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Abstract

In this paper we study players’ long-run behaviors in evolutionary coordination games
with imperfect monitoring. In each time period, signals corresponding to players’
underlying actions, instead of the actions themselves, are observed. A boundedly rational
quasi-Bayesian learning process is proposed to extract information from the realized
signals. We find that players’ long-run behaviors depend not only on the correlations
between actions and signals, but on the initial probabilities of risk-dominant and non-
risk-dominant equilibria being chosen. The conditions under which risk-dominant
equilibrium, non-risk-dominant equilibrium, and the coexistence of both equilibria
emerges in the long run are shown. In some situations, the number of limiting distributions
grows unboundedly as the population size grows to infinity.
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1. Introduction

The multiplicity of Nash equilibria greatly lowers the predictive power and potential for
application of game theory. For instance, two pure Nash equilibria, risk-dominant and non-
risk-dominant, exist in a coordination game. The naturally occurring question is: Which
equilibrium will emerge? Thus, the literature on refining Nash equilibria from both static and
dynamic viewpoints has developed. The evolutionary learning process is one of the dynamic
approaches to refining Nash equilibria. In the pioneering studies of Foster and Young (1990),
Kandori et al. (1993), Young (1993), and Ellison (1993), it was shown that the risk-dominant
equilibrium emerges in the long run in 2 × 2 coordination games if mutation is added into
players’ decisions in each time period. In these models, mutation rates are fixed over time
and with respect to player. However, players may not coordinate at risk-dominant equilibrium
in the long run when mutation rates vary with state (see, e.g. Bergin and Lipman (1996)) or
with time (see, e.g. Robles (1998) and Chen and Chow (2001)). Moreover, Robson and Vega-
Redondo (1996) showed that players will choose Pareto-efficient rather than risk-dominant
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equilibrium under multiple-round matching mechanisms. All the models above assume that
players’ actions and payoffs are perfectly monitored. However, examples of observable signals
relating stochastically to players’ unobservable underlying actions are numerous in the real
world. For instance, although regulators may not know a firm’s exact pollution-abatement
activities, pollution emission can be measured and depends on the firm’s abatement level and
some random factors, such as weather conditions. In principal–agent problems, agents’ efforts
are usually unseen to principals. However, outputs are correlated with agents’efforts and can be
observed. In oligopolistic markets, output prices are indicators of unknown product qualities
even though they are also affected by factors such as stochastic market demands. Thus, in
this paper we plan to analyze equilibrium selection under evolutionary learning processes with
imperfect monitoring of players’ actions and payoffs.

An evolutionary coordination game is considered in Section 2. At the end of each time
period, players know only their own actions and payoffs, while signals related to players’
underlying actions are revealed publicly. For each action of each player, there are two possible
signals: the ‘prime’ signal is the one more likely to occur. The correlations between actions
and signals are assumed to be fixed over time and with respect to player. We propose the
following boundedly rational quasi-Bayesian learning process. In each time period, players
form their beliefs about their opponents’ current plays based on the signals observed during
the last period and Bayes’ updating rule. Then players choose their actions to maximize their
expected current payoffs. Our model differs from the repeated prisoner’s dilemma game with
imperfect monitoring (see, e.g. Fudenberg et al. (1994), Sekiguchi (1997), Compte (2002), and
Mailath and Morris (2002)) in that our players are boundedly (myopically) rational instead of
longsighted rational. In the latter case, players take actions to maximize the expected discounted
average payoffs. In the Bayesian learning process studied by Kalai and Lehrer (1993) and Jordan
(1991), longsighted rational players update their beliefs about opponents’ strategies based on
observed actions and Bayes’ rule. Therefore, these kinds of model are also different from ours.
With respect to methods of extracting information from observed signals, a relevant study by
Chen and Chow (2003) employed both a simple learning algorithm and a maximum likelihood
estimation learning process. In the former, players use the ratio of signals observed during the
last time period to forecast their opponents’ current plays, while, in the latter, the likelihood
functions of observed signals are adapted to predict the opponents’ current plays.

In Section 3 we explore the limiting distributions of our learning process for large population
size. In evolutionary models with perfect monitoring, mutation is the driving force making
transitions between equilibria possible, and the relative sizes of the two equilibria’s basins of
attraction determines the players’ long-run choices. However, Chen and Chow (2003) showed
that random signals replace the role of mutation in refining Nash equilibria when players’
actions and payoffs are imperfectly monitored, and that the correlation between signals and
their underlying actions completely determines the players’ long-run behaviors. Their learning
processes induce two-state (risk-dominant and non-risk-dominant equilibria) Markov chains.
Hence, the limiting distributions are fully determined by transition probabilities between the
two equilibria, by the ergodic theorem. On the other hand, transition probabilities are related to
the frequencies at which signals occur. When the population size is large, signals’ frequencies
of occurrence approximate the correlation degrees between underlying actions and signals.

In contrast, our learning process is not a Markov chain, so the ergodic theorem does not apply.
Instead, we obtain a recursion equation for its limiting distributions. A careful analysis of this
equation allows us to find the limiting distributions in almost all cases. The limiting distributions
depend not only on the correlations between signals and the underlying actions, but also on the
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players’ initial choices. In some situations, risk-dominant equilibrium will emerge in the long
run unless non-risk-dominant equilibrium is chosen initially. This situation occurs when the
correlation between the non-risk-dominant action and its prime signal is small but not less than
the correlation between the risk-dominant action and its prime signal. In these circumstances,
players are more likely to switch from non-risk-dominant to risk-dominant equilibrium than vice
versa. In other situations, risk- or non-risk-dominant equilibrium could emerge in the long run
if it is initially chosen with high enough probability. When starting from either equilibrium with
any other probability, players will visit both equilibria with positive probability. This visiting
probability is determined by the players’ initial choices, the population size, and the correlations
between underlying actions and signals. Moreover, there will be infinitely many limiting
distributions in which both equilibria are visited with positive probability, as the population
size grows to infinity.

