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ON GROWTH-COLLAPSE PROCESSES
WITH STATIONARY STRUCTURE AND
THEIR SHOT-NOISE COUNTERPARTS

OFFER KELLA,∗ The Hebrew University of Jerusalem

Abstract

In this paper we generalize existing results for the steady-state distribution of growth-
collapse processes. We begin with a stationary setup with some relatively general growth
process and observe that, under certain expected conditions, point- and time-stationary
versions of the processes exist as well as a limiting distribution for these processes which
is independent of initial conditions and necessarily has the marginal distribution of the
stationary version. We then specialize to the cases where an independent and identically
distributed (i.i.d.) structure holds and where the growth process is a nondecreasing Lévy
process, and in particular linear, and the times between collapses form an i.i.d. sequence.
Known results can be seen as special cases, for example, when the inter-collapse times
form a Poisson process or when the collapse ratio is deterministic. Finally, we comment
on the relation between these processes and shot-noise type processes, and observe that,
under certain conditions, the steady-state distribution of one may be directly inferred
from the other.
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1. Introduction

In this paper we focus on growth-collapse processes with some general stationary structure.
A growth-collapse process is a process that increases according to some mechanism and from
time to time it is reduced to some (possibly random fraction) of its pre-collapse value. We show
that with relatively general assumptions, the process has a stationary version and also converges
in distribution to the stationary marginal for every initial condition. A simple relationship is
established between the time-stationary distribution and the point-stationary distribution of the
process embedded immediately after collapse times. The processes immediately before and
immediately after collapse epochs are autoregressive processes with random coefficients of the
type considered in [4].

For the case where there is an independent and identically distributed (i.i.d.) structure, more
explicit results are attained and we show how to compute the moments in terms of the various
building blocks of the model. When the growth follows some nondecreasing Lévy process,
the results are even more explicit, particularly when it is linear, as is assumed in most of the
existing literature on growth-collapse models.

We also comment on the relationship between growth-collapse models in general and shot-
noise type processes, which are processes that decay exponentially between shot epochs and
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at these shot epochs jump up by some random amount. These processes can also be viewed as
dam processes with linear release rate, that is, with a release rate which is a constant multiple
of the level.

For recent papers on growth-collapse models and their applications, see [1], [2], [3], [5], [6],
[8], [9], and the references therein.

2. Model description and some preliminaries

Consider a risk-type process called a growth-collapse process where between the (n− 1)th
and nth claims (collapse) premium accumulates (growth) according to some nondecreasing
right-continuous process In = {In(t) | t ≥ 0} with In(0) = 0. The times between claims are
denoted by τ1, τ2, . . . . The remaining funds after a given claim are a random proportion of the
fund before the claim. Denote these random proportions by X1, X2, . . . . Thus, if immediately
before the nth claim the fund level is v then immediately after it, it is vXn, where Xn assumes
values in [0, 1]. Set T0 = 0 and Tn = ∑n

i=1 τi for n ≥ 1 so that N(t) = sup{n ≥ 0 | Tn ≤ t}
is the number of claims by time t . Now, set Yn = In(τn) and note that necessarily Yn ≥ 0. If
V0 is the initial wealth and Vn is the wealth level immediately after the nth claim, then

Vn = (Vn−1 + Yn)Xn,

and, thus,

Vn = V0

n∏
j=1

Xj +
n∑
i=1

Yi

n∏
j=i

Xj .

The wealth level immediately before the nth claim is

Un = Vn−1 + Yn,

and satisfies Un+1 = XnUn + Yn+1. Thus, the sequence of wealth levels immediately before
and immediately after claims are both of the autoregressive type with stochastic coefficients.

Now set W(0) = V0 and let W(t) be the fund level at time t . Then the continuous-time
growth-collapse process is

W(t) = VN(t) + IN(t)+1(t − TN(t)). (1)

3. A stationary setup

In this section we will observe that, under some general stationarity assumptions, a stationary
version of the process embedded immediately before and immediately after collapse is stable
in the sense that it has a stationary version and that it converges in distribution to the one-
dimensional stationary marginal for any initial level.

