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THE MULTI-ALLELIC NEUTRAL CANNINGS
POPULATION MODEL
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Abstract

We look forwards and backwards in the multi-allelic neutral exchangeable Cannings
model with fixed population size and nonoverlapping generations. The Markov chain
X is studied which describes the allelic composition of the population forward in
time. A duality relation (inversion formula) between the transition matrix of X and
an appropriate backward matrix is discussed. The probabilities of the backward matrix
are explicitly expressed in terms of the offspring distribution, complementing the work of
Gladstien (1978). The results are applied to fundamental multi-allelic Cannings models,
among them the Moran model, the Wright–Fisher model, the Kimura model, and the
Karlin and McGregor model. As a side effect, number theoretical sieve formulae occur
in these examples.
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1. Introduction

Cannings [1], [2] introduced haploid discrete population models with constant population
size N ∈ N := {1, 2, . . .} and nonoverlapping generations r ∈ N0 := {0, 1, 2, . . .}. In each gen-
eration the individuals are randomly labeled from 1 to N . The ith individual of the rth generation
produces a random number, ν(r)

i , of offspring, where ν
(r)
1 + · · · + ν

(r)
N = N . Cannings assumed

that, for each fixed r , the random variables ν
(r)
1 , . . . , ν

(r)
N are exchangeable and that the model

is time homogeneous in the sense that the random vectors ν(r) := (ν
(r)
1 , . . . , ν

(r)
N ), r ∈ N0, are

independent and identically distributed. For convenience, define ν := ν(0) and νi := ν
(0)
i for

i ∈ {1, . . . , N}. The most celebrated examples are the Wright–Fisher model [14], in which
ν has a symmetric multinomial distribution, and the Moran model, in which ν is a random
permutation of (0, 1, 1, . . . , 1, 1, 2). Many other discrete population models in the literature,
in particular most of the examples collected by Gladstien [4]–[7], are (or can at least be viewed
as) Cannings models. For example, as explained in Section 5, the Kimura model (see [7,
p. 636] or [10]) can be viewed as a Cannings model with symmetric multi-hypergeometric
joint offspring distribution (see (11)). Another example studied in more detail in Section 5 is
the Karlin and McGregor conditional branching process model (see [7, p. 636] or [9]). These
classical examples demonstrate the importance of the class of Cannings models. In this paper
we are interested in the multi-allelic version of the Cannings model, which is less intensively
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studied in the literature. Gladstien [7, pp. 638–640] considered multi-type models; however, he
did not provide explicit formulae for the multi-allelic Cannings model. The basic reproduction
model is the Cannings model described above. In addition, in the multi-allelic version it is
assumed that each individual has one of K ∈ N possible types and that each offspring inherits
the type of its parent (neutrality, no mutation, no selection). For a nonneutral discrete Moran
model, we refer the reader to [8]. The paper is organized as follows. In Section 2 we briefly
focus on the Markov chain which describes the allelic composition of the population forward
in time. In Section 3 we look backward in time and derive explicit expressions for the so-called
backward matrix of the multi-allelic Cannings model. In Section 4 the duality relation in the
spirit of Gladstien [7] is discussed in more detail. For fundamental examples (Moran model,
Wright–Fisher model, Kimura model, Karlin and McGregor model, uniform model) detailed
explicit formulae for the multi-allelic forward and backward matrices are derived in Section 5.

2. Forward structure

Let Xk(r) denote the number of descendants of type k ∈ {1, . . . , K} in generation r ∈ N0,
and set X(r) := (X1(r), . . . , XK(r)). It is easily seen that X := (X(r))r∈N0 is a time-
homogeneous Markov chain with state space

EN,K := {i = (i1, . . . , iK) ∈ N
K
0 : i1 + · · · + iK = N}.

Note that |EN,K | = (
N+K−1

K−1

)
. The chain X moves from the state i = (i1, . . . , iK) ∈ EN,K to

the state j = (j1, . . . , jK) ∈ EN,K with transition probability

πij := P(X(r + 1) = j | X(r) = i) = P(C = j), (1)

where C := (C1, . . . , CK) with Ck := ∑sk
s=sk−1+1 νs for k ∈ {1, . . . , K}, s0 := 0, and sk :=

i1 + · · · + ik for k ∈ {1, . . . , K}. Note that C depends on i and that C1 + · · · + CK =
ν1 + · · · + νN = N . In general, the transition probability πij depends on the population size
N and on the number of types K .

3. Backward structure

In the following the space SN,K := {i = (i1, . . . , iK) ∈ N
K
0 : i1 + · · · + iK ≤ N} will play

an important role. From SN,K = ⋃N
m=0 Em,K , it follows that

|SN,K | =
N∑

m=0

|Em,K | =
N∑

m=0

(
m + K − 1

K − 1

)
=

(
N + K

K

)
.

Note that |EN,K+1| = |SN,K |, a fact which we will come back to in Section 4. For most
purposes, the order of the elements of SN,K is unimportant; however, it is convenient to think
of the elements ordered lexicographically, for example, the 10 elements of S3,2 in the order
(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), and (3, 0). In the brief Section 2
the Cannings model was studied forward in time. It is also reasonable to look from some
generation r ∈ N backward in time. More precisely, fix some i = (i1, . . . , iK) ∈ SN,K and
take in some generation r ∈ N a sample of |i| := i1 +· · ·+ iK individuals and suppose that ik of
these individuals are of type k, k ∈ {1, . . . , K}. For j = (j1, . . . , jK) ∈ SN,K , let Aij denote
the event that the i1 individuals of type 1 have exactly j1 parents, the i2 individuals of type 2
have exactly j2 parents, . . . , and the iK individuals of type K have exactly jK parents. Note
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that, for fixed i ∈ SN,K , the events Aij , j ∈ SN,K , are disjoint. The following proposition
provides an explicit formula for the probability pij := P(Aij ).

Proposition 1. For i = (i1, . . . , iK), j = (j1, . . . , jK) ∈ SN,K ,

pij := P(Aij ) = (N − |i|)! i1! · · · iK !
(N − |j |)! j1! · · · jK !

∑
m

E

((
ν1

m1

)
· · ·

(
ν|j |
m|j |

))
, (2)

where
|i| := i1 + · · · + iK, |j | := j1 + · · · + jK,

and the sum extends over all m = (m1, . . . , m|j |) ∈ N
|j | satisfying m1 + · · · + mj1 = i1,

mj1+1 + · · · + mj1+j2 = i2, . . . , mj1+···+jK−1+1 + · · · + m|j | = iK . In particular, pij = 0
if jk > ik for some k ∈ {1, . . . , K}. Thus, thinking of SN,K as being lexicographically
ordered, the matrix P := (pij )i,j∈SN,K

is left lower triangular. The eigenvalues of P are hence
pii = E(ν1 · · · ν|i|), i ∈ SN,K .

