

. (B.2)

We also obtain

E[〈k〉] =E

[
2

N

N∑
i=1

N∑
j=i+1

Aij

(
yi + yj − yiyj

)]

= 2

N

N∑
i=1

N∑
j=i+1

Aij

(
E[yi] +E[yj] −E[yi]E[yj]

)

= 2

N

N∑
i=1

N∑
j=i+1

Aij

[
2a

a + b
−
(

a

a + b

)2
]

= 2M

N
· a(a + 2b)

(a + b)2 (B.3)
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and

σ 2[〈k〉] =E[〈k〉2] − (E[〈k〉])2

=E

[(
2

N

N∑
i=1

N∑
j=i+1

Aij

(
yi + yj − yiyj

))2]
−
[

2M

N
· a(a + 2b)

(a + b)2

]2

= 4

N2
E

[
N∑

i=1

N∑
j=i+1

A2
ij

(
yi + yj − yiyj

)2 + 2
N∑

i=1

N∑
j=i+1

N∑
k=j+1

AijAjk

(
yi + yj − yiyj

) (
yj + yk − yjyk

)

+2
N∑

i=1

N∑
j=i+1

N∑
k=j+1

AijAik

(
yi + yj − yiyj

)
(yi + yk − yiyk)

+2
N∑

i=1

N∑
k=i+1

N∑
j=k+1

AijAkj

(
yi + yj − yiyj

) (
yk + yj − ykyj

)

+2
N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

(
yi + yj − yiyj

)
(yk + y� − yky�)

⎤
⎥⎦−

[
2M

N
· a(a + 2b)

(a + b)2

]2

= 4

N2
E

[
N∑

i=1

N∑
j=i+1

Aij

(
yi + yj − yiyj

)+ 2
N∑

i=1

N∑
j=i+1

N∑
k=j+1

AijAjk

(
yj + yiyk − yiyjyk

)

+2
N∑

i=1

N∑
j=i+1

N∑
k=j+1

AijAik

(
yi + yjyk − yiyjyk

)+ 2
N∑

i=1

N∑
k=i+1

N∑
j=k+1

AijAkj

(
yj + yiyk − yiyjyk

)

+2
N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

(
yiyk + yiy� + yjyk + yjy� − yiyky� − yjyky� − yiyjyk − yiyjy� + yiyjyky�

)⎤⎥⎦
−
[

2M

N
· a(a + 2b)

(a + b)2

]2

= 4M

N2
· a(a + 2b)

(a + b)2 + 8

N2

N∑
i=1

N∑
j=i+1

N∑
k=j+1

AijAjk

a(a2 + 3ab + b2)

(a + b)3

+ 8

N2

N∑
i=1

N∑
j=i+1

N∑
k=j+1

AijAik

a(a2 + 3ab + b2)

(a + b)3 + 8

N2

N∑
i=1

N∑
k=i+1

N∑
j=k+1

AijAkj

a(a2 + 3ab + b2)

(a + b)3

+ 8

N2

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

a2(a2 + 4ab + 4b2)

(a + b)4 −
[

2M

N
· a(a + 2b)

(a + b)2

]2

= 4M

N2
· a(a + 2b)

(a + b)2 + 4M(M − 1)

N2
· a(a2 + 3ab + b2)

(a + b)3 − 8

N2
· ab3

(a + b)4

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

−
[

2M

N
· a(a + 2b)

(a + b)2

]2

. (B.4)

Appendix C: Proof of Proposition 9

Let a2 and a3 be the rate at which the state of a node changes from the � to the h state for models 2 and
3, respectively. Similarly, let b2 and b3 be the rate at which the state of a node changes from the h to �
state for models 2 and 3, respectively. Because q∗ is the same between models 2 and 3 by assumption,
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equation (3.24) holds true. We apply equation (3.24) to equations (3.37) and (3.41) to obtain

σ 2
3 [ki] − σ 2

2 [ki]

= ki

a3(a3 + 2b3)

(a3 + b3)
2 + ki(ki − 1)

a3(a2
3 + 3a3b3 + b2

3)

(a3 + b3)
3 −

[
ki

a3(a3 + 2b3)

(a3 + b3)
2

]2

− ki

(
a2

a2 + b2

)2

− ki(ki − 1)

(
a2

a2 + b2

)3

+
[

ki

(
a2

a2 + b2

)2
]2

= ki(ki − 1)
a3(a2

3 + 3a3b3 + b2
3)

