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COVER TIMES AND GENERIC CHAINING
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Abstract

A recent result of Ding, Lee and Peres (2012) expressed the cover time of the random
walk on a graph in terms of generic chaining for the commute distance. Their argument
is based on Dynkin’s isomorphism theorem. The purpose of this article is to present an
alternative approach to this problem, based only on elementary hitting time estimates and
chaining arguments.
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1. Introduction

Let (Xn)n≥0 be an irreducible Markov chain on some state space M . Given A ⊂ M , let

T (A) = inf{n ≥ 0 : Xn ∈ A}
be the first time the chain hits A and let

Tcov(A) = sup
x∈A

T (x)

be the first time the chain X has visited every point of A. The cover time of A is, by definition,

cov(A) = sup
x∈A

(ExTcov(A)),

where Ex stands for conditional expectation given X0 = x (similarly, Px stands for conditional
probability given X0 = x). To avoid trivial situations, the chain is assumed to be positive
recurrent throughout so that cov(A) < +∞ if and only if A is finite.

Using the strong Markov property it is easily seen that, given x, y, and z in M ,

ExT (y) + EyT (z)

is the expectation (under Px) of the first time that the chain has visited y and z (in this order).
This implies that

ExT (y) + EyT (z) ≥ ExT (z).

Therefore, the commute time

d(x, y) = ExT (y) + EyT (x)

is a distance on M . This article deals with a problem dating back at least as far as [6]: can
cov(A) be estimated in terms of the metric properties of (A, d)? An arguably definitive answer
to this question has recently be given by Ding et al. [3]; their result is expressed in terms of
generic chaining.
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1.1. The generic chaining

Estimating the supremum of a Gaussian process (Ys)s∈S boils down to understanding the
metric space (T , d), where d(s, t) = (E(Ys − Yt )

2)1/2 is the L2 distance. This idea dates back
to Kolmogorov (see [7]). Thanks to the works of Dudley, Fernique, and Talagrand (see [7]
and references within), to name only the most important contributors, this idea has become a
well-understood theory usually referred to as generic chaining. Let us describe it briefly and
refer to [7] for details.

Throughout this article, we let (Nn)n≥0 be the following sequence of integers:

N0 = 1, Nn = 22n

, n ≥ 1. (1)

Given a set S, a sequence (An)n≥0 of partitions of S is called admissible if An+1 is a refinement
of An and if |An| ≤ Nn for every n ≥ 0, where |An| is just the cardinality of An. The cardinality
condition implies, in particular, that A0 = {S}. Given a sequence of partitions (An)n≥0 of S

and s ∈ S we let An(s) be the only element of An containing s.

Definition 1. Let (S, d) be a metric space. Set

γ2(S, d) = inf

[
sup
s∈S

(+∞∑
n=0

2n/2�(An(s), d)

)]
,

where the infimum is taken over all admissible partitions (An)n≥0 of S, and �(A, d) denotes
the diameter of A.

Recall that a Gaussian process is a family (Ys)s∈S of random variables such that every linear
combination of the variables Ys is Gaussian. The process is said to be centered if EYs = 0 for
every s. The fundamental result of Talagrand [7, Theorem 2.1.1] is as follows.

Theorem 1. Let (Ys)s∈S be a centered Gaussian process. Then

1

L
γ2(S, d) ≤ E sup

s∈S

Ys ≤ Lγ2(S, d), (2)

where L is a universal constant and d is the following distance on S:

d(s, t) =
√

E(Ys − Yt )2. (3)

The upper bound is not specific to Gaussian processes, it applies to any centered process
(Ys)s∈S satisfying

P(Ys − Yt ≥ u) ≤ e−u2/2d(s,t)2
, (4)

for all s, t ∈ S, for all u > 0, and for some distance d. Using a union bound it is not hard to
see that a centered process for which (4) holds satisfies

E sup
s∈A

Ys ≤ C
√

log|A| max
s,t∈A

d(s, t), (5)

for every finite subset A of S. The proof of the upper bound of (2) consists of applying this
union bound repeatedly and at different scales.

The lower bound is another story; it is specific to Gaussian processes and much more difficult
to prove. Roughly speaking, the argument relies on two properties: the concentration of the
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Gaussian measure and the Sudakov inequality. Let us state the latter; if (Ys)s∈S is a centered
Gaussian process then, for all finite subsets A of S,

E sup
s∈A

Ys ≥ c
√

log|A| min
s �=t∈A

d(s, t), (6)

where c is a universal constant and d is the L2 distance (3).