In Section 4 we show that our results remain valid when mutation of the players’ rational
choices is considered. Finally, we draw our conclusions in Section 5.

2. The model

There are N players, where N is even and finite. In period t, t = 0, 1, 2, . . . , players are
randomly and independently matched in pairs to play the following coordination game once:

A B

A a, a b, c

B c, b d, d

Here {A, B} is the action set for all players and a, b, c, and d are payoffs, with a > c, d > b,
and a − c > d − b. Hence,

q∗ := d − b

(a − c) + (d − b)
<

1

2
(2.1)

and action A is risk-dominant. It is assumed that players know only their own actions and
payoffs at the end of each time period. Players may infer the actions of their opponents from
their own payoffs. However, the actions of the other players remain unknown. Nevertheless,
signals corresponding to the players’ underlying actions are publicly observable. Denote by
{Ā, B̄} the signal set for all players. The correlations between actions and their corresponding
signals are described by the following conditional probabilities:

P(Ā | A) = u and P(B̄ | B) = v, where 1
2 < u, v < 1.

Hence, P(B̄ | A) = 1 − u < 1
2 and P(Ā | B) = 1 − v < 1

2 . This means that signal Ā or B̄ is
more likely to be seen when action A or, respectively, B is taken. Thus, Ā and B̄ are respectively
called the prime signals of actions A and B. The correlations between underlying actions and
signals are assumed to be fixed over time and with respect to player.

Our boundedly rational quasi-Bayesian learning process is described below. In each time
period t + 1, t ≥ 0, players are assumed to use the posterior probabilities of action pro-
files A = (A, A, . . . , A) and B = (B, B, . . . , B), given the observed signal profile yt =
(y1t , y2t , . . . , yNt ) ∈ {Ā, B̄}N , as the respective predicted probabilities of their meeting oppo-
nents taking actions A and B at t + 1. Based on the posterior belief, players choose actions to
maximize their expected current payoffs. This is equivalent to each player hiring a Bayesian
expert to forecast the opponents’ current plays; this expert takes the posterior probabilities of
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the two equilibria, given the observed signals, as the predictions. This learning process is
plausible for boundedly rational and myopic players, since they only care about themselves and
current payoffs. However, each player has perfect knowledge of the actions of himself and his
opponent at each time period, as well as of the signals of the remaining N − 2 players. The
main reasons to assume that each player adopts all players’ signals to forecast the future play
are as follows. First, each player remains unaware of the actions of the other N − 2 players
even though he may infer the action of his opponent from his own payoff. Second, the outcome
of using N players’ signals is the same as that of using or N − 2 players’ signals in the limit
of large population size, which is the focus of this paper. In this setup, players would have
common beliefs, which induces a mathematically tractable dynamical process. Since revealed
signals are public information and the same decision rule is employed by all players, at time
t ≥ 1, state Xt(N) of the underlying dynamic system is either A or B. For convenience, the
initial state, X0(N), is assumed to be distributed in {A, B} as well. Moreover, for simplicity,
we hereafter refer to the common action, A or B, of all players as the value of Xt(N) for all
t ≥ 0 and N . Let

pt (N) = P(Xt (N) = A) and 1 − pt (N) = P(Xt (N) = B), for t ≥ 0.

In the following, Xt(N) and pt (N) will sometimes be abbreviated as Xt and pt , respectively,
when no confusion occurs. Given signal yt at time t , the posterior distribution, P(Xt | yt ), is
computed via Bayes’ rule to be

P(Xt = A | yt ) = P(Xt = A, yt )

P(yt )
= pt P(yt | Xt = A)

pt P(yt | Xt = A) + (1 − pt ) P(yt | Xt = B)
, (2.2)

P(Xt = B | yt ) = P(Xt = B, yt )

P(yt )
= (1 − pt ) P(yt | Xt = B)

pt P(yt | Xt = A) + (1 − pt ) P(yt | Xt = B)
.

Note that P(yt | Xt = A) = uk′
(1 − u)N−k′

and P(yt | Xt = B) = (1 − v)k
′
vN−k′

, where
k′ = n(Ā, yt ) is the number of occurrences of Ā in yt . The expected payoffs for the players at
time t + 1 are

u(A, yt ) = P(Xt = A | yt )a + P(Xt = B | yt )b if action A is taken,

u(B, yt ) = P(Xt = A | yt )c + P(Xt = B | yt )d if action B is taken.

By maximizing the expected payoffs, players will choose action A at time t + 1 if and only if
P(Xt = A | yt ) ≥ q∗, where q∗ is defined as in (2.1). A simple calculation using (2.2) shows
that P(Xt = A | yt ) ≥ q∗ if and only if

k′ log

(
uv

(1 − u)(1 − v)

)
≥ N log

(
v

1 − u

)
+ log

(
q∗

1 − q∗
1 − pt

pt

)
. (2.3)

Here log 0 = −∞ and log(1/0) = ∞, by convention. Hence,

pt+1 = P(Xt+1 = A) =
∑

yt∈{Ā,B̄}N
P(yt ) P(Xt+1 = A | yt )

satisfies

pt+1 =
∑

{k′ : (2.3) holds}
(ptu

k′
(1 − u)N−k′ + (1 − pt )(1 − v)k

′
vN−k′

)CN
k′ , (2.4)
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where CN
k′ = N !/(k′! (N − k′)!). Since, in (2.3), the range of k′ depends on pt , our boundedly

rational quasi-Bayesian learning process {Xt : t ≥ 0} over the state space {A, B} is not a
Markov chain. Accordingly, the ergodic theorem for Markov chains is not applicable here. We
have to analyze (2.4) carefully to find the limiting distributions of {Xt }.