Theorem 1. Assume that {(Xn, Yn) | n ≥ 1} is a stationary sequence with E Y1 < ∞, that

∞∏
i=1

Xi = 0 almost surely (a.s.), (2)

and that its two-sided extension {(Xn, Yn) | n ∈ Z} satisfies

lim sup
n→∞

( −1∏
i=−n

Xi

)1/n

≤ ρ < 1 a.s. (3)
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Then {Vn | n ≥ 0} has a stationary version {V ∗
n | n ≥ 1} with P[V ∗

n < ∞] = 1 and
Vn − V ∗

n → 0 a.s. for any initial V0.

We note that the result follows directly from [4] when (2) and (3) are replaced by the more
restrictive assumption that {(Xn, Yn) | n ≥ 1} is ergodic with EX1 < 1. In this case, (2)
is automatically satisfied and the limit superior in (3) is actually a limit and is a.s. equal to
exp(E logX1) ≤ EX1 < 1, where log 0 ≡ −∞ and e−∞ ≡ 0.

Proof of Theorem 1. If we show that a stationary version exists then, for any V0, we have

Vn − V ∗
n = (V0 − V ∗

0 )

n∏
i=1

Xi,

and, thus, the result would follow from the fact that
∏∞
i=1Xi = 0 a.s.

To show that a stationary version exists, as in the classical Loynes’ construction, we let
{(Xn, Yn) | n ∈ Z} be the double-sided extension of the original sequence and consider the
process

V ∗
n =

n∑
i=−∞

Yi

n∏
j=i

Xj = V ∗
0

n∏
j=1

Xj +
n∑
i=1

Yi

n∏
j=i

Xj .

Clearly, V ∗
n = (V ∗

n−1 + Yn)Xn for all n ∈ Z. If V ∗−1 is a.s. finite then this would immediately
imply that {V ∗

n | n ≥ 0} is stationary and a.s. finite for every n. Let N be an a.s. finite random
integer such that, for n ≥ N , ( −1∏

i=−n
Xi

)1/n

≤ 1 + ρ

2
.

Then,
−N∑
i=−∞

Yi

−1∏
j=i

Xj ≤
−N∑
i=−∞

Yi

(
1 + ρ

2

)i
≤

−1∑
i=−∞

Yi

(
1 + ρ

2

)i
. (4)

Since E Y1 < ∞, Y1 ≥ 0, a.s., it follows that the right-hand side of (4) has a finite expected
value and is therefore a.s. finite. Since N is a.s. finite, this implies that

∑−1
i=−N+1 Yi

∏−1
j=i Xi

and, hence, V ∗−1 is a.s. finite as well. This completes the proof.

We note that in fact it follows that, under the conditions of Theorem 1, {(V ∗
n−1, Xn, Yn) | n ≥

1} is a stationary sequence and that {(Vn−1, Xn, Yn) | n ≥ 1} converges in distribution to
(V ∗

0 , X1, Y1). Therefore,Un = Vn−1+Yn, the state of the process immediately before collapse,
also has the stationary versionU∗

n = V ∗
n−1 +Yn and converges in distribution toU∗ = V ∗

0 +Y1
for every initial V0.

As for the process {W(t) | t ≥ 0}, we immediately see that if W(0) = V0 and W ′(0) = V ′
0

are two initial conditions, and W(t) and W ′(t) are the resulting processes, then, from (1),

W(t)−W ′(t) = (W(0)−W ′(0))
N(t)∏
i=1

Xi.

Since Tn < ∞ for all n ≥ 0, thenN(t) → ∞ a.s. and, thus, under the conditions of Theorem 1,
we have W(t) −W ′(t) → 0 a.s. as t → ∞. Thus, if W(t) has a limiting distribution, it does
not depend on initial conditions. However, in order to establish time stationarity, we need to
assume a bit more. This is given as follows.
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Theorem 2. Assume that {(Tn,Kn) | n ≥ 1} is an ergodic event-stationary marked point
process with marks

Kn = (Xn, {In(t) | t ≥ 0}),
as well as E τ1 < ∞, EX1 < 1, and E Y1 = E I1(τ1) < ∞. Then {W(t) | t ≥ 0} has a
stationary version and, for every function f which is bounded and Lipschitz continuous on
[0,∞), we have, a.s.,

1

t

∫ t

0
f (W(s)) ds → 1

E τ1
E

∫ τ1

0
f (V ∗

0 + I1(s)) ds a.s. as t → ∞. (5)

Consequently, W(t) converges in distribution to the stationary marginal for any initial W(0).