Remarks. 1. Comparing the definition of the matrix P with the definition of Gladstien’s matrix
G in [7, pp. 638–639], it is clear that P = G�, the transpose of G. If K = 1 then (2) reduces
to (see, for example, Gladstien [7, p. 637])

pij =
(
N
j

)
(
N
i

) ∑
m1,...,mj ∈N

m1+···+mj =i

E

((
ν1

m1

)
· · ·

(
νj

mj

))
, i, j ∈ {0, . . . , N}.

Proposition 1 extends this formula to the multi-allelic case. Note that Gladstien did not provide
explicit expressions for the entries of G for the multi-allelic Cannings model (K > 1).

2. Since, for each fixed i ∈ SN,K , the events Aij , j ∈ SN,K , are disjoint, the inequality

∑
j∈SN,K

pij = P

( ⋃
j∈SN,K

Aij

)
≤ 1

holds for all i ∈ SN,K . Thus, the matrix P is substochastic. For K = 1, the matrix P is well
known to be stochastic, whereas, for K > 1, the matrix P is in general not stochastic. This
fact can be explained as follows. Let Mik ⊆ {1, . . . , N} denote the random set of all parents
of the ik individuals of type k, k ∈ {1, . . . , K}. Since individuals of different type cannot have
the same parent, it follows that

⋃
j∈SN,K

Aij = ⋂
1≤k<l≤K{Mik ∩ Mil = ∅}, an event which,

for K > 1, in general does not coincide with the full space �. In fact, for particular models,
the matrix P may even have rows with only zero entries (see, for example, the simple model
presented at the beginning of Section 5).

Proof of Proposition 1. Fix i, j ∈ SN,K and r ∈ N. Obviously,

pij =
∑

k

P(Aij | ν(r−1) = k) P(ν(r−1) = k),

where the sum extends over all k = (k1, . . . , kN) ∈ N
N
0 with k1 + · · · + kN = N and

P(ν(r−1) = k) > 0. The computation of the conditional probability P(Aij | ν(r−1) = k) is
equivalent to the following ‘putting balls into boxes’ problem. Suppose that there are N balls
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given, ik of them of type k, k ∈ {1, . . . , K}. The balls are labeled from 1 to N such that the
balls of type 1 have labels 1, . . . , i1, the balls of type 2 have labels i1 + 1, . . . , i1 + i2, and so
on. Note that the last N − |i| = N − (i1 + · · · + iK) balls are not so important and, hence,
not assigned any type. We call these N − |i| balls the neutral balls. Moreover, there are N

empty boxes given, kl of color l, l ∈ {1, . . . , N}. The boxes are labeled from 1 to N such
that the boxes 1, . . . , k1 have color 1, the boxes k1 + 1, . . . , k1 + k2 have color 2, and so on.
Each box has space for exactly one ball. The N balls are thrown randomly on to the N boxes
such that, after the experiment, each box contains exactly one ball. There are obviously N !
outcomes of this experiment. We are interested in the probability of the event that, after the
experiment, boxes of the same color only contain balls of the same type (and possibly some
further neutral balls) and that, for each k ∈ {1, . . . , K}, the number of colors of those boxes
containing balls of type k is equal to jk . Let Lk denote the number of colors of the boxes which
contain a ball of type k. Let mkl denote the number of balls of type k which belong to boxes
of color l. The event we are interested in corresponds to the constrains that |Lk| = jk for all
k ∈ {1, . . . , K} and that mkl ∈ N for all k ∈ {1, . . . , K} and l ∈ Lk with

∑
l∈Lk

mkl = ik for
all k ∈ {1, . . . , K}. There are

(
kl

mkl

)
possibilities to select among the kl boxes of color l those

mkl boxes which will contain a ball of type k. There are ik! possibilities to distribute the ik balls
of type k among the

∑
l∈Lk

mkl = ik selected boxes. For the remaining N − |i| balls, there are
(N − |i|)! possibilities to distribute them among the remaining N − |i| free boxes. Therefore,

P(Aij | ν(r−1) = k) = 1

N !
∑

L1,...,LK

∑
mkl

(N − |i|)!
K∏

k=1

(
ik!

∏
l∈Lk

(
kl

mkl

))
.

Here the first sum extends over all disjoint sets L1, . . . , LK ⊆ {1, . . . , N} satisfying |Lk| = jk

for all k ∈ {1, . . . , K} and the second sum extends over all mkl ∈ N, k ∈ {1, . . . , K}, l ∈ Lk ,
with

∑
l∈Lk

mkl = ik for all k ∈ {1, . . . , K}. Thus,

pij = (N − |i|)! i1! · · · iK !
N !

∑
L1,...,LK

∑
mkl

E

( K∏
k=1

∏
l∈Lk

(
νl

mkl

))
.

Since the random variables ν1, . . . , νN are exchangeable, the last expectation does not depend
on the particular choice of the subsets L1, . . . , LK . Thus, we can choose L1 := {1, . . . , j1},
L2 := {j1 + 1, . . . , j1 + j2}, and so on. Since there are exactly N !/(j1! · · · jK ! (N − |j |)!)
choices of subsets L1, . . . , LK , it follows that

pij = (N − |i|)! i1! · · · iK !
(N − |j |)! j1! · · · jK !

∑
mkl

E

( K∏
k=1

j1+···+jk∏
l=j1+···+jk−1+1

(
νl

mkl

))
.

The index substitution ml := mkl completes the proof.

The sum on the right-hand side of (2) has |j | summation variables. There is the following
alternative formula for pij which involves only K summation variables.

Proposition 2. For i = (i1, . . . , iK), j = (j1, . . . , jK) ∈ SN,K ,

pij = (N − |i|)! i1! · · · iK !
(N − |j |)! j1! · · · jK !

j1∑
l1=0

· · ·
jK∑

lK=0

( K∏
k=1

(−1)jk−lk

(
jk

lk

))
E

( K∏
k=1

(
Dk

ik

))
, (3)

https://doi.org/10.1239/jap/1285335405 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335405


Multi-allelic neutral Cannings population model 717

where |i| := i1+· · ·+iK , |j | := j1+· · ·+jK , and Dk := νrk−1+1+· · ·+νrk for k ∈ {1, . . . , K}
with r0 := 0 and rk := l1 + · · · + lk for k ∈ {1, . . . , K}.

Remark. If K = 1 then (3) reduces to (see [12, p. 766, Equation (7)])

pij =
(
N
j

)
(
N
i

)
j∑

l=0

(−1)j−l

(
j

l

)
E

((
ν1 + · · · + νl

i

))
, i, j ∈ {0, . . . , N}.