3. The results

In this section, the limiting distributions of {Xt : t ≥ 0} are derived and characterized. First,
the expression of (2.4) needs improvement. To neatly present the results, we introduce two
functions: the odds ratio function, p �→ r(p) with r(p) = p/(1 − p), and the logit function,
p �→ l(p) with l(p) = log(p/(1 − p)). We then let

γ = log(v/(1 − u))

l(u) + l(v)
and ε(x) = l(q∗) − l(x)

l(u) + l(v)
for x ∈ [0, 1]. (3.1)

Note that ε(0) = ∞ and ε(1) = −∞, by the log convention. Define

gN(x) = x
∑

k′≥Nγ+ε(x)

uk′
(1 − u)N−k′

CN
k′ + (1 − x)

∑
k′≥Nγ+ε(x)

(1 − v)k
′
vN−k′

CN
k′ (3.2)

for x ∈ [0, 1]. It is then easily seen from (2.4) that

pt+1 = gN(pt ) for t ≥ 0.

Before studying the fixed points of gN , which are the natural candidates for the limiting
distributions of {Xt }, we introduce independent, identically distributed 0–1 random variables
{Yi : i ≥ 1} and {Ỹi : i ≥ 1} with P(Yi = 1) = u and P(Ỹi = 1) = 1 − v. Let SN = ∑N

i=1 Yi

and S̃N = ∑N
i=1 Ỹi be their respective partial sums. Here Yi and Ỹi respectively represent the

events that player i reveals signal Ā given that he takes actions A and B, while SN and S̃N are the
numbers of occurrences of signal Ā given that all players choose actions A and, respectively, B.
Thus, (3.2) can be expressed as

gN(x) = x P(SN ≥ Nγ + ε(x)) + (1 − x) P(S̃N ≥ Nγ + ε(x)). (3.3)

Let �x	 denote the largest integer no greater than x and let {x} = x−�x	 denote the fractional
part of x. Furthermore, denote by xN,k the unique solution to

ε(x) = −k − {Nγ }, where k is an integer.

A simple calculation using (3.1) shows that

xN,k = 1

1 + r(q∗)−1[r(u)r(v)]−k−{Nγ } . (3.4)

Hence, the sequence (xN,k) is increasing in k, with

lim
k↓−∞ xN,k = 0 and lim

k↑∞ xN,k = 1. (3.5)

Let IN,k = [xN,k, xN,k+1). Then −k − 1 − {Nγ } < ε(x) ≤ −k − {Nγ } for x ∈ IN,k .
By (3.3), we have

gN(x) = x P(SN ≥ �Nγ 	 − k) + (1 − x) P(S̃N ≥ �Nγ 	 − k) on IN,k. (3.6)
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It follows that gN is linear on IN,k , with

gN(x) = 1 on [xN,�Nγ 	, 1] and gN(x) = 0 on [0, xN,−N+�Nγ 	). (3.7)

This means that, for any N , the risk-dominant equilibrium will emerge in the long run if it
is chosen at time 0 with probability no less than xN,�Nγ 	. Conversely, the non-risk-dominant
equilibrium will emerge in the long run if it is chosen at time 0 with probability no less than
1 − xN,−N+�Nγ 	. These results imply that players’ long-run behaviors depend on their initial
choices because our learning process is not a Markov chain. However, both [xN,�Nγ 	, 1] and
[0, xN,−N+�Nγ 	) shrink to singletons as N → ∞, according to (3.5). Thus, to find the sizes of
the basins of attraction of the two equilibria, we must investigate the function gN thoroughly. We
do so in what follows. The results for large population size are contained in Theorems 3.1–3.2.

By (3.6), the jump of function gN at xN,k is

gN(xN,k) − gN(x−
N,k) = xN,k P(SN = �Nγ 	 − k) + (1 − xN,k) P(S̃N = �Nγ 	 − k) ≥ 0.

It is well known that the binomial distribution is stochastically increasing in the success
parameter. Thus, E(Yi) = u ≥ 1

2 ≥ 1 − v = E(Ỹi) implies that

P(SN ≥ m) ≥ P(S̃N ≥ m) for 0 ≤ m ≤ N. (3.8)

By (3.6) and (3.8), the derivative, g′
N , of gN on IN,k satisfies

1 > g′
N(x) = P(SN ≥ �Nγ 	 − k) − P(S̃N ≥ �Nγ 	 − k) ≥ 0. (3.9)

This proves the first part of the following result.

Lemma 3.1. (a) gN is increasing, piecewise linear, and right continuous.

(b) Any sequence {cn : n ≥ 0} recurrently defined by cn+1 = gN(cn) converges monotonically
to a limit, c∞, with c∞ = gN(c∞) or c∞ = gN(c−∞).

Together with (3.7), Lemma 3.1(a) shows that gN is a distribution function. However, we
do not know the exact form of the distribution. Let x be a quasi-fixed point if x = gN(x−).
Note that c∞ > c0 if c0 is a quasi-fixed point. It is shown in Appendix A that

1 − v < γ < u for 1
2 < u, v < 1. (3.10)

Using the strong law of large numbers, from (3.3) we obtain

lim
N→∞ gN(x) = x for x ∈ [0, 1].

Note that the results for x = 0 and x = 1 follow trivially from the facts that ε(0) = ∞ and
ε(1) = −∞. As a consequence, finding the fixed points of gN could be a complicated matter,
even before distinguishing from among them those that are quasi-fixed.

