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COAGULATION PROCESSES WITH
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Abstract

We prove that a stochastic process of pure coagulation has at any time t ≥ 0 a time-
dependent Gibbs distribution if and only if the rates ψ(i, j) of single coagulations are of
the form ψ(i; j) = if (j) + jf (i), where f is an arbitrary nonnegative function on the
set of positive integers. We also obtain a recurrence relation for weights of these Gibbs
distributions that allow us to derive the general form of the solution and the explicit
solutions in three particular cases of the function f . For the three corresponding models,
we study the probability of coagulation into one giant cluster by time t > 0.
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1. Process of pure coagulation: formulation of the model. Objective and the context of
the paper

We consider a standard model of stochastic coagulation (see, e.g. [7]), viewed as a time-
continuous Markov chain on the finite set �N of partitions η of a given integer N :

�N =
{
η = (n1, . . . , nN) :

N∑
k=1

knk = N

}
.

In the context considered, N is the total number (equivalently, the total mass) of identical
particles (molecules, planets, animals, etc.) partitioned into clusters of different sizes, so that
nk is the number of clusters of size k in a partition η ∈ �N . Infinitesimal in time transitions
are coagulations of any two clusters of sizes i and j into one cluster of size i + j , resulting in
the state transition η → η(i,j). Here η(i,j) ∈ �N codes the state that is obtained from a state
η ∈ �N , with ni > 0 and nj > 0, by a coagulation of any two specific clusters of sizes i
and j . In the sequel such coagulations are called single and their rates are denoted by ψ(i, j).
The following assumptions on the ratesψ(i, j) and on the induced ratesK(η → η(i,j)) of state
transitions describe the class of coagulation processes (CPs) under consideration.

• The function ψ(i, j) is nonnegative, symmetric in i and j , and is not dependent on N .

• The rate K(η → η(i,j)) is equal to the sum of rates of all single coagulations ψ(i, j) of
ni > 0 groups of size i each with nj > 0 groups of size j each, so that

K(η → η(i,j)) = ninjψ(i, j), i �= j, 2 ≤ i + j ≤ N,
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Coagulation processes with Gibbsian time evolution 613

and

K(η → η(i,i)) = ni(ni − 1)

2
ψ(i, i), 2 ≤ 2i ≤ N.

An interpretation of the above expression for the coagulation kernelK in terms of the kinetics
of droplets of different masses is given in [22]. CPs with rates of state transitions of the above
form are naturally called mean-field models, meaning that at any state η ∈ �N, any cluster can
coagulate with any other. Hence, givenN , the distribution of a CP = CP(N) at any time t ≥ 0
is uniquely specified by the initial distribution on the set �N and the rates ψ(i, j).

The history of CPs goes back to 1918 when Smoluchowski formulated a deterministic version
of the model of pure coagulation of molecules in chemical kinetics in his seminal paper. Because
of the ever growing field of applications and a rich probabilistic context, the study of a variety of
versions of the model continues to be a hot topic in the theory of stochastic processes. Marcus
[20] was apparently the first to formulate the stochastic version of a CP. A particular case of
a pure coagulation, when ψ(i; j) = a(i + j) + b, a, b ≥ 0, is known in the literature as the
Marcus–Lushnikov stochastic process, while in [1] as well as in some other papers, the name
is given to all stochastic CPs with the rates of single coagulations of the formN−1ψ(i; j) with
an arbitraryψ(i, j). It is important to point out that, in contrast to the latter Marcus–Lushnikov
process, the basic assumption of our setting is that the rates of single coagulations do not depend
on N . The equilibria of some reversible models with rates of coagulation and fragmentation
depending on N were studied in [13] and [15].

LetX(ρ)N (t), t ≥ 0, denote a CP(N) starting from an initial distribution ρ on�N.Our objec-
tive is to study the probability distribution (equivalently, the transition probability) p(η, ρ; t)
of the process, which is given by

P(X(ρ)N (t) = η), η ∈ �N, t ≥ 0. (1.1)

In the sequel we refer in more detail to the literature related to the aforementioned objective.
We now describe the organization of the paper. In Section 2 we formulate our main result

which is the characterization of CPs possessing probability distributions (1.1) of Gibbsian
type at any time t ≥ 0. As corollaries of our theorem, we derive the general form of the
weights of the aforementioned Gibbs distributions and the explicit expressions for the weights
of three particular CP models. We also analyze the behaviour in time of some important
functionals of the models. Finally, in Section 3 we explain the name ‘Gibbsian’ given to the
class of distributions considered, describe the linkage to coagulation–fragmentation processes
on set partitions, and indicate the relation of Gibbsian distributions to the theory of random
combinatorial structures.