Proof. Observe that � = {(Tn, (V ∗
n−1, In(·),Xn)) | n ≥ 1} is also an ergodic event-

stationary marked point process and, thus, it has a time-stationary version (e.g. Proposition 4.6
and the preceding paragraph of [10, p. 100]). As in (1), for this time-stationary version, let

W ∗
�(t) = V ∗

N(t) + IN(t)+1(t − TN(t))

and θs� = {(TN(s)+n − s, (V ∗
N(s)+n−1, IN(s)+n(·),XN(s)+n)) | n ≥ 1}.

The existence of a stationary version of {W(t) | t ≥ 0} follows from W� ∼ Wθs� once we
observe that W ∗

θs�
(t) = W ∗

�(s + t). To see this, we first note that

θs(V
∗
n−1 + In(t − Tn)) = V ∗

N(s)+n−1 + IN(s)+n(t − (TN(s)+n − s)), (6)

and then that θsN(t) = N(t + s) − N(s), so that by replacing n on the right-hand side of (6)
with N(t + s)−N(s) we indeed obtain W ∗

θs�
(t) = W ∗

�(s + t).
To proceed, as for (5), we note that

∫ t

0
f (W(s)) ds =

N(t)∑
n=1

∫ τn

0
f (Vn−1 + In(s)) ds +

∫ t−TN(t)

0
f (VN(t) + IN(t)+1(s)) ds.

Ergodicity implies that Tn/n → E τ1 a.s. so that N(t)/t → 1/E τ1 a.s., and in particular
N(t) → ∞. Thus, with supx≥0 |f (x)| = B < ∞,

∣∣∣∣1

t

∫ t−TN(t)

0
f (VN(t) + IN(t)+1(s)) ds

∣∣∣∣ ≤ B
TN(t)+1 − TN(t)

N(t)+ 1

N(t)+ 1

t
→ 0 a.s. as t → ∞.

(7)
Next we observe that if |f (x)− f (y)| ≤ a|x − y| then

∣∣∣∣
N(t)∑
n=1

∫ τn

0
f (Vn−1 + In(s)) ds −

N(t)∑
n=1

∫ τn

0
f (V ∗

n−1 + In(s)) ds

∣∣∣∣ ≤ a

N(t)∑
n=1

|Vn−1 − V ∗
n−1|τn,

and since Vn − V ∗
n → 0 a.s., then

1

t

N(t)∑
n=1

|Vn−1 − V ∗
n−1|τn =

∑N(t)
n=1 |Vn−1 − V ∗

n−1|τn∑N(t)
n=1 τn

TN(t)

t
→ 0 a.s. as t → ∞.
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Finally, by ergodicity,

1

m

m∑
n=1

∫ τn

0
f (V ∗

n−1 + In(s)) ds → E
∫ τ1

0
f (V ∗

0 + I1(s)) ds a.s. as m → ∞,

and, thus,

N(t)

t

1

N(t)

N(t)∑
n=1

∫ τn

0
f (V ∗

n−1 + In(s)) ds → 1

E τ1
E

∫ τ1

0
f (V ∗

0 + I1(s)) ds.

The convergence in distribution follows from the paragraph preceding the statement of the
theorem.

4. The i.i.d. case

Under the conditions of Theorem 2, let {W ∗(t) | t ≥ 0} be the stationary version of
{W(t) | t ≥ 0}. Then f (x) = e−αx is bounded and Lipschitz on [0,∞) for every α ≥ 0.
Thus,

1

t

∫ t

0
e−αW(s) ds → E e−αW ∗(0)

= E

(
exp(−αV ∗

0 )
1

E τ1

∫ τ1

0
exp(−αI1(s)) ds

)
a.s. as t → ∞. (8)

Therefore, if we assume in addition to the conditions of Theorem 2 that {(τn, kn) | n ≥ 1} is
an i.i.d. sequence (and, thus, stationary and ergodic), then the right-hand side of (8) becomes

E exp(−αV ∗
0 )

1

E τ1
E

∫ τ1

0
exp(−αI1(s)) ds,

and, thus, we have the following result.

Corollary 1. Assume that in addition to the conditions of Theorem 2 the sequence

{(τn, kn) | n ≥ 1}
is i.i.d. Then

W ∼ V + Ie,

where V and Ie are independent, W ∼ W ∗(0), V ∼ V ∗
0 , and Ie is a random variable having

distribution

P[Ie ∈ A] = 1

E τ1
E

∫ τ1

0
1A(I1(s)) ds.