Part (b) of Lemma 3.1, as shown in Appendix A, is proved by considering the relation
between the graph of gN on IN,k and the line y = x. Since gN is linear and increasing, with
0 ≤ g′

N < 1 on IN,k according to (3.9), there are four exclusive cases.

Case (i):
gN has a fixed point z in IN,k. (3.11)
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Case (ii):

gN(x) > x on IN,k but xN,k+1 = gN(x−
N,k+1) is a quasi-fixed point. (3.12)

Case (iii):
gN(x) > x on IN,k with gN(x−

N,k+1) > xN,k+1. (3.13)

Case (iv):
gN(x) < x on IN,k. (3.14)

Note that in case (i), z is the limit point, c∞, guaranteed by Lemma 3.1 if c0 ∈ IN,k . By (3.6),
case (iv) pertains if and only if

r(x)−1 <
P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
for x ∈ IN,k. (3.15)

Since (1 − x)/x = (1/x) − 1 is decreasing on (0, 1), (3.15) holds if and only if it holds at
x = xN,k . Let I (u, v) = [r(u)r(v)]−1. By using (3.4), we finally obtain

(3.14) holds ⇐⇒ r(q∗)−1 <
P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ }. (3.16)

Similarly,

(3.13) holds ⇐⇒ r(q∗)−1I (u, v) >
P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ }, (3.17)

(3.12) holds ⇐⇒ r(q∗)−1I (u, v) = P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ }, (3.18)

and, by exclusion,

(3.11) holds ⇐⇒ r(q∗)−1I (u, v) <
P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ } ≤ r(q∗)−1.

(3.19)

Let

J (u, v, γ ) = r(γ )r(u)−1[1 − r(γ )−1r(v)−1]
1 − r(γ )r(u)−1 .

We defer the proofs of the following lemmas and theorems to Appendix A.

Lemma 3.2. (a) For any fixed integer k, we have

lim
N→∞

P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ } = J (u, v, γ ). (3.20)

(b) Let L > 0 be fixed. For all k with L ≤ k ≤ �Nγ 	, and large N , we have

P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, v)−k−{Nγ } ≤ J (u, v, γ )

1 − (r(γ )r(v))−L−1 . (3.21)

Equations (3.16)–(3.19) imply that the comparison between r(q∗)−1I (u, v) and J (u, v, γ )

is crucial. However, before proceeding, we need a lemma. Recall the definition of γ from (3.1).
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Lemma 3.3. (a) Let

K(u, v) = v log(v/[1 − u]) − (1 − v) log(u/[1 − v])
u log(u/[1 − v]) − (1 − u) log(v/[1 − u]) = v

1 − u
J (u, v, γ ).

Then, for 1
2 < u, v < 1,

J (u, v, γ ) < 1 or, equivalently,
1 − v

u
< K(u, v) <

v

1 − u
. (3.22)

(b) For 1
2 < v < u < 1, we have 1 < K(u, v).

We now present our main results.

Theorem 3.1. (a) If r(q∗)−1I (u, v) > J (u, v, γ ) then there exists, for any η > 0, an integer
N0 such that

lim
t→∞ P(Xt (N) = A) = 1 (3.23)

holds for the boundedly rational quasi-Bayesian learning process {Xt(N) : t ≥ 0}, given that
N ≥ N0 and P(X0(N) = A) ∈ [η, 1]. It holds, in particular, for 1 − v > q∗ and 1

2 < u ≤ v.

(b) If r(q∗)−1I (u, v) < J (u, v, γ ) then, for any fixed integer k, gN(x) has a fixed point in
IN,k when the population size, N , is large. As a consequence, the number of possible limiting
distributions of {Xt(N) : t ≥ 0} grows to ∞ as N tends to ∞.

Theorem 3.1 states how the players’ long-run behaviors are determined by both the correla-
tions between signals and underlying actions, and, for large population size, their initial choices.
For r(q∗)−1I (u, v) > J (u, v, γ ), Theorem 3.1(a) shows that players will eventually coordi-
nate at the risk-dominant equilibrium unless the non-risk-dominant equilibrium is selected
initially. In particular, the condition r(q∗)−1I (u, v) > J (u, v, γ ) is fulfilled if 1 − v > q∗ and
1
2 < u ≤ v. Of the latter, 1 − v > q∗ is reasonable since the smaller v is, the more likely it is
that enough occurrences of signal Ā will be accumulated for players to switch from B to A.
The other latter condition, 1

2 < u ≤ v, is somewhat contrary to our intuition, since we might
expect a larger value of u to favor action A and make (3.23) more likely to hold. In fact, this
is not necessarily so. If u > v > 1

2 then, by using Lemma 3.3(b) and letting 1 − v ≈ q∗ and
u ≈ 1, we obtain

J (u, v, γ ) = 1 − u

v
K(u, v) >

1 − u

v
= u

1 − v
I (u, v) > r(q∗)−1I (u, v).

Thus, (3.23) no longer holds, by Theorem 3.1(b).
It is interesting to compare Theorem 3.1(a) with Theorem 3.1(a) of Chen and Chow (2003).

Chen and Chow (2003) showed that under the simple learning process with 1−v > q∗, players
will eventually coordinate at the risk-dominant equilibrium as the population size grows to ∞,
whatever the players’ initial choices are. In contrast, in our boundedly rational quasi-Bayesian
learning process, the risk-dominant equilibrium will not emerge in the long run if players
coordinate initially at the non-risk-dominant equilibrium. This conclusion remains true even
when mutation of players’ rational choices is included, as will be discussed in Section 4.