2. Main result

Recall that X(ρ)N (t), t ≥ 0, denotes a CP(N) starting from an initial distribution ρ on �N .
Our goal is to identify CPs with probability distributions (1.1) of the form

p(η, ρ; t) = CN(t)

N∏
k=1

(ak,N (t))
nk

nk! , η = (n1, . . . , nN) ∈ �N, t ≥ 0. (2.1)

Here CN(t), t ≥ 0, is a time-dependent partition function, and the ak,N (t) ≥ 0, t ≥ 0, are
time- and N -dependent weights. The distributions on the right-hand side of (2.1) are called
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614 B. L. GRANOVSKY AND A. V. KRYVOSHAEV

Gibbsian (equivalently, canonical Gibbsian). We note that, by the above definition, the initial
distribution ρ is Gibbsian. By virtue of the mass conservation law,

∑N
j=1 jnj = N , tilting

transformations of the weights in (2.1) with an arbitrary function rN(t) > 0, t ≥ 0, i.e.

ãk,N (t) = (rN(t))
kak,N (t), k = 1, . . . , N, t ≥ 0,

and the induced transformation C̃N (t) = (rN(t))
−NCN(t) of the partition function result in

different representations of the generic Gibbs distribution. In view of this fact we assume in
the rest of the paper that the weights ak,N (t) in (2.1) are such that the partition function does
not depend on t ≥ 0, i.e. CN(t) = CN, t ≥ 0. The latter assumption appears to be of great
help for our discussion below.

Our main result is the following characterization.

Theorem 2.1. The probability distributionsp(η, ρ; t) of a CPX(ρ)N (t), t ≥ 0, are of a Gibbsian
form (2.1) if and only if the following three conditions are satisfied.

(i) The initial distribution ρ on�N is Gibbsian with arbitrary weights ak,N = ak,N (0) ≥ 0,
k = 1, . . . , N, N ≥ 1.

(ii) The rates of single coagulations are of the form

ψ(i, j) = if (j)+ jf (i), 1 ≤ i + j ≤ N, (2.2)

where f is an arbitrary nonnegative function on the set of positive integers.

(iii) The weights ak,N (t) are defined recursively by

a1,N (t) = e−(N−1)f (1)t a1,N , t ≥ 0,

ak,N (t) =
∫ t

0

∑
i+j=k ai,N (u)aj,N (u)(if (j)+ jf (i))

2
e−(N−k)f (k)(t−u) du

+ ak,Ne−(N−k)f (k)t , k = 2, . . . , N, t ≥ 0, (2.3)

where ak,N ≥ 0 are constants implied by the initial distribution ρ in (i).

Proof. Our plan is to show that assertions (i)–(iii) are implied by the Kolmogorov forward
equations. Suppose that η(i,j) is the state that is obtained from a state η ∈ �N, with ni+j > 0,
by a fragmentation of some cluster of size i + j ≥ 2 into two clusters of sizes i and j. Then
the equations read as

d

dt
p(η, ρ; t) = −p(η, ρ; t)

( ∑
1≤i<j≤N

ninjψ(i, j)+
N∑
i=1

ni(ni − 1)

2
ψ(i, i)

)

+
∑

1≤i<j≤N
p(η(i,j), ρ; t)(ni + 1)(nj + 1)ψ(i, j)

+
N∑
i=1

p(η(i,i), ρ; t) (ni + 1)(ni + 2)

2
ψ(i, i). (2.4)
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First, we assume that (2.1) holds. Substituting p(η, ρ; t) given by (2.1) with weights ak,N (t),
such that the partition function does not depend on t ≥ 0, we obtain

d

dt
p(η, ρ; t) = −p(η, ρ; t)

( ∑
1≤i<j≤N

ninjψ(i, j)+
N∑
i=1

ni(ni − 1)

2
ψ(i, i)

)

+ p(η, ρ; t)
( ∑

1≤i<j≤N

ai,N (t)aj,N (t)

ai+j,N (t)
ni+j

(ni + 1)(nj + 1)

× (ni + 1)(nj + 1)ψ(i, j)

+
N∑
i=1

a2
i,N (t)

a2i,N (t)

n2i

(ni + 1)(ni + 2)

(ni + 1)(ni + 2)

2
ψ(i, i)

)
,

which can be written as

dp(η, ρ; t)/dt
p(η, ρ; t) =

∑
1≤i,j≤N

ai,N (t)aj,N (t)

2ai+j,N (t)
ni+jψ(i, j)

−
( ∑

1≤i<j≤N
ninjψ(i, j)+

N∑
i=1

ni(ni − 1)

2
ψ(i, i)

)
, η ∈ �N, t ≥ 0.

In view of (2.1) and the time independence of the partition function, we proceed as

N∑
k=1

a′
i,N (t)

ai,N (t)
ni =

∑
1≤i,j≤N

ai,N (t)aj,N (t)

2ai+j,N (t)
ni+jψ(i, j)

−
( ∑

1≤i<j≤N
ninjψ(i, j)+

N∑
i=1

ni(ni − 1)

2
ψ(i, i)

)
, η ∈ �N, t ≥ 0.