Moreover, if τ1 and {I1(t) | t ≥ 0} are independent, then letting τe denote an independent
random variable having stationary excess lifetime distribution associated with τ1 we have
Ie ∼ I1(τe).

We note that the last part of Corollary 1 is easily obtained by first conditioning on {I1(t) | t ≥
0} and then applying the well-known property of the stationary excess lifetime distribution,
according to which

E g(τe) =
∫ ∞

0
g(s)

P[τ1 > s]
E τ1

ds = 1

E τ1
E

∫ τ1

0
g(s) ds

for any (Borel) function g for which this expected value is well defined.
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We also observe that, for the well-studied case where τ1 has an exponential distribution,
τe ∼ τ1 and, thus, we see, as expected by PASTA (Poisson arrivals see time averages), that
W has the same distribution as V + I1(τ1), which has the steady-state distribution of the level
immediately before collapse, that is, immediately before the Poisson arrivals.

As V ∼ (V + Y )X, we also have the following trivial consequence (similarly as in [2] and
[5], but here with a more general growth process and/or inter-collapse times).

Corollary 2. If in addition to Corollary 1 we assume that X1, {I1(t) | t ≥ 0}, and τ1 are
independent, then letting Z̃(α) = E e−αZ and FZ(x) = P[Z ≤ x] for some nonnegative
random variable Z we have

Ṽ (α) =
∫

[0,1]
Ṽ (αx)Ỹ (αx)FX(dx).

In particular, if P[X = q] = 1 for some 0 < q < 1 then

Ṽ (α) = Ṽ (qα)Ỹ (qα) =
∞∏
i=1

Y (qiα).

Assume now that the {τn | n ≥ 1} are independent and that, independent from this sequence,
{I (t) | t ≥ 0} is a subordinator, that is, a nondecreasing Lévy process with exponent

−η(α) = − log E e−αI (1) = cα +
∫
(0,∞)

(1 − e−αx)ν(dx),

where c ≥ 0 and ν is a Lévy measure satisfying
∫
(0,∞)

min(x, 1)ν(dx) < ∞. Then, with
Ii(t) = I (t − Ti−1), all of the conditions of Corollary 1 are satisfied. Therefore,

E exp(−αIe) = E exp(−αI1(τe)) = E exp(−η(α)τe) = 1 − E exp(−η(α)τ1)

η(α)E τ1
.

In particular, since E I1(t) = η′(0)t and var(I1(t)) = −η′′(0)t , then

E Ie = η′(0)E τe = η′(0)
E τ 2

1

2 E τ1

when E τ 2
1 < ∞ and η′(0) < ∞. When E τ 3

1 < ∞ and −η′′(0) < ∞,

var(Ie) = E(−η′′(0)τe)+ var(η′(0)τe) = −η′′(0)E τe + (η′(0))2 var(τe),

so that

E I 2
e = −η′′(0)E τe + (η′(0))2 E τ 2

e = −η′′(0)
E τ 2

1

2 E τ1
+ (η′(0))2

E τ 3
1

3 E τ1
.

It is noted that η′(0) = c + ∫
(0,∞)

xν(dx) and, for n ≥ 2,

η(n)(0) = (−1)n−1
∫
(0,∞)

xnν(dx),

finite or infinite.
For the special case where I (t) = ct , we have η(α) = cα, so that η′(0) = c and η(n)(0) = 0

for n ≥ 2. Here Ie = cτe and, thus,

E Ine = c
E τn+1

1

(n+ 1)E τ1
.
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5. Moments for the i.i.d. case

In this section we show how to compute all existing moments in the i.i.d. case. Even though
it is straightforward, it is given for ease of reference. SinceW ∼ V + Ie, then, for every n ≥ 1
such that EV n < ∞ and E Ine < ∞,

EWn =
n∑
k=0

(
n

k

)
EV k E In−ke , (9)

and, thus, whenever it is possible to compute the moments of V and Ie, there is a simple formula
for the computation of the moments of W .

When {I1(t) | t ≥ 0} is a subordinator, then E Ine is an expression involving {η(k)(0) | 1 ≤
k ≤ n} and {E τ k1 | 1 ≤ k ≤ n + 1}. An example of the first two moments was given in the
previous section for a general subordinator and for all moments when I1(t) = ct .