Proof of Proposition 2. Fix i, j ∈ SN,K . Define s0 := 0 and sk := j1 + · · · + jk for
k ∈ {1, . . . , K}. Note that sK = |j |. Let A denote the set of all m = (m1, . . . , m|j |)∈ N

|j |
0

satisfying m1 + · · · + ms1 = i1, ms1+1 + · · · + ms2 = i2, . . . , msK−1+1 + · · · + m|j | = iK .
For l ∈ {1, . . . , |j |}, define the subset Al ⊂ A via Al := {m ∈ A | ml = 0} and denote
Al := A \ Al . For m ∈ A, define Zm := (

ν1
m1

) · · · ( ν|j |
m|j |

)
. By (2) we have to manipulate the sum

s :=
∑

m∈A1∩···∩A|j |

E(Zm) =
∑
m∈A

E(Zm) −
∑

m∈A1∪···∪A|j |
E(Zm).

By the principle of inclusion and exclusion (Silvester’s sieve formula), it follows that

s =
∑
m∈A

E(Zm) −
|j |∑

n=1

(−1)n−1
∑

L⊆{1,...,|j |}
|L|=n

∑
m∈⋂

l∈L Al

E(Zm)

=
|j |∑

n=0

(−1)n
∑

L1,...,LK

∑
m∈⋂K

k=1
⋂

l∈Lk
Al

E(Zm),

where the sum
∑

L1,...,LK
extends over all L1 ⊆ {1, . . . , s1}, L2 ⊆ {s1 + 1, . . . , s2}, . . . ,

LK ⊆ {sK−1 + 1, . . . , sK} satisfying
∑K

k=1 |Lk| = n. From the exchangeability of the vari-
ables ν1, . . . , νN , it follows that, for m ∈ ⋂K

k=1
⋂

l∈Lk
Al , the mean E(Zm) depends only via

(n1, . . . , nK) := (|L1|, . . . , |LK |) on L1, . . . , LK . Thus, we are allowed to compute E(Zm)

for the particular choice of subsets L1 := {s1 − n1 + 1, . . . , s1}, L2 := {s2 − n2 + 1, . . . , s2},
and so on, and multiply with the number

(
j1
n1

) · · · (jK

nK

)
of all possible subsets L1, . . . , LK and

obtain

s =
|j |∑

n=0

(−1)n

×
∑

n1,...,nK∈N0
n1+···+nK=n

(
j1

n1

)
· · ·

(
jK

nK

)
E

( K∏
k=1

∑
msk−1+1,...,msk−nk

∈N0

msk−1+1+···+msk−nk
=ik

(
νsk−1+1

msk−1+1

)
· · ·

(
νsk−nk

msk−nk

))

=
|j |∑

n=0

(−1)n
∑

n1,...,nK∈N0
n1+···+nK=n

(
j1

n1

)
· · ·

(
jK

nK

)
E

( K∏
k=1

(
νsk−1+1 + · · · + νsk−nk

ik

))
.
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The index transformations lk := jk − nk and afterwards l := |j | − n yield

s =
|j |∑

n=0

(−1)n
∑

l1,...,lK∈N0
l1+···+lK=|j |−n

(
j1

l1

)
· · ·

(
jK

lK

)
E

( K∏
k=1

(
νsk−1+1 + · · · + νsk−1+lk

ik

))

=
|j |∑
l=0

(−1)|j |−l
∑

l1,...,lK∈N0
l1+···+lK=l

(
j1

l1

)
· · ·

(
jK

lK

)
E

( K∏
k=1

(
νsk−1+1 + · · · + νsk−1+lk

ik

))

=
j1∑

l1=0

· · ·
jK∑

lK=0

( K∏
k=1

(−1)jk−lk

(
jk

lk

))
E

( K∏
k=1

(
νsk−1+1 + · · · + νsk−1+lk

ik

))
.

By exchangeability we can replace νsk−1+1 + · · · + νsk−1+lk by Dk , which completes the proof.

Remark. The structure of the matrix P = (pij )i,j∈SN,K
becomes clearer if the states of SN,K

are ordered (differently from the lexicographical order) as follows. A state i ∈ SN,K is called
absorbing if pij = 0 for all j ∈ SN,K \ {i}. Note that, since P is in general only substochastic,
this does not necessarily imply that pii = 1. It is readily checked (by using Proposition 1
or Proposition 2) that at least all the states i = (i1, . . . , iK) ∈ {0, 1}K are absorbing. These
are 2K states. Let i be one of these 2K absorbing states. To i is attached the set of all states
j = (j1, . . . , jK) ∈ SN,K satisfying jk = 0 if ik = 0 and jk ≥ ik if ik = 1, k ∈ {1, . . . , K}.
These are the only states j from which the absorbing state i is possibly reachable. Note that,
if exactly m ∈ {0, . . . , K} entries of i are equal to 1 then there are

(
N
m

)
such states j . Suppose

that the states of SN,K are ordered with respect to the order induced by the 2K absorbing states
and the set of states attached to each of these absorbing states, for example, the 10 states of
S3,2 in the order (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0), (1, 1), (1, 2), and (2, 1). With
respect to this order, P is a block diagonal matrix containing 2K square blocks, where, for each
m ∈ {0, . . . , K}, there are exactly

(
K
m

)
square blocks of the same dimension

(
N
m

)
, in agreement

with the formula
∑K

m=0

(
K
m

)(
N
m

) = (K + N)!/(N ! K!) = |SN,K |. Moreover, if the states inside
each block are ordered lexicographically then each block itself is a left lower triangular matrix.

4. Duality

Fix N, K ∈ N. We identify each element (i1, . . . , iK+1) ∈ EN,K+1 with the element
(i1, . . . , iK) ∈ SN,K . In particular, |EN,K+1| = |SN,K | and we can write the transition matrix
of the forward process with K + 1 types in the form � = (πij )i,j∈SN,K

. Let H = (hij )i,j∈SN,K

denote the matrix with entries

hij := (i1)j1 · · · (iK)jK

(N)|j |
, i, j ∈ SN,K, (4)

where |j | := j1 + · · · + jK for j ∈ SN,K , (x)0 := 1, and (x)j := x(x − 1) · · · (x − j + 1) for
x ∈ R and k ∈ N. Assuming that the states of SN,K are ordered lexicographically, H is a left
lower triangular regular matrix with determinant

det H =
∏

i∈SN,K

hii =
∏

i∈SN,K

i1! · · · iK !
(N)|i|

> 0.
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The following result is from Gladstien [7, Lemma 4]. We provide an alternative proof based
on the explicit formulae for πij , (1), and for pij , (3).

Proposition 3. (Duality.) The transition matrix � of the forward chain X (with K + 1 types)
and the transpose P � of the backward matrix P are similar with respect to H , i.e. �H = HP �.

Remark. For K = 1, the matrix P is stochastic and Proposition 3 is in fact a duality relation
between two Markov chains (the forward chain X and a backward chain Y with transition
matrix P ) in the sense of Liggett [11]. We also refer the reader to [12] in this context. For
K > 1, the matrix P is in general only substochastic, such that a backward chain Y cannot be
defined without adding a kind of ‘coffin state’.