Finally, we have

N∑
k=1

a′
i,N (t)

ai,N (t)
ni =

( N∑
k=2

∑
i+j=k ai,N (t)aj,N (t)ψ(i, j)

2ak,N (t)
nk

)

− 1

2

( ∑
1≤i,j≤N

ninjψ(i, j)−
N∑
i=1

ψ(i, i)ni

)
, η ∈ �N, t ≥ 0.

We now rewrite the last equation as

1

2

( ∑
1≤i,j≤N

ninjψ(i, j)

)
=

N∑
k=1

Ak,N(t)nk, t ≥ 0, for all η = (n1, . . . , nN) ∈ �N,
(2.5)

where

Ak,N(t) =
∑
i+j=k ai,N (t)aj,N (t)ψ(i, j)

2ak,N (t)
− a′

k,N (t)

ak,N (t)
+ 1

2
ψ(k, k), k = 1, . . . , N, (2.6)
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assuming that, for k = 1, the sum on the right-hand side of the last expression equals 0.
Applying the mass conservation law, (2.5) becomes

1

2

( ∑
1≤i,j≤N

ninjψ(i, j)

)
= 1

2N

∑
1≤i,j≤N

ninj (jAi,N (t)+ iAj,N (t))

for all η = (n1, . . . , nN) ∈ �N and t ≥ 0, from which, using the assumed symmetry of the
function ψ(i, j), we derive the unique form of ψ :

ψ(i, j) = 1

N
(jAi,N (t)+ iAj,N (t)), (n1, . . . , nN) ∈ �N, t ≥ 0. (2.7)

Consequently,

ψ(i, i) = 2

N
iAi,N (t), t ≥ 0, i ≥ 1,

which imposes the following necessary and sufficient conditions on the coefficients Ai,N(t):

N−1Ai,N(t) =: f (i), i ≥ 1, (2.8)

does not depend on N ≥ 1 and t ≥ 0. By virtue of this condition and (2.7), we find that

ψ(i, i) = 2if (i), ψ(i, j) = if (j)+ jf (i),

which proves the necessity of part (ii) of the theorem. It remains to demonstrate that the weights
ai,N (t) can be found recursively from (2.6) and (2.8). First, we recover a1,N (t):

N−1
(

−a
′
1,N (t)

a1,N (t)
+ f (1)

)
= f (1), t ≥ 0,

a1,N (t) = a1,Ne−(N−1)f (1)t , t ≥ 0. (2.9)

Here a1,N (0) = a1,N > 0 is a constant, given by the initial distribution ρ. For k ≥ 2, (2.8)
takes the form

N−1
(∑

i+j=k ai,N (t)aj,N (t)ψ(i, j)
2ak,N (t)

− a′
k,N (t)

ak,N (t)
+ kf (k)

)
= f (k).

Observing that the convolution term

Mk,N(t) :=
∑
i+j=k

ai,N (t)aj,N (t)ψ(i, j) =
∑
i+j=k

ai,N (t)aj,N (t)(if (j)+ jf (i)), t ≥ 0,

does not depend on ak,N (t), we arrive at the following first-order differential equation for
ak,N (t):

a′
k,N (t) = Mk,N(t)

2
− (N − k)f (k)ak,N (t), k = 2, . . . , N.

Solving it we obtain the recurrence relation that conforms to part (iii) of the theorem:

ak,N (t) = e−(N−k)f (k)t
(∫ t

0

Mk,N(u)

2
e(N−k)f (k)u du+ ak,N

)
, k = 2, . . . , N, t ≥ 0.

Now the validation that, under conditions (i)–(iii), (2.1) is the solution of the Kolmogorov
equations (2.4) is obvious.

Notes. (i) An obvious consequence of Theorem 2.1 is that a CP with given rates ψ(i, j) of
the form (2.2), starting from a non-Gibbsian initial distribution, does not possess Gibbsian
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transition probabilities. In particular, if the aforementioned process starts from a mixture of
Gibbs distributions then its transition probabilities (1.1) are the corresponding mixtures of Gibbs
distributions.

(ii) The differential recurrence (2.3) was originally derived by Lushnikov [18], [19] where the
weights ak,N (t), t ≥ 0, were associated with the generating function for the probabilities
p(η, ρ; t), t ≥ 0. Buffet and Pulé [5] proved the core fact that, givenψ(i, j) = if (j)+ jf (i),
the Kolmogorov equations are solved by Gibbsian distributions p(η, ρ; t) with weights
satisfying the differential recurrence (2.3). Our result strengthens that of [5] in the following
four directions.

• We establish the necessity of the form (2.2) of rates for Gibbsian transition probabilities
(1.1).