Theorem 3.1(b) implies the following results when r(q∗)−1I (u, v) < J (u, v, γ ) and the
population is large. First, the risk-dominant equilibrium will emerge in the long run if the
players’ initial probability of choosing risk-dominant equilibrium is close to 1. Second, the
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non-risk-dominant equilibrium will emerge in the long run if the players’ initial probability
of selecting non-risk-dominant equilibrium is close to 1. However, when starting from either
equilibrium with any other initial probability, players will visit both the risk-dominant and the
non-risk-dominant equilibria with probabilities η and 1 − η, 1 > η > 0, respectively. The
value of η is determined by the values of N , u, v, and q∗, and the initial state. Moreover, the
number of possible values of η approaches infinity as the population size grows. Coexistence of
the two equilibria was also found under the simple and maximum likelihood estimator learning
processes by Chen and Chow (2003), but the unbounded number of limiting distributions for
large population under the boundedly rational quasi-Bayesian learning process is a new and
surprising discovery.

The boundary case r(q∗)−1I (u, v) = J (u, v, γ ) seems too complicated to be analyzed here,
as the approximation in (3.21) is not sharp. However, we have the following result for the most
interesting case, namely u = v > 1

2 , which implies that

γ = 1
2 , J (u, u, γ ) = r(u)−1, and I (u, u) = (r(u))−2. (3.24)

A simple calculation shows that

r(q∗)−1I (u, u)

⎧⎪⎨
⎪⎩

> J(u, u, γ ) if and only if 1 − q∗ > u,

= J (u, u, γ ) if and only if 1 − q∗ = u,

< J(u, u, γ ) if and only if 1 − q∗ < u.

(3.25)

By combining (3.25) with Theorem 3.1, we obtain the following result.

Theorem 3.2. Suppose that u = v.

(a) If 1 − q∗ > u then the conclusion of Theorem 3.1(a) holds.

(b) If 1 − q∗ < u then the conclusion of Theorem 3.1(b) holds.

(c) If 1 − q∗ = u then the following holds for any N ≥ 2:

lim
t→∞ P(Xt (N) = A) = 1, given that P(X0(N) = A) ∈ [xN,0, 1]. (3.26)

Moreover, for any fixed, negative integer k, gN(x) has a fixed point in IN,k when the popu-
lation size, N , is large. As a consequence, the number of possible limiting distributions of
{Xt(N) : t ≥ 0} grows to ∞ as N tends to ∞.

Theorem 3.2(c) shows how the players’ long-run behaviors in the case in which

r(q∗)−1I (u, v) = J (u, v, γ )

rely on the initial state, X0(N). Note that when u = v we have

xN,k = 1

1 + r(q∗)−1(r(u)r(v))−k
,

by (3.4), (3.24), and the assumption that N is even. In particular, xN,0 = q∗ is a constant inde-
pendent of N . Thus, the limiting behavior of {Xt(N) : t ≥ 0} in the boundary case, 1 − q∗ = u,
is similar to that for 1 − q∗ > u when the initial distribution satisfies P(X0(N) = A) ∈ IN,k

with k ≥ 0, since xN,k > xN,0, by (3.5), and is similar to that for 1 − q∗ < u when
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P(X0(N) = A) ∈ IN,k with k < 0. In other words, players will eventually coordinate at
the risk-dominant equilibrium when its initial probability is not less than q∗. Otherwise, either
coexistence of the equilibria or the non-risk-dominant equilibrium alone will emerge in the
long run.

It is worthwhile to discuss the long-run equilibrium when u = v and u → 1, under which
conditions the players’ actions are perfectly monitored. In these circumstances, 1 − q∗ < u.
Consequently, Theorem 3.2(b) implies that, for large population size, players can coordinate at
the risk-dominant equilibrium, select the non-risk-dominant equilibrium, or visit both equilibria
with positive probability. This outcome differs from that of Chen and Chow (2003), namely
that the players will coordinate at the risk-dominant equilibrium in the simple learning process
with u = v and u → 1.

4. Extension

To make it possible for players to choose different actions in each time period, we include
mutation of the players’ rational choices in each time period. It is shown that the results
in Sections 2 and 3 are still valid when mutation of the players’ boundedly rational choices
is considered. After choosing his boundedly rational action, a player is presumed to have a
positive probability, ε, of disobeying the choice at the end of each time period. The mutation
rate (ε) is fixed over time and with respect to player. Accordingly, the probability that signal Ā

is revealed by a player at the beginning of a time period, given that action A was taken in
the last period, becomes ū = (1 − ε)u + ε(1 − v). Similarly, the probability that signal B̄ is
revealed by a player at the beginning of a time period, given that action B was taken in the
last period, becomes v̄ = (1 − ε)v + ε(1 − u). It is easy to check that 0 < ū, v̄ < 1 given
that 0 < u, v < 1, and that ū, v̄ > 1

2 when ε is sufficiently small. Then, given an ε > 0,
the dynamics of players’ rational choices under the original boundedly rational quasi-Bayesian
learning process, {X̂t (ε) : t ≥ 1}, still has state space {A, B}, but the frequencies of occurrence
of the signals are ū and v̄. By the same argument used in Section 3, we can obtain the limiting
distribution of {X̂t (ε) : t ≥ 1}, denoted by

(p̂(N, ε), q̂(N, ε)) =
(

lim
t→∞ P(X̂t (ε) = A), lim

t→∞ P(X̂t (ε) = B)
)
.

Accordingly, all the results of Section 3 hold here, for ε > 0. Given ε and (p̂(N, ε), q̂(N, ε)),
we can derive the limiting distribution of the players’ actual action profiles, {P(s, ε)}s∈{A,B}N ,
where

P(s, ε) = p̂(N, ε)εd(s,A)(1 − ε)N−d(s,A) + q̂(N, ε)εd(s,B)(1 − ε)N−d(s,B)

for all s = (s1, s2, . . . , sN ) ∈ {A, B}N . Here, d(s, A) := |{i ∈ {1, 2, . . . , N} : si �= A}| and
d(s, B) := |{i ∈ {1, 2, . . . , N} : si �= B}| respectively count the numbers of players in s not
taking actions A and B. As in Kandori et al. (1993), by letting ε ↓ 0 we obtain the long-run
equilibrium,

lim
ε↓0

P(s, ε) =

⎧⎪⎨
⎪⎩

p̂(N, ε) if s = A,

q̂(N, ε) if s = B,

0 otherwise.