(a3 + b3)
3 − ki(ki − 1)

(
a2

a2 + b2

)3

= ki(ki − 1)
a3(a2

3 + 3a3b3 + b2
3)

(a3 + b3)
3 − ki(ki − 1)

√
a3

3(a3 + 2b3)3

(a3 + b3)
3

= ki(ki − 1)

(a3 + b3)
3

[
a3(a2

3 + 3a3b3 + b2
3) −

√
a3

3(a3 + 2b3)3

]
. (C.1)

Therefore, σ 2
3 [ki]<σ 2

2 [ki] if and only if b3 < (1 + √
2)a3, which is equivalent to 1

2
< q∗ ≤ 1.

By applying equation (3.24) to equations (3.39) and (3.43) and using equation (3.45), we obtain
σ 2

2 [〈k〉] − σ 2
3 [〈k〉]

= 4M(M − 1)

N2

(
a2

a2 + b2

)3

− 8

N2

(
a2

a2 + b2

)3 b2

a2 + b2

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

− 4M(M − 1)

N2
· a3(a2

3 + 3a3b3 + b2
3)

(a3 + b3)3
+ 8

N2
· a3b3

3

(a3 + b3)4

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

= 4M(M − 1)

N2
·
√

a3
3(a3 + 2b3)3

(a3 + b3)
3 − 8

N2
·
√

a3
3(a3 + 2b3)3

(a3 + b3)
3 · a3 + b3 − √

a3(a3 + 2b3)

a3 + b3

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

− 4M(M − 1)

N2
· a3(a2

3 + 3a3b3 + b2
3)

(a3 + b3)
3 + 8

N2
· a3b3

3

(a3 + b3)
4

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

= 4M(M − 1)

N2
·
(a3 + b3)

[√
a3

3(a3 + 2b3)3 − a3(a2
3 + 3a3b3 + b2

3)
]

(a3 + b3)
4

− 8

N2

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

(a3 + b3)
√

a3
3(a3 + 2b3)3 − a2

3(a3 + 2b3)2 − a3b3
3

(a3 + b3)
4

= 8

N2

⎡
⎢⎣M(M − 1)

2
−

N−1∑
i=1

N∑
j=i+1

N−1∑
k>i
k �=j

N∑
�>k
��=i,j

AijAk�

⎤
⎥⎦
√

a3
3(a3 + 2b3)3 − a3(a2

3 + 3a3b3 + b2
3)

(a3 + b3)
3 . (C.2)

Therefore, σ 2
3 [〈k〉]<σ 2

2 [〈k〉] if and only if b3 < (1 + √
2)a3, which is equivalent to 1

2
< q∗ ≤ 1.

Appendix D: Epidemic threshold when the network switches rapidly

In this section, we evaluate the epidemic threshold for models 1, 2 and 3 under the assumption that the
time-independent networks at different times are independent of each other in each model.

We denote the identity and the zero matrices by I and O, respectively. A real matrix A (or a vector as
its special case) is said to be nonnegative, denoted by A ≥ 0, if all the entries of A are nonnegative. If all
the entries of A are positive, then A is said to be positive. We say that A ≤ B, where A and B are of the
same dimension, if B − A ≥ 0. A square matrix A is said to be Metzler if all its off-diagonal entries are
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nonnegative [42]. If A is Metzler, it holds true that eAt ≥ 0 for all t ≥ 0 [42]. For a Metzler matrix A, the
maximum real part of the eigenvalues of A is denoted by λmax(A). For any matrix A, the spectral radius
is the largest absolute value of its eigenvalues and denoted by ρ(A).

The SIS model is a continuous-time Markov process with 2N possible states [2, 3, 43] and has a unique
absorbing state in which all the N nodes are susceptible. Because this absorbing state is reachable from
any other state, the dynamics of the SIS model reaches the disease-free absorbing equilibrium in finite
time with probability one.

D.1. A lower bound on the decay rate for subgraphs
We refer to the directed edges of a given network G as E = {e1, . . . , eM}, where the �th edge (1 ≤ �≤ M)
is represented by e� = (i�, j�), i.e., the edge is directed from node vi� to node vj� . Define the incidence
matrix C ∈R

N×M of the network G by [1, 44]

Ci� =

⎧⎪⎨
⎪⎩

1, if j� = i,

−1, if i� = i,

0, otherwise,

(D.1)

for all i ∈ {1, . . . , N} and � ∈ {1, . . . , M}. We also define the non-backtracking matrix H ∈R
M×M of G

by [45, 46]

H�m =
{

1, if j� = im and jm �= i�,

0, otherwise.
(D.2)

We prove the following corollary about the SIS spreading processes taking place in a subgraph of G.