• The study in [5] is limited to Gibbs distributions with partition functionsCN = 1, N ≥ 1,
which substantially restrict the class of possible initial distributions. For example, under
the above restriction, the initial Gibbs distribution with constant weights ak,N = 1 is not
allowed, since in this case the explicit expression forCN as a function ofN is not known.
So, the trick with the tilting transformation cannot be applied.

• Our theorem is proven for the case of a nonnegative (rather than positive) function
f , which enables us to treat CPs like those of Becker–Döring, which are defined in
Corollary 2.4 below.

• Solving in Corollary 2.1 below the recurrence relation (2.3), we find a general form of
the weights ak,N (t).

(iii) In [5, p. 1047] it was noted that if N is a multiple of an integer q ≥ 1 then the initial
distribution ρ concentrated on the partition of N into N/q groups, each of size q, is Gibbsian,
with

aq,N > 0, ak,N = 0, N ≥ k �= q.

An important particular case of the above measures is given by q = 1, which in chemistry
corresponds to what is called total dissipation. In this case the initial distribution ρ is concen-
trated on the partition (N, 0, . . . , 0) and CN = N !/aN1,N , where a1,N > 0 is arbitrary, while
ak,N = 0, k = 2, . . . , N . A closer look at the above example in [5] shows that a class of Gibbs
initial distributions encompasses a variety of (but not all) measures concentrated on single
partitions of N . We give an example of one such measure. Let N = l +m, where 0 < l < m

and N is not divisible by l. This ensures that η∗ = (n∗
1, . . . , n

∗
N), where n∗

l = n∗
m = 1, is the

unique partition of N with nl > 0 and nm > 0. Hence, the measure ρ such that ρ(η∗) = 1
can be viewed as a Gibbs distribution with arbitrary weights al,N > 0 and am,N > 0, all other
weights equal to 0, and partition function CN = (al,Nam,N)

−1.

In the rest of the paper, we assume that the initial distribution is the total dissipation with
a1,N = a1,N (0) = 1, N ≥ 1, so that CN = N !, N ≥ 1.

Recurrence relation (2.3) allows us to find a general form of the parameters ak,N (t) for an
arbitrary function f ≥ 0. To this end, we need more notation. Let

η(j) =
{
(l
(j)
1 , . . . , l

(j)
j ) :

j∑
s=1

sl
(j)
s = j

}
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be a partition from the set �j of integer partitions of j , and set

q(η(j);N) :=
j∑
s=1

l
(j)
s (N − s)f (s)

for j = 1, . . . , N and f ≥ 0.

Corollary 2.1. (The general form of the weights ak,N (t).) For given N and a function f ≥ 0,
the solution ak,N (t) of (2.3) has the form

ak,N (t) =
∑

η(k)∈�k
B(η(k);N) exp(−q(η(k);N)t), t ≥ 0, k = 1, . . . , N, (2.10)

where the coefficients B(η(k);N) do not depend on t ≥ 0.

Proof. We proceed by induction on 1 ≤ k ≤ N. Recalling our assumption that

ak;N := ak;N(0) =
{

1 if k = 1,

0 if k = 2, . . . , N,

we obtain, from (2.3),
a1,N (t) = e−(N−1)f (1)t , t ≥ 0,

which is of the form (2.10) with q(η(1);N) = (N − 1)f (1) and B(η(1);N) = 1 for N ≥ 1.
Consequently, we derive, from (2.3),

a2;N(t) = f (1)

2(N − 1)f (1)− (N − 2)f (2)
(e−f (2)(N−2)t − e−2f (1)(N−1)t ), t ≥ 0,

which is of the form (2.10) induced by the two partitions (2, 0) and (0, 1) of 2. Now assume that
(2.10) holds for aj,N , j = 1, . . . , k−1. Substituting into (2.3) the expression for aj,N (u), j =
1, . . . , k − 1 given in (2.10), the claim for ak,N (t) follows from the fact that, for any given
η(j) ∈ �j and η(k−j) ∈ �k−j ,

q(η(j);N)+ q(η(k−j);N) = q(η(k);N),
where η(k) ∈ �k is the partition of k obtained by merging the two partitions η(j) and η(k−j).

Corollary 2.2. (Additive rates of coagulation: ψ(i, j) = (i + j)v, v > 0.) In this case the
probability distributions p(η, ρ; t) can be found explicitly. Namely,

p(η, ρ; t) = N ! e−N(r−1)vt (1 − e−Nvt )N−rN−(N−r)

×
N∏
k=1

k(k−1)nk

(k!)nknk! , t ≥ 0, (n1, . . . , nN) ∈ �r,N , (2.11)

where �r,N = {η = (n1, . . . , nN) ∈ �N : n1 + · · · + nN = r, 1 ≤ r ≤ N} denotes the set of
all partitions of N with r summands (equivalently, clusters).