This shows that the long-run equilibria under the boundedly rational quasi-Bayesian learning
process with diminishing-to-zero mutation are the same as those without mutation in Sections 2
and 3.
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5. Conclusion

In this paper we have constructed a boundedly rational quasi-Bayesian learning process
in evolutionary coordination games with imperfect monitoring. In the setup of imperfect
monitoring, random signals play the role of mutation to make the movement between equilibria
possible. Moreover, unlike previous evolutionary learning processes, our learning process
is not a Markov chain. Thus, the players’ long-run behaviors depend not only on the cor-
relations between signals and underlying actions, but on the players’ initial choices. The
relative magnitudes of r(q∗)−1I (u, u) and J (u, u, γ ) classify the long-run equilibria. When
r(q∗)−1I (u, u) > J(u, u, γ ), players will eventually coordinate at the risk-dominant equilib-
rium unless their initial choice was the non-risk-dominant equilibrium. If r(q∗)−1I (u, u) <

J (u, u, γ ), the risk-dominant equilibrium, the non-risk-dominant equilibrium, or coexistence
of the two equilibria can emerge in the long run, and players’ initial choices will determine the
final result. Moreover, the number of long-run equilibria becomes infinite as the population
size grows to infinity. In the boundary case, r(q∗)−1I (u, u) = J (u, u, γ ), either of the above
outcomes could happen. To the authors’ knowledge, Chen and Chow (2003) was the first paper
to address the issue of equilibrium selection in coordination games with imperfect monitoring
and myopic players. In the model of that paper, random signals are employed to refine multiple
equilibria. However, the findings of this study undermine the efficacy of random signals in
refining the evolutionary process with imperfect monitoring.

Appendix A.

A.1. Proof of Lemma 3.1

Part (a). The proof follows from (3.7)–(3.9).
Part (b). Suppose that c0 ∈ IN,k . Note that gN is linear, with 0 ≤ g′

N < 1 on IN,k by (3.9).
For the four exclusive cases in (3.11)–(3.14), the sequence (cn) converges monotonically to z

and xN,k+1 in cases (i) and (ii), respectively. In case (iv), (cn) decreases in IN,k until it first
exits IN,k at some cm1 ∈ IN,k1 , with k1 < k. Since gN is increasing in [0, 1], gN(x) < x on
IN,k , and cm1−1 ∈ IN,k by assumption,

cm1 = gN(cm1−1) < cm1−1 and, thus, gN(cm1) < gN(cm1−1) = cm1 . (A.1)

Now repeat this procedure starting with cm1 ∈ IN,k1 . The results in cases (i) and (ii) follow
as before (note that case (ii) is in fact excluded by (A.1)). Otherwise, we need only consider
case (iv), in view of (A.1). By the same arguments as above, we are led to some cm2 ∈ IN,k2

with k2 < k1 and gN(cm2) < cm2 . We thus restart with cm2 ∈ IN,k2 . Such reduction cannot be
repeated indefinitely because (3.7) implies not only gN(0) = 0 and gN(1) = 1, but that only
finite intervals IN,j with −N + �Nγ 	 ≤ j < �Nγ 	 remain to be studied. In conclusion, the
sequence (cn) converges monotonically to either a fixed point or a quasi-fixed point of gN in
case (iv).

Case (iii) can be dealt with similarly. This completes the proof.

A.2. Proof of inequality (3.10)

Note that 1 − γ = log(u/[1 − v])/[l(u) + l(v)]. By symmetry, it is enough to prove the
first inequality in (3.10). A simple calculation shows that this is equivalent to

h(1 − v) − h(u) > 0,
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where h(x) = v log(1 − x) + (1 − v) log x for x ∈ (0, 1). By differentiation,

h′(x) = − v

1 − x
+ 1 − v

x
= 1 − v − x

x(1 − x)
,

which is positive on (0, 1 − v) and negative on (1 − v, 1). Hence, h(x) attains its unique
maximum at x = 1 − v. This proves (3.10).

A.3. Proof of Lemma 3.2

Part (a). After an appropriate scaling, we have

P(SN < �Nγ 	 − k) =
�Nγ 	−k∑

�=1

P(SN = �Nγ 	 − k − �). (A.2)

Recall that CN
m = N !/(m! (N − m)!). Using �Nγ 	 = Nγ − {Nγ } and the binomial theorem,

we have

P(SN = �Nγ 	 − k − �) = CN
�Nγ 	−k−�u

�Nγ 	−k−�(1 − u)N−�Nγ 	+k+�

= CN
�Nγ 	−k(u

γ (1 − u)1−γ )N
(

1 − u

u

){Nγ }+k+�

A(N, k, �), (A.3)

where A(N, k, �) = ∏�
j=1(�Nγ 	 − k − j + 1)/(N − �Nγ 	 + k + j). Since �Nγ 	 ≤ Nγ

and k is fixed, for each fixed � ≥ 1 we have limN→∞ A(N, k, �) = (γ /(1 − γ ))� and, for any
fixed ε > 0,

A(N, k, �) ≤
(

Nγ − k

N − Nγ + k

)�

≤
(

ε + γ

1 − γ

)�

for large N . Furthermore, since Nγ − k ≤ Nγ for k ≥ 0, we have

A(N, k, �) ≤
(

γ

1 − γ

)�

for k ≥ 0. (A.4)