In order to compute moments for V , we assume that X1, τ1, and {I1(t) | t ≥ 0} are
independent, and we recall thatV ∼ (V+Y )X, whereV , Y , andX are independent, Y ∼ I1(τ1),
and X ∼ X1. Then it is clear that, when E Yn < ∞,

EV n = EXn
n∑
k=0

(
n

k

)
EV k E Yn−k,

and, thus,

EV n = EXn

1 − EXn

n−1∑
k=0

(
n

k

)
EV k E Yn−k,

so that moments can be computed recursively provided that the moments of Y can be computed.
For example,

EV = EX

1 − EX
E Y

and

EV 2 = EX2

1 − EX2

(
E Y 2 + 2

EX

1 − EX
(E Y )2

)
.

For the case of a subordinator, E Y = η′(0)E τ1 and

var(τ ) = −η′′(0)E τ1 + (η′(0))2 var(τ1),

so that

E Y 2 = −η′′(0)E τ1 + (η′(0))2 E τ 2
1 .

For the linear case, of course, E Yn = c E τn1 for all n ≥ 1.
Since the stationary distribution of the level immediately before a collapse is distributed

like V + Y , then moments for V + Y are given via (9), where Ie is replaced by Y . For the
well-studied case where τ1 is exponential, we have in fact Ie ∼ Y and, thus, in this case it
follows that the moments of V +Y coincide with those ofW , as expected and discussed earlier.
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6. The relation with shot-noise type processes

Here we point out a connection between growth-collapse processes and shot-noise type pro-
cesses for the case where theXi do not have an atom at zero and − E logXi < ∞. Without these
assumptions, this relation is either not valid or useless. In particular, if we let ξi = −r−1 logXi
for some r > 0, S0 = 0, Sn = ∑n

i=1 ξi for n ≥ 1, and M(t) = sup{n ≥ 0 | Sn ≤ t},
then with Yi as defined before, the process

Z(t) = Z(0)e−rt +
M(t)∑
n=1

Yi exp(−r(t − Si))

is a shot-noise type process which is also the unique solution of

Z(t) = Z(0)+
M(t)∑
i=1

Yi − r

∫ t

0
Z(s) ds,

where an empty sum is defined to be 0. It is easy to check that at jump epochs, the level of this
process immediately before or after a jump has the same dynamics as the process {Vn | n ≥ 0}
or, respectively, {Vn + Yn | n ≥ 0}, and, thus, the same stationary version. Therefore, the
stationary behavior of the continuous-time process can be inferred from a similar averaging
principle as for the growth-collapse process. That is, the stationary Laplace–Stieltjes transform
(LST) is given by

E
∫ ξ1

0 exp(−α(V ∗
0 + Y1)e−rt ) dt

E ξ1
= E

∫ ∞
0 exp(−α(V ∗

0 + Y1)e−rt ) 1{X1≤e−rt } dt

E
∫ ∞

0 1{X1≤e−rt } dt
,

which in the i.i.d. case, via the change of variables e−rt = x, becomes

∫ 1

0
Ṽ (αx)Ỹ (αx)

FX(x)

x
dx

/ ∫ 1

0

FX(x)

x
dx.

In particular, when Ii(t) = ct , E τ1 < ∞ and EXi < 1. Then the conditions and, therefore,
the conclusions of Theorem 5.1 and Theorem 5.2 of [7] are met and it follows that the
stationary densities fGC and fSN for the growth-collapse process and of the shot-noise process,
respectively, exist and satisfy the relation

cfGC(x)E τ1 = rxfSN(x)E ξ1.

Therefore, if, for i = GC,SN and α ≥ 0, we denote by ψi(α) = ∫ ∞
0 e−αxfi(x) dx the

associated LSTs, then we have

cψGC(α)E τ1 = −rψ ′
SN(α)E ξ1.

From this relationship between the two distributions, it follows that if we letµGC(n) andµSN(n)

be the nth moments of the stationary distribution of the growth-collapse and shot-noise models,
respectively, then these moments satisfy

cµGC(n)E τ1 = rµSN(n+ 1)E ξ1.
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In particular, the stationary expected value for the shot-noise process is given by

µSN(1) = c E τ1

r E ξ1
,

without any further conditions. For higher moments, more assumptions are needed, of course,
as discussed earlier in this paper.
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