Corollary 11. Let Ĕ be a subset of E . Consider the SIS model over the network Ğ = (V , Ĕ) with the
infection rate β > 0 and recovery rate μ> 0. Define matrix H̆ ∈R

M×M by

H̆�m =
{

1, if e� ∈ Ĕ , j� = im, and jm �= i�,

0, otherwise,
(D.3)

We also define the diagonal matrix


̆= diag(ξ̆1, . . . , ξ̆M), (D.4)

where

ξ̆� =
{

1, if e� ∈ Ĕ ,

0, otherwise
(D.5)

for each � ∈ {1, . . . , M}. Then, we obtain
d

dt

[
p
q

]
≤ Ă

[
p
q

]
, (D.6)

where p(t) = [p1(t), . . . , pN(t)
]�, pi(t) =E[xi(t)] is the probability that node vi is infectious at time t, �

represents the transposition, q(t) = [qi1 j1 (t), . . . , qiM jM (t)
]�, qij(t) =E[xi(t)(1 − xj(t)] is the joint proba-

bility that vi is infectious and node vj is susceptible at time t and the (N + M) × (N + M) matrix Ă is
defined by

Ă=
[−μI βC+
̆

μC
�
− βH̆� − β
̆− 2μI

]
, (D.7)

where C+ = max (C, 0) and C− = max ( − C, 0) denote the positive and negative parts of the incidence
matrix C, respectively.
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Proof. We adapt equation (3.20) in ref. [47] to the case in which the network is defined by Ğ, the
infection rate is independent of edges, and the recovery rate is independent of nodes. Specifically, by
replacing B′, D, D1

′, D2
′ in equation (3.20) in ref. [47] by β
̆, μI, μI, μI, respectively, we obtain

d

dt

[
p
q

]
=A

[
p
q

]
−
[

0
ε

]
, (D.8)

where ε(t) is entry-wise nonnegative for every t ≥ 0. Equation (D.8) implies
d

dt

[
p
q

]
≤A

[
p
q

]
, (D.9)

where matrix A is given by

A=
[−μI βC+
̆

μC
�
− βH

�

̆− β
̆− 2μI

]
. (D.10)

Therefore, to complete the proof, it is sufficient to show

H
�

̆= H̆�, (D.11)

which proves A= Ă.
Let us show equation (D.11). For any �, m ∈ {1, . . . , M}, one obtains

[H
�

̆]�m =

M∑
k=1

[H
�

]�k[
̆]km

= [H
�

]�m[
̆]mm

= Hm�ξ̆m

=
{

1, if em ∈ Ĕ , jm = i�, and j� �= im,

0, otherwise,

= [H̆�]�m, (D.12)

which proves equation (D.11).

D.2. A lower bound on the decay rate for temporal networks
Let G̃1 = (V , Ẽ1), . . ., G̃L = (V , ẼL) be directed and unweighted networks having the common node set
V = {v1, . . . , vN}. Let {σk}∞

k=0 be independent and identically distributed random variables following a
probability distribution on the set {1, . . . , L}. Variable σk indexes the kth network to be used. Let h> 0
be arbitrary. For a real number x, let �x� denote the maximum integer that does not exceed x. Define the
stochastic temporal network G by

G(t) = G̃σ�t/h� (D.13)

for all t ≥ 0. Equation (D.13) implies thatG(kh + τ ) = G̃σk for all k ≥ 0 and τ ∈ [0, h). In the temporal net-
work models 1, 2 and 3 used in the main text, the states of individual edges or nodes independently repeat
flipping in continuous time in a Poissonian manner, which induces network switching. Therefore, the
duration for a single time-independent network, h, is not a constant. Furthermore, the time-independent
networks before and after a single flipping of an edge’s or node’s state are not independent of each other.
For these two reasons, the present G is not the same as models 1, 2 or 3. However, one can enforce the
present G and any of models 1, 2 and 3 to have the same probability that each type of time-independent
network, G̃�, occurs by setting an appropriate probability distribution for {G̃1, . . . , G̃L} for the present G.
We assume such a probability distribution in the following text. We consider the stochastic SIS model
taking place in G.
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Definition 12. The decay rate of the SIS model over G is defined by

γ = − lim sup
t→∞

log
∑N

i=1 E[pi(t)]

t
, (D.14)

where all nodes are assumed to be infected at t = 0.