It follows from (A.2), (A.3), and Lebesgue’s convergence theorem that

lim
N→∞

P(SN < �Nγ 	 − k)

CN
�Nγ 	−k(u

γ (1 − u)1−γ )N

(
u

1 − u

)k+{Nγ }
=

∞∑
�=1

(
γ (1 − u)

(1 − γ )u

)�

. (A.5)

By the same arguments, we have

P(S̃N ≥ �Nγ 	 − k) =
N−�Nγ 	+k∑

�=0

P(S̃N = �Nγ 	 − k + �) (A.6)

and

P(S̃N = �Nγ 	 − k + �) = CN
�Nγ 	−k((1 − v)γ v1−γ )N

(
1 − v

v

)−{Nγ }−k+�

Ã(N, k, �), (A.7)

where Ã(N, k, �) = ∏�
j=1(N −�Nγ 	+k+1−j)/(�Nγ 	−k+j) converges to ((1−γ )/γ )�

for each fixed � ≥ 1. Thus, again by Lebesgue’s convergence theorem, we have

lim
N→∞

P(S̃N ≥ �Nγ 	 − k)

CN
�Nγ 	−k((1 − v)γ v1−γ )N

(
1 − v

v

)k+{Nγ }
=

∞∑
�=0

(
(1 − γ )(1 − v)

γ v

)�

. (A.8)
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Note that both series above converge, by (3.10). Moreover,

N − �Nγ 	 + k + 1 − j

�Nγ 	 − k + j
≥ N − Nγ

Nγ
= 1 − γ

γ

for all k with k ≥ L ≥ �. Thus,

Ã(N, k, �) ≥
(

1 − γ

γ

)�

for all k with k ≥ L ≥ �. (A.9)

Since (1 − γ )/γ = log(u/[1 − v])/ log(v/[1 − u]), by (3.1), we have uγ (1 − u)1−γ =
(1 − v)γ v1−γ . By taking the ratio of (A.5) to (A.8), (3.20) follows from a simple calculation
based on the formula

∑∞
�=m x� = xm/(1 − x), 0 ≤ x < 1.

Part (b). Note that we require N to be large to guarantee that there is indeed some k such
that L ≤ k ≤ �Nγ 	. By (A.2)–(A.4), we have

P(SN < �Nγ 	 − k)

CN
�Nγ 	−k(u

γ (1 − u)1−γ )N

(
u

1 − u

)k+{Nγ }
≤

∞∑
�=1

(
γ (1 − u)

(1 − γ )u

)�

. (A.10)

By (A.6), (A.7), and (A.9), for all k with L ≤ k ≤ �Nγ 	 we have

P(S̃N ≥ �Nγ 	 − k)

CN
�Nγ 	−k((1 − v)γ v1−γ )N

(
1 − v

v

)k+{Nγ }
≥

L∑
�=0

(
(1 − γ )(1 − v)

γ v

)�

, (A.11)

as the upper limit, N − �Nγ 	 + k, in the sum in (A.6) is no less than L in this case. Equa-
tion (3.21) now follows by taking the ratio of (A.10) to (A.11) and using the formula

∑L
�=0 x� =

(1 − xL+1)/(1 − x).

A.4. Proof of Lemma 3.3

Part (a). Note that (3.20) implies J (u, v, γ ) ≥ 0. A simple calculation using (1 − γ )/γ =
log(u/[1 − v])/ log(v/[1 − u]) shows that J (u, v, γ ) < 1 if and only if

v log(v/[1 − u]) − (1 − v) log(u/[1 − v])
u log(u/[1 − v]) − (1 − u) log(v/[1 − u]) = K(u, v) = v

1 − u
J (u, v, γ ) <

v

1 − u
.

(A.12)
This is the second inequality for K(u, v) in (3.22). The first one can be obtained from it by
noting that K(u, v) = 1/K(v, u). It thus suffices to verify that (A.12) holds.

For 0 < a < 1, it is easy to see, by differentiation, that the function

ha(x) = a log
a

x
− (1 − a) log

1 − x

1 − a

on (0, 1) attains its unique minimum value, 0, at x = a. Hence, both the numerator and
the denominator of the leftmost quotient in (A.12) are positive. A little rearrangement shows
that (A.12) is equivalent to

2(1 − u)v log
v

1 − u
< (uv + (1 − u)(1 − v)) log

u

1 − v
.

By adding (uv + (1 − u)(1 − v)) log(v/[1 − u]) to both sides of this, we see that (A.12) is
equivalent to

(1 + v − u) log
v

1 − u
< (uv + (1 − u)(1 − v)) log

uv

(1 − u)(1 − v)
. (A.13)
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Now change variables by letting x = v/[1 −u] and y = u/[1 − v]. Note that x, y > 1 because
1
2 < u, v < 1. It is easy to see that u = (x − 1)y/(xy − 1) and v = (y − 1)x/(xy − 1). Hence,

1 − u = y − 1

xy − 1
, 1 − v = x − 1

xy − 1
,

1 + v − u = (x + 1)(y − 1)

xy − 1
, and 1 + u − v = (y + 1)(x − 1)

xy − 1
. (A.14)

After some rearrangement and calculation, (A.13) can be rewritten as

x + 1

x − 1
log x <

xy + 1

xy − 1
log(xy). (A.15)

Introduce the functions f (x) = [(x + 1)/(x − 1)] log x and e(x) = (x2 − 1)/x − 2 log x, for
x ∈ [1, ∞). Since e(1) = 0 and e′(x) = 1 + x−2 − 2x−1 = (x − 1)2/x2 > 0 in (1, ∞), we
have e(x) > 0 in (1, ∞). It is easy to check that f ′(x) = e(x)/(x − 1)2 ≥ 0. Hence, f

is increasing in [1, ∞). Because y > 1, we have xy > x. Therefore, f (x) < f (xy). This
proves (A.15) and, thus, (3.22), in view of (A.12) and (A.13).