Proof. This case conforms to (2.2) with f (j) = v > 0, j ≥ 1. We will seek the solution
of recurrence relation (2.3) in the form

ak,N (t) = e−(N−k)vt (1 − e−Nvt )k−1vk,N , k = 1, . . . , N, N ≥ 1, (2.12)
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with constants vk,N > 0 that will be determined from (2.3). For k = 1, (2.12) reduces to (2.9)
with v1,N = a1,N = 1. Next, by the induction argument on k ≥ 1, (2.3) gives

ak,N (t) = e−(N−k)vt
(∫ t

0

vke−(2N−k)vu(1 − e−Nvu)k−2e(N−k)vu

2
du

) ∑
i+j=k

vi,Nvj,N

= e−(N−k)vt (1 − e−Nvt )k−1 N−1k

2(k − 1)

∑
i+j=k

vi,Nvj,N .

In view of (2.12), this leads to the following recurrence relation for vk,N :

vk,N = N−1k

2(k − 1)

∑
i+j=k

vi,Nvj,N , k = 2, . . . , N − 1.

This is a particular case of Recursion (2.33) of [12], whose solution is

vk,N = N−(k−1) k
k−1

k! , k = 1, . . . , N

(see Equation (2.39) of [12]).

From (2.11) we find the probability of coagulation, pcoag,N (t), into one giant cluster of size
N by time t > 0:

pcoag,N (t) = (1 − e−Nvt )N−1 → 1 as N → ∞ for t > 0.

This says that a strong gelation phenomenon holds at any time t > 0 as N → ∞.
We discuss below the probabilistic meaning of distribution (2.11). We rewrite (2.11) as

p(η, ρ; t) =
(
N − 1

r − 1

)
e−N(r−1)vt (1 − e−Nvt )N−rB−1

r,N

×
N∏
k=1

k(k−1)nk

(k!)nknk! , t ≥ 0, (n1, . . . , nn) ∈ �r,N , (2.13)

where B−1
r,N = N(r − 1)! (N − r)!N−(N−r). It was noted in [12] that the sequence of weights

kk−1/k!, k ≥ 1, is a particular case of weight sequences satisfying the Gnedin–Pitman condition
of exchangeability of Gibbs set partitions [9]. It is easy to see that(

N − 1

r − 1

)
e−N(r−1)vt (1 − e−Nvt )N−r

in (2.13) expresses the transition probabilities of a pure death process with ratesµr,N = (r−1)×
vN, r = 1, . . . , N , as in Equation (2.17) of [12]. Note that the aforementioned transition
probabilities are binomial distributions with time-dependent probabilities of success, while
Br,N in (2.13) is the (N, r) partial Bell polynomial (see Equation (2.37) of [12] for more
details). In the context of our model (Br,N )−1 serves as the partition function for the conditional
distribution P(X(ρ)N (t) = η | |X(ρ)N (t)| = r), which is the microcanonical Gibbs distribution on
�r,N ,with weights kk−1/k! that are independent ofN and t . In view of this, we conclude from
(2.13) that the distribution of the number of clusters |X(ρ)N (t)| := n1(t)+ · · · + nN(t) at time
t is binomial:

P(|X(ρ)N (t)| = r) =
(
N − 1

r − 1

)
e−N(r−1)vt (1 − e−Nvt )N−r , t ≥ 0.
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This fact was originally proven by Lushnikov (see Equation (49) of [18]). It is interesting that
in the case of the Marcus–Lushnikov CP with theN -dependent additive kernel, the distribution
of |X(ρ)N (t)| is also binomial, but with a different parameter. The latter distribution was derived
by Aldous [1], from the interpretation of the process as the vector of the sizes of the continium
random tree.

Corollary 2.3. (Multiplicative rates of coagulation: ψ(i, j) = 2ij .) In the case considered,
f (i) = i, i ≥ 1, so that, under the assumed initial distribution, (2.3) becomes

a1,N (t) = e−(N−1)t , t ≥ 0, N ≥ 1,

ak,N (t) = e−(N−k)kt
∫ t

0
ek

2u
∑
i+j=k

(iai,N (u)e
Niu)(jaj,N (u)e

Nju) du, k = 2, . . . , N, t ≥ 0.