Proof of Proposition 3. Fix i = (i1, . . . , iK), j = (j1, . . . , jK) ∈ SN,K , and define the
random vector C = (C1, . . . , CK) as in Section 2. Then, by (1) and (4),

(�H)ij =
∑

l∈SN,K

πilhlj =
∑

l∈SN,K

P(C = l)
(l1)j1 · · · (lK)jK

(N)|j |
= E((C1)j1 · · · (CK)jK

)

(N)|j |
.

On the other hand, by (3),

(HP �)ij =
∑

l∈SN,K

hilpjl

=
∑

l∈SN,K

(i1)l1 · · · (iK)lK

(N)|l|
(N − |j |)! j1! · · · jK !
(N − |l|)! l1! · · · lK !

×
l1∑

m1=0

· · ·
lK∑

mK=0

( K∏
k=1

(−1)lk−mk

(
lk

mk

))
E

( K∏
k=1

(
Dk

jk

))

= 1

(N)j

i1∑
m1=0

· · ·
iK∑

mK=0

E

( K∏
k=1

(Dk)jk

) ∑
l∈SN,K

K∏
k=1

(−1)lk−mk

(
ik

lk

)(
lk

mk

)
. (5)

The last sum simplifies to

∑
l∈SN,K

(−1)lk−mk

(
ik

lk

)(
lk

mk

)
=

K∏
k=1

ik∑
lk=0

(−1)lk−mk

(
ik

lk

)(
lk

mk

)

=
K∏

k=1

(
ik

mk

) ik∑
lk=mk

(−1)lk−mk

(
ik − mk

ik − lk

)

=
K∏

k=1

(
ik

mk

) ik−mk∑
sk=0

(−1)ik−mk−sk

(
ik − mk

sk

)

=
K∏

k=1

(
ik

mk

)
(1 − 1)ik−mk

= δim,

where δim denotes the Kronecker symbol. Thus, only the multi-index m = i provides a nonzero
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contribution to (5). But, for m = i, the random vector D coincides with C and it follows from
(5) that

(HP �)ij = E((C1)j1 · · · (CK)jK
)

(N)|j |
.

Thus, �H = HP � and the proof is complete.

In some cases it might be useful to derive the backward matrix P directly from the forward
matrix � via P � = H−1�H . This approach is of course only advisable if the inverse H−1 of
the matrix H is known. Of course, H , as well as H−1, is left lower triangular. The following
proposition provides an explicit formula for the entries of the inverse of the matrix H with
entries (4).

Proposition 4. Suppose that H has entries (4). Then, for i = (i1, . . . , iK), j = (j1, . . . , jK) ∈
SN,K ,

(H−1)ij = (−1)|i|−|j | (N)|i|
i1! · · · iK !

(
i1

j1

)
· · ·

(
iK

jK

)
, (6)

where |i| := i1 + · · · + iK and |j | := j1 + · · · + jK .

Proof. Let bij denote the right-hand side of (6), and set B := (bij )i,j∈SN,K
. For i, j ∈ SN,K ,

it follows that

(HB)ij =
∑

l∈SN,K

hilblj

=
∑

l∈SN,K

(i1)l1 · · · (iK)lK

(N)|l|
(−1)|l|−|j | (N)|l|

l1! · · · lK !
(

l1

j1

)
· · ·

(
lK

jK

)

=
i1∑

l1=j1

· · ·
iK∑

lK=jK

K∏
k=1

(−1)lk−jk

(
ik

jk

)(
ik − jk

lk − jk

)

=
K∏

k=1

(
ik

jk

) ik∑
lk=jk

(−1)lk−jk

(
ik − jk

lk − jk

)

=
K∏

k=1

(
ik

jk

)
(1 − 1)ik−jk

= δij .

Thus, HB = E (identity matrix). Similarly, it follows that BH = E. Thus, B = H−1.

Remark. Since, by Proposition 4, the inverse H−1 is known explicitly, the duality relation
�H = HP � can also be viewed via � = HP �H−1 and P � = H−1�H as a number
theoretical inversion formula between � and P �. We will see in the following section that, for
typical examples, this inversion formula involves (generalized) Stirling numbers of the second
kind.

Remark. It might be useful to replace the matrix H with entries (4) by a more general matrix
H with entries

hij =
(
i1
j1

) · · · (iK
jK

)
w(j)

, i, j ∈ SN,K, (7)
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where the w(j), j ∈ SN,K , are some given nonzero weights. Note that (4) corresponds to the
particular weights w(j) := (N)|j |/(j1! · · · jK !), j ∈ SN,K . Adapting the proof of Proposition 4
to this more general matrix H shows that the inverse H−1 exists and has entries

(H−1)ij = (−1)|i|−|j |w(i)

(
i1

j1

)
· · ·

(
i1

jK

)
, i, j ∈ SN,K.

Similar as in the proof of Proposition 3, it follows that

(�H)ij = 1

w(j)
E

((
C1

j1

)
· · ·

(
CK

jK

))
.

Again, there exists a matrix P = (pij )i,j∈SN,K
which satisfies the duality relation �H = HP �.

The entries of P are

pij = (H−1�H)ji

=
∑

l∈SN,K

(H−1)jl(�H)li

=
∑

l∈SN,K

(−1)|j |−|l|w(j)

(
j1

l1

)
· · ·

(
jK

lK

)
1

w(i)
E

((
D1

i1

)
· · ·

(
DK

iK

))

= w(j)

w(i)

j1∑
l1=0

· · ·
jK∑

lK=0

( K∏
k=1

(−1)jk−lk

(
jk

lk

))
E

( K∏
k=1

(
Dk

ik

))
,

in agreement with Proposition 2 for the particular weights w(j) = (N)|j |/(j1! · · · jK !),
j ∈ SN,K . Note that, the diagonal entries pii, i ∈ SN,K , do not depend on the weights
w(j), j ∈ SN,K . Thus, the diagonal entries are always of the form pii = E(ν1 · · · ν|i|) no
matter how the weights are chosen. Suppose now that K > 1 and that P(ν1 = 1) < 1. Then,
for the particular absorbing state i = (1, 1, 0, . . . , 0), we obtain

∑
j∈SN,K

pij = pii = E(ν1ν2) < 1.

Therefore, for K > 1, the matrix P is not stochastic no matter how the weights are chosen,
except for the trivial model in which each individual produces exactly one offspring.

5. Examples

In this section the multi-allelic versions of six fundamental examples of Cannings models
(a simple model, Moran model, Wright–Fisher model, Kimura model, Karlin and McGregor
model, and uniform model) are studied. Explicit formulae for the forward transition matrix �,
the backward matrix P , and their eigenvalues are derived. Note that all the results derived in the
previous sections, in particular the duality result (Proposition 3), apply to all these examples.

5.1. A simple model

We start with a somewhat nonnatural but simple Cannings model in which it is assumed
that the offspring vector ν = (ν1, . . . , νN) is a random permutation of (0, . . . , 0, N), i.e. one
randomly chosen individual has N offspring, whereas all other N − 1 individuals do not have
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any offspring. It is easily checked that the forward transition matrix � = (πij )i,j∈EN,K
has

entries

πij =
⎧⎨
⎩

ik

N
if jk = N for some k ∈ {1, . . . , K},

0 otherwise.