Definition 12 states that
∑N

i=1 pi(t), which is equal to the expected number of infected nodes at time
t, roughly decays exponentially in time in proportion to e−γ t. Because the number of infected nodes
always becomes zero in finite time, the SIS model on networks always has a positive decay rate. In fact,
exact computation of the decay rate is computationally demanding because the decay rate is equal to
the modulus of the largest real part of the non-zero eigenvalues of a 2N × 2N matrix representing the
infinitesimal generator of the Markov chain [43]. Therefore, bounds of the decay rate that only require
computation of much smaller matrices are available [43, 47–51]. Here we develop such a bound for
temporal network G.

Let us label the set of time-aggregated edges, E =⋃L
�=1 Ẽ�, as E = {e1, . . . , eM}. Define the time-

aggregated graph G = (V , E). Let C ∈R
N×M denote the incidence matrix of G. Although the notations

G, E and C are common to those used in Section D.1, this should not arise confusions in the following
text. For each t ≥ 0, let E(t) denote the set of edges of the network at time t, i.e., G(t). In other words,
E(t) = Ẽσ�t/h� . We also define the matrix H(t) ∈R

M×M by

H(t)�m =
{

1 if e� ∈ E(t), j� = im, and jm �= i�,

0 otherwise,
(D.15)

where �, m ∈ {1, . . . , M}, and the diagonal matrix


(t) = diag(ξ1(t), . . . , ξM(t)), (D.16)

where

ξ�(t) =
{

1 if e� ∈ E(t),

0 otherwise,
(D.17)

and � ∈ {1, . . . , M}. Note that H(t) is similar to but different from the non-backtracking matrix of network
G(t) because the definition of H(t) does not require em ∈ E(t).

The following proposition gives an upper bound on the decay rate of the SIS model over the temporal
network G.

Proposition 13. Define an (N + M) × (N + M) random matrix A(t) by

A(t) =
[
−μI βC+
(t)

μC
�
− βH(t)� − β
(t) − 2μI

]
. (D.18)

Let

F =E[ehA(0)]. (D.19)

Then, the decay rate of the SIS model over the temporal network G is greater than or equal to
−h−1 log ρ(F).

Proof. From Corollary 11, we obtain
d

dt

[
p(t)
q(t)

]
≤A(t)

[
p(t)
q(t)

]
. (D.20)

By combining equation (D.20) and the definition of the temporal network given by equation (D.13), we
obtain

d

dτ

[
p(kh + τ )
q(kh + τ )

]
≤A(kh)

[
p(τ )
q(τ )

]
(D.21)
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for all k = 0, 1, . . . and τ ∈ [0, h), which implies[
p((k + 1)h)
q((k + 1)h)

]
≤ ehA(kh)

[
p(kh)
q(kh)

]
. (D.22)

Because the random variables {σk}∞
k=0 are independently and identically distributed, we take the

expectation with respect to σ in equation (D.22) to obtain[
E[p((k + 1)h)]
E[q((k + 1)h)]

]
≤F

[
E[p(kh)]
E[q(kh)]

]
, (D.23)

which implies [
E[p(kh)]
E[q(kh)]

]
≤F k

[
p(0)
q(0)

]
. (D.24)

Now, let S ⊂R
(N+M)×(N+M) denote the support of the random matrix A(0). Inequality (D.21) shows

that, for each sample path, there exists a matrix Xk ∈ S dependent on k such that[
p(kh + τ )
q(kh + τ )

]
≤ eτXk

[
p(kh)
q(kh)

]
(D.25)

for all k = 0, 1, . . . and τ ∈ [0, h). Because S is finite, the maximum  = max0≤τ≤h,X∈S
∥∥eτX

∥∥ exists and
is finite. Therefore, equation (D.25) implies∥∥∥∥

[
p(kh + τ )
q(kh + τ )

]∥∥∥∥≤ ‖eτXk‖
∥∥∥∥
[
p(kh)
q(kh)

]∥∥∥∥≤ 
∥∥∥∥
[
p(kh)
q(kh)

]∥∥∥∥ (D.26)

with probability one. By combining equations (D.24) and (D.26), we obtain

‖E[p(kh + τ )]‖ ≤ ‖F k‖
∥∥∥∥
[
p(0)
q(0)