Defining
iai,N (u)e

Niu = bi,N (u),

we arrive at the following recurrence relation:

b1,N (t) = et , t ≥ 0, N ≥ 1,

bk,N (t) = kek
2t

∫ t

0
e−k2u

∑
i+j=k

bi,N (u)bj,N (u) du, k = 2, . . . , N, t ≥ 0. (2.14)

The important fact is that the function b1,N (t) and, consequently, by virtue of (2.14), the
functions bk,N (t) do not depend on N : bk,N (t) = bk(t), t ≥ 0. Thus, in the case considered,

p(η, ρ; t) = N ! e−N2t
N∏
k=1

(bk(t))
nk

knknk! , η = (n1, . . . , nN) ∈ �N, t ≥ 0, (2.15)

where the bk,N (t) are defined in (2.14). The right-hand side of (2.15) can be viewed as the
Gibbs distribution on�N with the partition function N ! e−N2t and the weights bk(t)/k, k ≥ 1
and t ≥ 0, not depending on N . This allows us to employ the known exponential relation (see,
e.g. [7] for references) between the generating functionsH(t; x) and V (t; x) for the sequences
hk(t) := ek

2t /k!, k ≥ 0 and t ≥ 0, and vk(t) := bk(t)/k, k ≥ 1 and t ≥ 0, respectively:

H(t; x) = eV (t;x), V (t; x) =
∑
k≥1

vk(t)x
k, H(t; x) =

∑
k≥0

ek
2t

k! x
k, for t ≥ 0.

(2.16)
We note that the radius of convergence of the power series H(t; x) is 0 and that, by virtue of
the exponential relation (2.16), the same is true for the series V (t; x). This says that the two
power series should be treated as formal power series. From the exponential relation (2.16), it
is easy to derive the following recurrence relation between the sequences {vk(t)} and {hk(t)}:

h0(t) ≡ 1, (n+ 1)hn+1(t) =
n∑
k=0

(k + 1)vk+1(t)hn−k(t), n = 0, 1, . . . , t ≥ 0.

(2.17)
It goes without saying that (2.14) and (2.17) are equivalent. However, (2.17) is much more
convenient for the study of the asymptotics of vk(t) as k → ∞. Based on the fact that the
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functions hk(t) = ek
2t /k! grow very rapidly with k for any fixed t > 0, we will demonstrate

that the solution of (2.17) is given by

vk(t) ∼ hk(t) as k → ∞ for t > 0. (2.18)

First, we see from (2.17) that

vn+1(t) ≤ hn+1(t), t ≥ 0, n = 0, 1, . . . . (2.19)

This implies that

(n+ 1)vn+1 ≥ (n+ 1)hn+1(t)−
n−1∑
k=0

(k + 1)hk+1(t)hn−k(t), t ≥ 0,

and, consequently,

vn+1(t)

hn+1(t)
≥ 1 −

n−1∑
k=0

(k + 1)hk+1(t)hn−k(t)
(n+ 1)hn+1(t)

, t ≥ 0.

This, together with (2.19), says that, for the proof of (2.18), we should validate the limit

n−1∑
k=0

(k + 1)hk+1(t)hn−k(t)
(n+ 1)hn+1(t)

= e−2nt
n−1∑
k=0

(
n

k

)
e−2k(n−k−1)t → 0 as n → ∞

for any t > 0. We have

e−2nt
[n/2]∑
k=0

(
n

k

)
e−2k(n−k−1)t = e−2nt

(
1 +

[n/2]∑
k=1

1

k!
k−1∏
j=0

(n− j)e−2(n−k−1)t
)

≤ e−2nt
(

1 +
[n/2]∑
k=1

1

k!ne−2(n−k−1)t
)

→ 0 as n → ∞.

In view of the relation
(
n
k

) = (
n
n−k

)
, the same limit can be proven for the sum

e−2nt
n−1∑

k=[n/2]+1

(
n

k

)
e−2k(n−k−1)t , t > 0.

This completes the proof of (2.18). Equipped with this result we are now in a position to study
the time dynamics of the clustering of groups of different sizes as N → ∞ and t > 0 is fixed.
With an obvious abuse of notation, let the random variable nk,N (t) be the number of groups
of size k at time t > 0. By the known formulae for the functionals of the Gibbs distribution
considered (see, e.g. [7]), we obtain, for any fixed moment of time t > 0,

E nk,N (t) = vk(t)
hN−k(t)
hN(t)

, k = 1, . . . , N.

var nk,N (t) = v2
k (t)

(
hN−2k(t)

hN(t)
−

(
hN−k(t)
hN(t)

)2)
+ vk(t)

hN−k(t)
hN(t)

,
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and

cov(nk,N (t), nl,N (t))

= vk(t)vl(t)

(
hN−k−l (t)
hN(t)

− hN−k(t)hN−l (t)
h2
N(t)

)
, k �= l = 1, 2 . . . , N. (2.20)

Substituting hk(t) = ek
2t /k!, it is easy to show that the three quantities tend to 0 as N → ∞

for any fixed k, l, and t > 0. On the other hand, applying (2.18), we conclude that, at any time
t > 0,

E nN,N(t) → 1 as N → ∞.

This means that pcoag,N (t) → 1 as N → ∞ at any moment t > 0, which is equivalent to
saying that a strong form of gelation occurs during all time evolutions of the process.