For k ∈ {1, . . . , K}, let ek denote the kth unit vector in R
K . Straightforward considerations

show that the matrix P = (pij )i,j∈SN,K
has entries

pij =

⎧⎪⎨
⎪⎩

1 if (i, j) = (0, 0),

1 if i = ikek and j = ek for some k ∈ {1, . . . , K} and some ik ∈ {1, . . . , N},
0 otherwise,

in agreement with Proposition 1. In particular, for K > 1, the matrix P has several rows with
only zero entries, namely the ith row has only zero entries whenever the vector i = (i1, . . . , iK)

has at least two nonzero components. The matrix P is hence highly substochastic.

5.2. Moran model

We consider first the following Moran model (see [7, p. 636]) with overlapping generations
and constant population size N ∈ N\{1}. At each time r ∈ N0 one randomly chosen individual
contributes one offspring to the next generation r +1. Afterwards one individual—not the same
individual who produced the offspring—is randomly selected and removed from the population.
We are interested in the multi-allelic version of the model, so each individual has one of K

possible types and each child inherits the type of its parent. Fortunately, this model can be
interpreted as a model with nonoverlapping generations by identifying individuals who are still
alive in the next generation as being children in this next generation. More precisely, the model
can be seen as a Cannings model, where the offspring vector ν = (ν1, . . . , νN) is a random
permutation of (0, 1, 1, . . . , 1, 1, 2). Let ek denote the kth unit vector in R

K, k ∈ {1, . . . , K}.
It is readily seen from the definition of the model and can alternatively be derived from (1) that
the multi-allelic forward Markov chain X moves from the state i ∈ EN,K to the state j ∈ EN,K

with transition probability

πij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K∑
k=1

ik(ik − 1)

N(N − 1)
if j = i,

ikil

N(N − 1)
if j = i + ek − el for some k, l ∈ {1, . . . , K} with k 
= l,

0 otherwise.

(8)

We now turn to the backward matrix P = (pij )i,j∈SN,K
. By (2), for i ∈ SN,K ,

pii = E(ν1 · · · ν|i|)
= P(ν1 = · · · = ν|i| = 1) + 2 P(ν1 · · · ν|i| = 2)

= (N − |i|)(N − |i| − 1)

N(N − 1)
+ 2

|i|(N − |i|)
N(N − 1)

= 1 − |i|(|i| − 1)

N(N − 1)
.
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Suppose now that i, j ∈ SN,K with j = i −ek for some k ∈ {1, . . . , K}. Note that |j | = |i|−1
and that jk = ik − 1. Then, (2) yields

pij = (N − |i|)! ik!
(N − |j |)! jk!

j1+···+jk∑
s=j1+···+jk−1+1

E

(
ν1 · · · νs−1

(
νs

2

)
νs+1 · · · ν|j |

)

= ik

N − |j |
j1+···+jk∑

s=j1+···+jk−1+1

P(ν1 = 1, . . . , νs−1 = 1, νs = 2, νs+1 = 1, . . . , ν|j | = 1)

= ik

N − |j |jk

N − |j |
N(N − 1)

= ik(ik − 1)

N(N − 1)
.

All other entries pij are equal to 0, so in summary, for i, j ∈ SN,K ,

pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − |i|(|i| − 1)

N(N − 1)
if j = i,

ik(ik − 1)

N(N − 1)
if j = i − ek for some k ∈ {1, . . . , K},

0 otherwise.

In particular, the Moran model has effective population size Ne := 1/p21 = N(N − 1)/2.
Note that ∑

j∈SN,K

pij = 1 − 1

N(N − 1)

K∑
k,l=1
k 
=l

ikil .

Thus, for K > 1, the matrix P is not stochastic but substochastic. The eigenvalues of P are

pii = 1 − |i|(|i| − 1)

N(N − 1)
, i ∈ SN,K.

By the duality result of Section 4, these are also the eigenvalues of the transition matrix of the
forward chain X with K +1 types. The classical Moran model (see [13] and [7, p. 635]) slightly
differs from the Moran model described above, since, in the classical version, the individual
who is removed from the population is randomly selected from the complete population and
is hence possibly the same individual who produced the offspring. Fortunately, the classical
Moran model can also be interpreted as a Cannings model as follows. In each generation, with
probability 1 − 1/N , the population evolves according to the Moran model described above
and, with the complementary probability 1/N , the population evolves according to the trivial
Cannings model in which each individual produces exactly one offspring. In other words,
the classical Moran model is a convex mixture of the Moran model described above and the
trivial Cannings model. Note that the corresponding offspring vector ν = (ν1, . . . , νN) of the
classical Moran model has distribution P(ν = k) = 1/N if k = (k1, . . . , kN) = (1, . . . , 1) and
P(ν = k) = (1 − 1/N)(N − 2)!/N ! = 1/N2 if k = (k1, . . . , kN) with ki = 2, kj = 0, and
kl = 1 for all l ∈ {1, . . . , N} \ {i, j} for some i, j ∈ {1, . . . , N} with i 
= j . It is easily seen
that, for the classical multi-allelic Moran model, the forward chain X moves from i ∈ EN,K to
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j ∈ EN,K with transition probability

π̃ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑K
k=1 i2

k

N2 if j = i,

ikil

N2 if j = i + ek − el for some k, l ∈ {1, . . . , K} with k 
= l,

0 otherwise.

Note that π̃ij = (1 − 1/N)πij + (1/N)δij , where πij is defined via (8) and δij denotes the
Kronecker symbol, in agreement with the interpretation of the classical Moran model as a
convex mixture. Similarly, the entries p̃ij , i, j ∈ SN,K , of the backward matrix P̃ of the
multi-allelic classical Moran model are

p̃ij =
(

1 − 1

N

)
pij + δij

N

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − |i|(|i| − 1)

N2 if j = i,

ik(ik − 1)

N2 if j = i − ek for some k ∈ {1, . . . , K},
0 otherwise.

Note that the classical Moran model has effective population size Ñe := 1/p̃21 = N2/2. By
the duality result of Section 4, the transition matrix of the forward chain X (with K + 1 types)
has eigenvalues p̃ii = 1 − |i|(|i| − 1)/N2, i ∈ SN,K .

5.3. Wright–Fisher model

In the Wright–Fisher model [14] the offspring vector ν = (ν1, . . . , νN) is assumed to
have a symmetric multinomial distribution. Note that ν has probability generating func-
tion E(z

ν1
1 · · · zνN

N ) = ((z1 + · · · + zN)/N)N, z1, . . . , zN ∈ C. The random vector C =
(C1, . . . , CK) introduced in Section 2 has again a multinomial distribution with parameters N

and i1/N, . . . , iK/N , and, by (1), the forward chain X has multinomial transition probabilities

πij = N !
j1! · · · jK !