]∥∥∥∥ . (D.27)

Equation (D.27) implies that

‖E[p(kh + τ )]‖ ≤ c‖F k‖ (D.28)

for a constant c> 0. Because

lim sup
t→∞

log
∑N

i=1 E[pi(t)]

t
≤ lim sup

t→∞

log ‖E[p(t)]‖
t

= lim
k→∞

sup
�≥k

max
0≤τ<h

log ‖E[p(�h + τ )]‖
�h + τ

≤ 1

h
lim
k→∞

sup
�≥k

max
0≤τ<h

log ‖E[p(�h + τ )]‖
�

, (D.29)

inequality (D.28) implies that

lim sup
t→∞

log
∑N

i=1 E[pi(t)]

t
≤ 1

h
lim
k→∞

sup
�≥k

log ‖F �‖ + log c

�

= 1

h
lim sup

k→∞

log ‖F k‖
k

= 1

h
log ρ(F). (D.30)

In the last equality in equation (D.30), we used the Gelfand’s formula [52, Corollary 5.6.14].
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D.3. Epidemic threshold for small h

In this section, we consider the case in which the switching interval, h, is sufficiently small. The first-
order expansion of matrix F with respect to h yields

F = I +E[hA(0)] + O(h2) = I + hE[A(0)] + O(h2). (D.31)

Let us assume that matrix E[A(0)] is irreducible. Let λmax denote the real eigenvalue of E[A(0)] with
the largest real part. Then, by the Perron–Frobenius theorem and the differentiability of the eigenvalues
of matrices [52, Theorem 6.3.12], we obtain

ρ(F) = 1 + hλmax + O(h2). (D.32)

Therefore, h−1 log ρ(F) = λmax = O(h). The combination of this asymptotic evaluation and Proposition
13 suggests that the epidemic threshold is the value of β/μ at which λmax = 0.

We rewrite the epidemic threshold in terms of the spectral radius of the relevant matrices. As in the
proof of Corollary 5 in ref. [47], we rewrite the random matrix A(0) as

A(0) = R +P (D.33)

with a constant matrix

R =
[−μI O

μC̄�
− −βI − 2μI

]
(D.34)

and a random matrix

P = β

[
O C+
(0)

O I + H(0)� −
(0)

]
. (D.35)

Then, we obtain the decomposition

E[A(0)] = R + P, (D.36)

where

P =E[P] = β

[
O C+E

[

(0)

]
O I +E

[
H(0)

]� −E
[

(0)

]
]

. (D.37)

Matrix R is Metzler, and all the eigenvalues of R have negative real parts. Matrix P is nonnegative
because each diagonal of 
(0) is a {0, 1}-valued random variable. Therefore, Theorem 2.11 in ref. [53]
implies that λmax < 0 if and only if ρ(R−1P)< 1. Because

R−1P =
⎡
⎢⎣O −β

μ
C+E

[

(0)

]
O − β

β + 2μ

(
I +E

[
H(0)

]� −E[
(0)] + C
�
−C+E

[

(0)

])
⎤
⎥⎦ , (D.38)

one obtains

ρ(R−1P) = β

β + 2μ
ρ
(

I +E
[
H(0)

]� −E[
(0)] + C
�
−C+E

[

(0)

])
. (D.39)

Equation (D.39) implies that ρ(R−1P)< 1 if and only if
β

μ
<

2

ρ
(

I −E[
(0)] +E
[

(0)

]
C

�
+C− +E

[
H(0)

])− 1
. (D.40)

The right-hand side of equation (D.40) gives the epidemic threshold, which we can further as follows.
Equations (D.15), (D.16) and (D.17) imply that H(t) =
(t)H, where H is the non-backtracking matrix
of the time-aggregated graph. (Note that this notation should not cause confusions with the definition
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of H given by equation (D.2).) Therefore, we rewrite equation (D.40) as
β

μ
<

2

ρ
(

I −E[
(0)] + C
�
+E
[

(0)

]
C− +E

[

(0)

]
H
)

− 1
. (D.41)

Therefore, the epidemic threshold, i.e., the right-hand side of equation (D.41), only depends on the
expectation of 
(0), i.e., E[
(0)]. We keep E[
(0)] constant across the different models to inspect the
effect of different amounts of concurrency on epidemic spreading under the condition that the aggregate
network is the same across the comparisons. Therefore, with this analysis, we do not find a difference
in the epidemic threshold across our different models.
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