Unlike in our case, the Marcus–Lushnikov process with the N -dependent multiplicative
kernel exhibits gelation only after time t = 1. This fact was proven in [5]. Also, note that in [6]
the aforementioned Marcus–Lushnikov process was represented as a random graph process,
which among other things allowed a version of (2.15) to be obtained for the case considered.
The survey by Aldous [1] enlightens this interesting connection to random graphs. Finally,
we note that a properly time–space rescaled Marcus–Lushnikov CP with multiplicative kernel
converges to a limit process called the standard multiplicative coalescence (see [1]). This fact
facilitates the study of the emergence of the giant cluster. Regarding (2.20), it is in order to
observe that the formulae are not valid in the general case of N -dependent weights ak,N (t).
This can be seen from the derivation of (2.20) (see, e.g. [7]).

Corollary 2.4. (Becker–Döring pure coagulation process.) This CP is a stochastic version of
the Becker–Döring kinetic equations proposed in 1935 to model a variety of phenomena in
which only coagulations with monomers (equivalently, clusters of size 1) are allowed; see, e.g.
[3] for references. Formally,

ψ(i, j) = 0 if min{i, j} > 1.

Clearly, the rates of the process are of the form (2.2) if and only if the function f has the form

f (i) =
{

0 if i > 1,

v > 0 if i = 1,

which leads to the rates

ψ(i, 1) = ψ(1, i) =
{
iv if i > 1,

2v if i = 1.

Correspondingly, (2.3) takes the form

a1,N (t) = e−(N−1)vt , t ≥ 0,

ak,N (t) = (k − 1)v
∫ t

0
e−(N−1)vuak−1,N (u) du, k = 2, . . . , N, t ≥ 0. (2.21)

From (2.10), it is not difficult to show that in the case considered ak,N (t) is a polynomial of
degree k in z(t) = e−(N−1)vt , t ≥ 0:

ak,N (t) =
k∑
i=0

mi,ke
−i(N−1)vt , k = 1, . . . , N, t ≥ 0.
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By (2.4), the coefficients mi,k = mi,k,N are defined recursively by

mi,k = − (k − 1)mi−1,k−1

i(N − 1)
, i = 1, . . . , k, k ≥ 2, m0,k = −

k∑
i=1

mi,k, k ≥ 2,

(2.22)
with the initial conditions

m0,1 = 0, m1,1 = 1, m0,2 = a2,N (∞) = 1

2(N − 1)
, m2,2 = − 1

2(N − 1)
.

The recurrence relation in (2.22) is validated by the induction argument

(k − 1)v
∫ t

0
e−(N−1)vu

(k−1∑
i=0

mi,k−1e−i(N−1)vu
)

du

= (k − 1)v
∫ t

0

( k∑
i=1

mi−1,k−1e−i(N−1)vu
)

du

= (k − 1)v
k∑
i=1

mi−1,k−1

i(N − 1)v
(1 − e−i(N−1)vt )

= ak,N (t), k = 2, . . . , N, t ≥ 0.

Solving (2.22), we find the explicit expressions for the coefficients mi,k:

mk−1,k = 0, k ≥ 1, mk,k = (−1)k−1

k(N − 1)k−1 , k ≥ 1,

mi,k = (−1)i(k − 1)!
i! (N − 1)k−1(k − i)(k − i − 2)! , k − i ≥ 2. (2.23)

Consequently, we see that the probability of appearance of one giant cluster of sizeN appearing
decays ‘almost’ exponentially to 0 as N → ∞ at any time t > 0, i.e.

pcoag,N (t) = N ! aN,N(t) ∼ N !m0,N = (N − 1)!
(N − 1)N−2 ∼ √

2π(N − 1)3/2e−(N−1),

where the first ‘∼’ is due to the last relation in (2.22).
In contrast to the models in Corollaries 2.2 and 2.3, the Becker–Döring CP has a nontrivial

equilibrium distribution (equivalently, measure)µN(η), which is given by the weights ak,N (∞).

We have

a1,N (∞) = 0, ak,N (∞) = m0,k = k − 1

k(N − 1)k−1 , k ≥ 2,

so that

µN(η) = N ! (N − 1)−(N−|η|)
N∏
k=1

(
k − 1

k

)nk 1

nk! , η ∈ �N, (2.24)

with the convention that 00 = 1, where |η| = n1 + · · · + nN is the number of clusters in η. It
follows from (2.24) that µN(η) = 0 for all η = (n1, . . . , nN) ∈ �N with n1 > 0.
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Finally, we derive from (2.24) the conditional distribution, given |η|, at the equilibrium of
the process (equivalently, the microcanonical distribution at equilibrium):

µN(η | |η| = l) = (Bl,N )
−1

N∏
k=1

(
k − 1

k

)nk 1

nk! , η = {(n1, . . . , nN) ∈ �N : |η| = l ≤ N},

where Bl,N = P(|η| = l) is the (l, N) partial Bell polynomial on the set of all partitions of N
with n1 = 0, induced by the weights vk := (k − 1)/k not depending on N.