(
i1

N

)j1

· · ·
(

iK

N

)jK

, i, j ∈ EN,K.

Moreover,

E

((
ν1

m1

)
· · ·

(
ν|j |
m|j |

))
=

(
N

|i|
)

(|i|)!
m1! · · · m|j |!

(
1

N

)|i|

and it follows from (2) that the backward matrix P has entries

pij = (N − |i|)! i1! · · · iK !
(N − |j |)! j1! · · · jK !

∑
m

(
N

|i|
)

(|i|)!
m1! · · · m|j |!

(
1

N

)|i|

= N !
(N − |j |)!

(
1

N

)|i| K∏
k=1

(
ik!
jk!

∑
msk−1+1,...,msk

∈N

msk−1+1+···+msk
=ik

1

msk−1+1! · · · msk !
)

= (N)|j |N−|i|
K∏

k=1

S(ik, jk), i, j ∈ SN,K, (9)
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where (see also the remark after Lemma 1 in Appendix A)

S(m, n) = m!
n!

∑
m1,...,mn∈N

m1+···+mn=m

1

m1! · · · mn! = 1

n!
n∑

l=0

(−1)n−l

(
n

l

)
lm, m, n ∈ N0, (10)

are the Stirling numbers of the second kind. Note that S(m, 0) = δm0, m ∈ N0. In particular,
P has eigenvalues pii = (N)|i|N−|i|, i ∈ SN,K . The effective population size Ne := 1/p21 =
1/(1 − p22) = N coincides with the total population size.

5.4. Kimura model

The Kimura model with parameter c ∈ N (see [7, p. 636] or [10]) can be viewed as a
Cannings model with symmetric multi-hypergeometric joint offspring distribution

P(ν = k) =
(

c
k1

) · · · ( c
kN

)
(
cN
N

) (11)

for k = (k1, . . . , kN) ∈ N
N
0 with k1 + · · · + kN = N . Kimura’s model behaves quite similar

to the Wright–Fisher model, except for the fact that the number of offspring per individual
is uniformly bounded by c, since P(νi ≤ c) = 1 for all i ∈ {1, . . . , N}. For c → ∞,
the distribution of ν weakly converges to the symmetric multinomial distribution. Thus, in
the limit c → ∞ the Kimura model coincides with the Wright–Fisher model. The random
vector C = (C1, . . . , CK) introduced in Section 2 has a multi-hypergeometric distribution
with parameters N , cN , and ci1, . . . , ciK . From (1), it follows that the forward chain X has
transition probabilities (see also [9])

πij = P(C = j) =
(
ci1
j1

) · · · (ciK
jK

)
(
cN
N

) , i, j ∈ EN,K.

Since the expectation under the sum
∑

m on the right-hand side in (2) is given by (note that
m1 + · · · + m|j | = |i|)

E

((
ν1

m1

)
· · ·

(
ν|j |
m|j |

))
=

(
N
|i|

)
(
cN
|i|

)
(

c

m1

)
· · ·

(
c

m|j |

)
,

and, similarly, the random vector D = (D1, . . . , DK) in Proposition 2 satisfies

E

((
D1

i1

)
· · ·

(
DK

iK

))
=

(
N
|i|

)
(
cN
|i|

)
(

cl1

i1

)
· · ·

(
clK

iK

)
,

it follows from (2) and (3) that

pij = (N)|j |
(cN)|i|

K∏
k=1

Sc(ik, jk), i, j ∈ SN,K, (12)

where, for m, n ∈ N0,

Sc(m, n) := m!
n!

∑
m1,...,mn∈N

m1+···+mn=m

(
c

m1

)
· · ·

(
c

mn

)
= m!

n!
j∑

l=0

(−1)n−l

(
n

l

)(
cl

m

)
(13)
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is some sort of generalized Stirling number of the second kind. Note that Sc(m, n) ∼ cmS(m, n)

as c → ∞, where S(m, n) is the usual Stirling number of the second kind defined in (10). Thus,
as c → ∞, the Kimura pij given via (12) converges to the Wright–Fisher pij given via (9)
as expected. From Sc(m, m) = cm, it follows that the backward matrix P has eigenvalues
pii = c|i|(N)|i|/(cN)|i|, i ∈ SN,K , extending the result of Gladstien [7, p. 636] and Karlin and
McGregor [9] for K = 1. Note that Sc(2, 1) = c(c − 1). Hence, p21 = (c − 1)/(cN − 1) and,
for c 
= 1, the Kimura model has effective population size Ne := 1/p21 = (cN − 1)/(c − 1).

5.5. Karlin and McGregor model

Suppose that a sequence X1, X2, . . . of independent and identically distributed nonnegative
integer-valued random variables is given. Let f denote the probability generating function
(PGF) of X1. For any PGF g and n ∈ N0, we use the standard notation gn for the nth power
of g (g0 = 1) and the notation g(n) for the nth derivative of g. Moreover, [xn]g(x) denotes
the coefficient in front of xn in the Taylor expansion of g around 0. The conditional branching
process model of Karlin and McGregor [9] is a Cannings model with joint offspring distribution

P(ν = k) = P(X1 = k1) · · · P(XN = kN)

P(X1 + · · · + XN = N)
= [xk1 ]f (x) · · · [xkN ]f (x)

[xN ]f N(x)
(14)

for k = (k1, . . . , kN) ∈ N
N
0 with k1 + · · · + kN = N , a fact already known in 1971 by

Felsenstein [3, p. 399], although at that time the Cannings models had not been introduced yet.
Felsenstein also mentioned that ν = (ν1, . . . , νN) has PGF

E(z
ν1
1 · · · zνN

N ) = [xN ](f (xz1) · · · f (xzN))

[xN ]f N(x)
, |z1|, . . . , |zN | ≤ 1. (15)

If X1 is Poisson distributed with some parameter α > 0 then (independent of α) the model
reduces to the Wright–Fisher model. If X1 has a binomial distribution with PGF f (x) =
(px + 1 − p)c for some parameters c ∈ N and p ∈ (0, 1), then (independent of p) the model
reduces to the Kimura model with parameter c. Thus, the Karlin and McGregor model is a
generalization of the Wright–Fisher model and the Kimura model. In order to compute the
entries of the forward transition matrix, fix i, j ∈ EN,K and, as in Section 2, define s0 := 0
and sk := i1 + · · · + ik for k ∈ {1, . . . , K} and put Yk := ∑sk

s=sk−1+1 Xs for k ∈ {1, . . . , K}.
Note that Yk has PGF f ik . From (1), it follows that the forward transition matrix has entries

πij = P(Y1 = j1) · · · P(YK = jK)

P(X1 + · · · + XN = N)
= [xj1 ]f i1(x) · · · [xjK ]f iK (x)

[xN ]f N(x)
, i, j ∈ EN,K. (16)

For K = 2, we obtain

πij = [xj1 ]f i1(x)[xj2 ]f i2(x)

[xN ]f N(x)
,

a formula which is slightly simpler than the equivalent expression at the top of page 637 of [7],
since only one variable x is involved. Applying the ‘derivative operator’

∂m1

∂m1z1
· · · ∂mN

∂mN zN

to (15), and noting that it is allowed to interchange the ‘coefficient operator [xN ]’ with this
‘derivative operator’, it follows after choosing z1 = · · · = zN = 1 that ν = (ν1, . . . , νN) has
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joint descending factorial moments

E((ν1)m1 · · · (νN)mN
) = [xN−(m1+···+mN)](f (m1)(x) · · · f (mN)(x))

[xN ]f N(x)
, m1, . . . , mN ∈ N0.