Part (b). A simple rearrangement shows that the conclusion of part (b) is equivalent to

(1 + u − v) log
u

1 − v
< (1 + v − u) log

v

1 − u
.

In terms of x and y, the equation above can be rewritten, using (A.14), as

(y + 1)(x − 1) log y < (x + 1)(y − 1) log x

or, equivalently,
f (y) < f (x). (A.16)

It is easy to check that x > y under the assumption that 1
2 < v < u. Since f is known to be

increasing in [1, ∞), (A.16) holds and the conclusion follows.

A.5. Proof of Theorem 3.1

Part (a). For any fixed k, the assumption of Theorem 3.1(a) and (3.20) together imply (3.17),
and thus (3.13) holds for large N . Moreover, we can use (3.21) to conclude that (3.17) holds
simultaneously for all k with L ≤ k ≤ �Nγ 	 if L is first chosen to be sufficiently large that

1 − q∗

q∗ I (u, v) >
J (u, v, γ )

1 − (1 − γ )(1 − v)L+1/(γ v)
.

In view of (3.5) and (3.7), x = 1 is the only possible limit point in [η, 1] guaranteed to exist by
Lemma 3.1(b). This proves (3.23).

It remains to verify that [(1 − q∗)/q∗]I (u, v) > J (u, v, γ ) holds when 1 − v > q∗ and
u ≤ v, which conditions imply that

u

1 − v
≤ v

1 − v
<

1 − q∗

q∗ .

By (A.12), we have J (u, v, γ ) = [(1 − u)/v]K(u, v). Since K(u, v) = 1/K(v, u) and
K(u, u) = 1, from Lemma 3.3(b) we have K(u, v) ≤ 1 for u ≤ v. Putting these results
together, we obtain

J (u, v, γ ) ≤ 1 − u

v
<

1 − q∗

q∗ I (u, v),

as desired. Note that I (u, v) = (1 − u)(1 − v)/(uv) by definition.
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Part (b). Let k be fixed. Note that (1 − q∗)/q∗ > 1 because q∗ < 1
2 (by assumption (2.1)).

According to (3.20) and (3.22), the second inequality in (3.19) holds for large N . The first
inequality also holds, by the assumption of Theorem 3.1(b) and (3.20). Hence, (3.11) holds for
large N . The conclusion follows from the remark following (3.14).

A.6. Proof of Theorem 3.2

By (3.25) and Theorem 3.1, it remains to consider the boundary case, in which 1 − q∗ = u.
When u = v, the random variables Yi and 1 − Ỹi have the same distribution, and so do SN and
N − S̃N . In particular,

P(S̃N ≥ �Nγ 	 − k) = P(SN ≤ N − �Nγ 	 + k). (A.17)

In (3.21), we claim that for −N + �Nγ 	 ≤ k ≤ �Nγ 	,

P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

<

(
1 − u

u

)2k+1+{Nγ }
if k ≥ 0,

>

(
1 − u

u

)2k+1+{Nγ }
if k < 0.

(A.18)

Note that {Nγ } = 0 as γ = 1
2 by (3.24) and N is even by assumption, although (A.18) can be

shown to be valid for odd N as well.
Temporarily suppose that (A.18) holds. Since 1 − q∗ = u, we have, from (3.24) and (A.18),

P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
I (u, u)−k−{Nγ }

⎧⎪⎪⎨
⎪⎪⎩

<
1 − u

u
= 1 − q∗

q∗ I (u, u) for 0 ≤ k ≤ �Nγ 	,

>
1 − q∗

q∗ I (u, u) for −N + �Nγ 	 ≤ k < 0.

(A.19)
That is, (3.17) and, thus, (3.13) hold for all k, 0 ≤ k ≤ �Nγ 	. Hence, (3.26) follows from the
arguments used in the proof of Theorem 3.1(a). For any negative integer k, the first inequality
in (3.19) holds by (A.19). Since q∗ < 1

2 by assumption (2.1), we have 1 < (1 − q∗)/q∗; thus,
the second inequality in (3.19) holds for large N by (3.20) and (3.22). Case (i) (see (3.11))
therefore pertains and the conclusion follows as in Theorem 3.1(b).

It remains to verify that (A.18) holds. Let N = 2m. By using γ = 1
2 and (A.17), we obtain

P(SN < �Nγ 	 − k)

P(S̃N ≥ �Nγ 	 − k)
= P(SN < m − k)

P(SN ≤ m + k)
=

∑m−k
�=1 P(SN = m − k − �)∑m+k+1

�=1 P(SN = m + k + 1 − �)
. (A.20)

First consider the case in which 0 ≤ k ≤ �Nγ 	 = m. There are fewer terms in the numerator
than in the denominator on the right-hand side of (A.20). Because C2m

j is increasing for
0 ≤ j ≤ m and C2m

m+j = C2m
m−j , it is easy to see that C2m

m−k−� < C2m
m+k+1−� for each �, 1 ≤ � ≤

m − k. Hence,

P(SN = m − k − �)

P(SN = m + k + 1 − �)
= C2m

m−k−�u
m−k−�(1 − u)m+k+�

C2m
m+k+1−�u

m+k+1−�(1 − u)m−k−1+�
<

(
1 − u

u

)2k+1

.

This together with (A.20) verifies (A.18) for 0 ≤ k ≤ �Nγ 	 = m. The remaining case, in
which −m = −N + �Nγ 	 ≤ k < 0, can be treated similarly and is thus omitted.
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