3. CPs with canonical and microcanonical Gibbs distributions

Distribution (2.1) can be written as

p(η, ρ; t) = CN(t) exp

(
−

N∑
i=1

(−ni log ai,N (t)+ log(ni !))
)
, η ∈ �N, t ≥ 0. (3.1)

This shows that in the context of statistical physics, (2.1) conforms to the canonical Gibbs
distribution with time-dependent potentials Hk of the following special form:

Hk(η; t) = 0, k ≥ 2,

H1(η; t) =
N∑
i=1

(−ni log ai,N (t)+ log(ni !)), η ∈ �N, t ≥ 0.

In the context of stochastic models of coagulation and fragmentation, Gibbs distributions
(2.1) with weights not depending on t and N emerged as early as the 1970s in the works
of Kelly [16] and Whittle [24], devoted to reversible models of clustering at equilibrium.
Vershik (see, e.g. [23]) who intensively studied such Gibbs distributions in the context of
equilibrium models of an ideal gas, called them multiplicative measures. Pitman [21] introduced
Gibbs processes of pure coagulation/fragmentatation on the state space �[N ], which is the set
of all partitions of the set [1, . . . , N], while developing Kingman’s theory of exchangeable
partitons. Unlike in the present paper, Pitman’s definition of the Gibbs process required that
microcanonical (rather than canonical) distributions are Gibbsian at any time t . Such processes
were subsequently extensively studied by Berestecky and Pitman [4], whose main result was
the characterization of the weights of Gibbs fragmentation processes on �[N ]. It turned out
that the time reversal of these processes are CPs with ψ(i, j) = a(i + j) + b. (Note that, for
b �= 0, the latter rates are not of the form (2.1)). Goldschmidt et al. [10] constructed a Gibbs
fragmentation process with weights that does not obey the characterization condition in [4].
This became possible because the constructed process does not possess the mean-field property.
The interplay between the setup when the state space of a CP is set partitions and the setup in
the present paper is discussed in more detail in [4], [12], and [21]. In [12], as a development
of the idea in [14], a characterization of coagulation–fragmentation processes, such that the
induced birth and death processes |X(ρ)N (t)| are time homogeneous, was established. Based
on this, a characterization of coagulation–fragmentation models, possessing time-independent
microcanonical Gibbs distributions P(X(ρ)N (t) = η | |X(ρ)N (t)| = k), was obtained. By [11]
and our theorem, the interrelation between CPs with Gibbsian canonical distributions and
those with time-independent Gibssian microcanonical distributions is as follows. (We note
that Gibbsian canonical distribution induces a Gibbsian microcanonical distribution, the latter
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being in general time dependent.) The CPs with ψ(i, j) = a(i + j), a > 0, are the only
ones that have Gibbsian canonical and time-independent Gibbsian microcanical distributions.
On the other hand, the CPs with ψ(i, j) = a(i + j) + b, a ≥ 0, b > 0 are the only ones
that have non-Gibbsian canonical distributions and time-independent Gibbsian microcanonical
distributions, while the CPs with ψ(i, j) = if (j) + jf (i), when f �= constant are the only
ones having Gibbsian canoninal and time-dependent Gibbsian microcanonical distributions.
In conclusion, we mention a representation of Gibbs distributions (2.1) arising in the field of
random combinatorial structures. In the case when the weights ak,N (t) do not depend on t and
N , the distributions (2.1) depict the distributions of the vectors η = (n1, . . . , nN) ∈ �N of
component counts of random combinatorial structures (see, e.g. [2], [4], [8], [11], and [17]). In
this setup nk stands for the number of nondecomposable components (e.g. cycles in a random
permutation) of size k. A cornerstone fact in the theory of random structures is the representation
of the aforementioned measures via the so-called conditional relation, which proved to be very
useful for problems of asymptotic enumeration. The version of the conditional relation for
time-dependent Gibbs distributions (2.1) reads as follows:

p(η, ρ; t) = P

(
Z1,N (t) = n1, . . . , ZN,N(t) = nN

∣∣∣∣
N∑
k=1

kZk,N (t) = N

)

for η = (n1, . . . , nN) ∈ �N and t ≥ 0. Here {Zk,N(t), k = 1, . . . , N, t ≥ 0} is the
triangular array of Poisson random variables with parametersak,N (t), such that theZk,N(t), k =
1, 2, . . . , N , are independent at any given time t > 0. We note that in our setting

P

( N∑
k=1

kZk,N (t) = N

)
= (N !)−1 exp

(
−

N∑
k=1

ak,N (t)

)
, t > 0.
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