Substituting this expression into (2) shows that the backward matrix P has entries

pij = (N − |i|)! i1! · · · iK !
(N − |j |)! j1! · · · jK !

1

[xN ]f N(x)

∑
m

[xN−|i|](f N−|j |(x)f (m1)(x) · · · f (m|j |)(x))

m1! · · · m|j |! ,

i, j ∈ SN,K , where the multi-index m = (m1, . . . , m|j |) runs as explained in Proposition 1.
This expression further simplifies to

pij = (N − |i|)!
(N − |j |)!

[xN−|i|](f N−|j |(x)
∏K

k=1 Sf,x(ik, jk))

[xN ]f N(x)
, (17)

where, for m, n ∈ N0,

Sf,x(m, n) := m!
n!

∑
m1,...,mn∈N

m1+···+mn=m

f (m1)(x)

m1! · · · f (mn)(x)

mn! (18)

is again a kind of generalized Stirling number of the second kind, with the convention that
Sf,x(m, 0) = δm0 for m ∈ N0. For example, if X1 is Poisson distributed with PGF f (x) =
eα(x−1) for some parameter α > 0, then Sf,x(m, n) = αmeαn(x−1)S(m, n), where S(m, n)

denotes the usual Stirling number of the second kind defined in (10). If X1 has a binomial
distribution with PGF f (x) = (px + 1 − p)c for some parameters c ∈ N and p ∈ (0, 1), then
Sf,x(m, n) = (px + 1 − p)nc−mSc(m, n), with Sc(m, n) defined in (13). Since Sf,x(m, m) =
(f ′(x))m, it follows that P has eigenvalues

pii = [xN−|i|](f N−|i|(x)(f ′(x))|i|)
[xN ]f N(x)

, i ∈ SN,K,

generalizing the known results for K = 1 of [3, p. 400], [7, p. 637], and [9] to the multi-allelic
case. From Sf,x(2, 1) = f ′′(x) and (17), it follows that the Karlin and McGregor model has
effective population size

Ne := 1

p21
= (N − 1)

[xN ]f N(x)

[xN−2](f N−1(x)f ′′(x))
.

An alternative expression for pij is obtained from (3) as follows. Let l1, . . . , lK ∈ N0 with
|l| := l1+· · ·+lK ≤ N . Choosing in (15) the first l1 variables z1, . . . , zl1 all equal to some given
u1, the next l2 variables zl1+1, . . . , zl1+l2 all equal to some given u2, . . . , the next lK variables
zl1+···+lK−1+1, . . . , z|l| all equal to some uK , and the last N − |l| variables z|l|+1, . . . , zN all
equal to 1, it follows that the random vector D = (D1, . . . , DK) in Proposition 2 has PGF

E(u
D1
1 · · · uDK

K ) = [xN ](f N−|l|(x)f l1(xu1) · · · f lK (xuK))

[xN ]f N(x)
, |u1|, . . . , |uK | ≤ 1.

The same method used before for the vector ν = (ν1, . . . , νN) yields the fact that D has joint
factorial moments

E((D1)i1 · · · (DK)iK ) = [xN−|i|](f N−|l|(x)(f l1)(i1)(x) · · · (f lK )(iK)(x))

[xN ]f N(x)
.
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Substituting this expression into (3) yields (17) with

Sf,x(m, n) = 1

n!
n∑

l=0

(−1)n−l

(
n

l

)
f n−l (x)(f l)(m)(x), m, n ∈ N0,

which indeed coincides with (18) by Lemma 1 given in Appendix A.

5.6. The uniform model and extensions

We finally mention a further particular Karlin and McGregor model. Suppose that X1 has
a geometric distribution with PGF f (x) = p/(1 − qx) for some parameter p ∈ (0, 1), where
q := 1 − p. Then X1 + · · · + XN has a negative binomial distribution with parameters N and
p, and it follows from (14) that P(ν = k) = 1/

(2N−1
N

)
for all k = (k1, . . . , kN) ∈ N

N
0 with

k1 + · · · + kN = N . Thus, ν is uniformly distributed. Let us call this particular model the
uniform Cannings model. Using (16), the transition probabilities of the forward chain turn out
to be of the form

πij =
(
i1+j1−1

j1

) · · · (iK+jK−1
jK

)
(2N−1

N

) , i, j ∈ EN,K.

Since f has derivatives f (m)(x) = m! pqm/(1 − qx)m+1, m ∈ N0, the generalized Stirling
numbers in (18) are given by

Sf,x(m, n) = m!
n!

(
m − 1

n − 1

)
pnqm

(1 − qx)m+n
, m, n ∈ N0

(with the convention
(
m−1
−1

) := δm0 for m ∈ N0), and it can be readily derived from (17) that

pij = N ! (N − 1)!
(N + |i| − 1)! (N − |j |)!

K∏
k=1

ik!
jk!

(
ik − 1

jk − 1

)
, i, j ∈ SN,K.

In particular, P has eigenvalues pii = (2N−1
N−|i|

)
/
(2N−1

N

)
, i ∈ SN,K . The effective population size

is Ne := 1/p21 = (N + 1)/2. The uniform model can be extended to a more general Karlin
and McGregor model by replacing the geometric distribution of X1 by a negative binomial
distribution with PGF f (x) = (p/(1 − qx))α, α > 0, p ∈ (0, 1), q := 1 − p. Then
X1 + · · · + XN has a negative binomial distribution with parameters αN and p, and it follows
from (14) that

P(ν = k) =
(
α+k1−1

k1

) · · · (α+kN−1
kN

)
(
αN+N−1

N

) = N !
k1! · · · kN !

[α]k1 · · · [α]kN

[αN ]N

for all k = (k1, . . . , kN) ∈ N
N
0 with k1 + · · · + kN = N , where [x]0 := 1 and [x]k :=

x(x + 1) · · · (x + k − 1) for x ∈ R and k ∈ N. For α = 1, we are back in the uniform model
and, for α → ∞, this model converges to the Wright–Fisher model. Using (16), the transition
probabilities of the forward chain turn out to be of the form

πij =
(
αi1+j1−1

j1

) · · · (αiK+jK−1
jK

)
(
αN+N−1

N

) = N !
j1! · · · jK !

[αi1]j1 · · · [αiK ]jK

[αN ]N , i, j ∈ EN,K.
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Since f has derivatives

f (m)(x) = [α]mpαqm

(1 − qx)α+m
= m! (α+m−1

m

)
pαqm

(1 − qx)α+m
, m ∈ N0,

the generalized Stirling numbers in (18) are given by

Sf,x(m, n) = pαnqm

(1 − qx)αn+m
sα(m, n), m, n ∈ N0,

where

sα(m, n) := m!
n!

∑
m1,...,mn∈N

m1+···+mn=m

(
α + m1 − 1

m1

)
· · ·

(
α + mn − 1

mn

)

= m!
n!

n∑
l=0

(−1)n−l

(
n

l

)(
αl + m − 1

m

)
,

and it can be readily derived from (17) that

pij = (N)|j |
(αN + |i| − 1)|i|

K∏
k=1

sα(ik, jk), i, j ∈ SN,K.

In particular, P has eigenvalues pii = α|i|(αN+N−1
N−|i|

)
/
(
αN+N−1

N

)
, i ∈ SN,K . From p22 =

α(N − 1)/(αN + 1), it follows that this model has effective population size Ne := 1/p21 =
1/(1 − p22) = (αN + 1)/(α + 1).

Appendix A

In this appendix a particular combinatorial identity is verified, which is a consequence of the
principle of inclusion and exclusion and of Leibniz’s derivative rule for products of functions.
The corresponding formula (19) below is probably known from the combinatorics literature;
however, we have not been able to find an appropriate reference.

Lemma 1. Let U ⊆ R be an open set, and let f : U → R be a function which is m times
differentiable in a point x ∈ U for some given m ∈ N0. Then, for all n ∈ N0,

∑
m1,...,mn∈N

m1+···+mn=m

m!
m1! · · · mn!f

(m1)(x) · · · f (mn)(x)

=
n∑

l=0

(−1)n−l

(
n

l

)
f n−l (x)(f l)(m)(x), (19)

with the convention that the left-hand side is equal to δm0 for n = 0.

Remark. For f (x) = ex , (19) yields the two representations in (10) for the Stirling numbers
of the second kind. For f (x) = xc for some fixed c ∈ N, (19) yields the two representations
in (13) for the numbers Sc(m, n). For f (x) = 1/x, (19) leads to the combinatorial identity(
m−1
n−1

) = ∑n
l=0(−1)n−l

(
n
l

)(
l+m−1

m

)
, m, n ∈ N.
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Proof of Lemma 1. It is easily checked that (19) holds for m = 0 or n = 0. Suppose now
that m, n ∈ N. Define a finite signed measure µ on

� = �(m, n) := {ω = (m1, . . . , mn) ∈ N
n
0 : m1 + · · · + mn = m}

via

µ(ω) := m!
m1! · · · mn!f

(m1)(x) · · · f (mn)(x), ω = (m1, . . . , mn) ∈ �.

Note that, by the Leibniz rule, µ has total mass µ(�) = (f n)(m)(x) ∈ R. For i ∈ {1, . . . , n},
let Ai ⊂ � denote the subset of all ω = (m1, . . . , mn) ∈ � satisfying mi = 0. Let L denote
the left-hand side of (19). From the definition of µ, it follows that

L = µ(Ac
1 ∩ · · · ∩ Ac

n) = µ(�) − µ(A1 ∪ · · · ∪ An),

where Ac
i denotes the complement of Ai, i ∈ {1, . . . , n}. By the principle of inclusion and

exclusion, which is applicable for finite signed measures, we obtain

L = µ(�) −
n∑

j=1

(−1)j−1
∑

1≤i1<···<ij ≤n

µ(Ai1 ∩ · · · ∩ Aij ). (20)

By the definition of the signed measure µ,

µ(Ai1 ∩ · · · ∩ Aij ) =
( n∏

k=1
k∈{i1,...,ij }

f (0)(x)

0!
)(

m!
n∏

k=1
k 
∈{i1,...,jj }

f (mk)(x)

mk!
)

= f j (x)(f n−j )(m)(x),

where the last equation follows again from the Leibniz rule. Thus, (20) reduces to

L =
n∑

j=0

(−1)j
(

n

j

)
f j (x)(f n−j )(m)(x).

The index transformation l = n − j yields the result.

Acknowledgement

The author thanks Thierry Huillet for helpful discussions concerning the block structure of
the matrix P and for pointing out the idea to introduce the weights w(j), j ∈ SN,K , at the end
of Section 4.

References

[1] Cannings, C. (1974). The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid
models. Adv. Appl. Prob. 6, 260–290.

[2] Cannings, C. (1975). The latent roots of certain Markov chains arising in genetics: a new approach. II. Further
haploid models. Adv. Appl. Prob. 7, 264–282.

[3] Felsenstein, J. (1971). The rate of loss of multiple alleles in finite haploid populations. Theoret. Pop. Biol. 2,
391–403.

[4] Gladstien, K. (1976). Loss of alleles in a haploid population with varying environment. Theoret. Pop. Biol.
10, 383–394.

[5] Gladstien, K. (1977). Haploid populations subject to varying environment: the characteristic values and the
rate of loss of alleles. SIAM J. Appl. Math. 32, 778–783.

https://doi.org/10.1239/jap/1285335405 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335405


Multi-allelic neutral Cannings population model 731

[6] Gladstien, K. (1977). Subdivided populations: the characteristic values and rate of loss of alleles. J. Appl.
Prob. 14, 241–248.

[7] Gladstien, K. (1978). The characteristic values and vectors for a class of stochastic matrices arising in genetics.
SIAM J. Appl. Math. 34, 630–642.

[8] Huillet, T. and Möhle, M. (2009). Duality and asymptotics for a class of nonneutral discrete Moran models.
J. Appl. Prob. 46, 866–893.

[9] Karlin, S. and McGregor, J. (1965). Direct product branching processes and related induced Markoff chains.
I. Calculations of rates of approach to homozygosity. In Proc. Internat. Res. Sem., Springer, NewYork, pp. 111–
145.

[10] Kimura, M. (1957). Some problems of stochastic processes in genetics. Ann. Math. Statist. 28, 882–901.
[11] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York.
[12] Möhle, M. (1999). The concept of duality and applications to Markov processes arising in neutral population

genetics models. Bernoulli 5, 761–777.
[13] Moran, P. A. P. (1958). Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71.
[14] Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97–159.

https://doi.org/10.1239/jap/1285335405 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1285335405

	1 Introduction
	2 Forward structure
	3 Backward structure
	4 Duality
	5 Examples
	5.1 A simple model
	5.2 Moran model
	5.3 Wright--Fisher model
	5.4 Kimura model
	5.5 Karlin and McGregor model
	5.6 The uniform model and extensions

	A 
	Acknowledgement
	References