1.2. The Ding et al. [3] theorem

Cover times satisfy inequalities analogous to (5) and (6) due to Matthews [6]: for any finite
subset A of M , we obtain

cov(A) ≤ (1 + log|A|) max
x,y∈A

(ExT (y)), cov(A) ≥ log|A| min
x �=y∈A

(ExT (y)).

In view of these inequalities it seems natural to conjecture that the correct order of magnitude
for cov(A) is

γ1(A, d) = inf

[
sup
x∈A

(+∞∑
n=0

2n�(An(x), d)

)]
,

rather than γ2(A, d) (recall that d is the commute distance d(x, y) = ExT (y)+EyT (x)). This
is not quite correct. Here is the result of Ding et al. [3, Theorem 1.9].

Theorem 2. If the Markov chain (Xn)n≥0 is reversible (and if the state space M is finite) then

1

L
[γ2(M,

√
d)]2 ≤ cov(M) ≤ L[γ2(M,

√
d)]2,

for some universal constant L.

Remark 1. Actually the inequality in Theorem 2 remains valid when M is infinite. Indeed,
since d(x, y) ≥ 1 when x �= y, we then have γ2(M,

√
d) = +∞.

The correct order of magnitude γ2(M,
√

d)2 is comparable to our wrong guess: clearly

γ1(M, d) ≤ [γ2(M,
√

d)]2.

1.3. Purpose of the present article

The proof of Theorem 2 is very involved. In particular, it relies on Dynkin’s isomorphism
theorem which makes a connection between local times of the chain and the Gaussian free field
associated to the chain. It may be interesting to have a simpler proof relying only on elementary
hitting time estimates and on Talagrand’s generic chaining. The purpose of this article is to
provide such a proof.

Unfortunately, we fail to recover the whole of Theorem 2; here is what we prove.

Theorem 3. If (Xn)n≥0 is irreducible and positive recurrent, then

cov(M) ≤ L[γ2(M,
√

d)]2, (7)

for some universal constant L. More generally, we have

cov(A) ≤ L[γ2(A,
√

d)]2, (8)

for every subset A of M .
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Inequality (7) is slightly stronger than the upper bound of Theorem 2 since the chain is no
longer assumed to be reversible. Besides, it is not clear whether the approach of Ding et al. [3]
yields (8).

Theorem 4. If, in addition, the chain (Xn)n≥0 is reversible then

γ1(M, d) ≤ L cov(M), (9)

where L is a universal constant. Again, we actually have

γ1(A, d) ≤ L cov(A),

for every A ⊂ M .

Remark. The reversibility assumption is necessary. Indeed, consider the discrete torus ZN

and the Markov kernel given by

P(x, x + 1) = 1, for all x ∈ ZN.

Clearly, d(x, y) = N for all x �= y, which implies that

γ1(T , d) ≈ N log(N).

On the other hand, Tcov(ZN) = N almost surely (whatever the starting point).

Since γ1(M, d) ≤ [γ2(M,
√

d)]2, (9) is weaker than the lower bound of Theorem 2. Let us
comment a little bit more on this. In order to compute γ1(M, d), we can restrict to partitions
(An)n≥0 satisfying

An = {{x}, x ∈ M},
for n ≥ k, where k is the only integer satisfying

Nk−1 < |M| ≤ Nk.

Then by convexity we get

( ∞∑
n=0

2n/2
√

�(An(x), d)

)2

=
( k∑

n=0

2n/2
√

�(An(x), d)

)2

≤ (k + 1)

∞∑
n=0

2n�(An(x), d),

for every x ∈ M , yielding

[γ2(M,
√

d)]2 ≤ C log(log|M|)γ1(M, d),

for some universal C (provided that |M| ≥ 3). Therefore, the estimate (9) differs from the
correct order of magnitude by at most a factor of log(log|M|). This is sharp; there is a Markov
chain for which the gap is indeed log(log|M|) (see Appendix A).
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2. The upper bound

Since (Xn)n≥0 is an irreducible, positive recurrent Markov chain, there is a unique invariant
probability measure which we denote by π . The purpose of this section is to bound

E sup
x∈M

T (x)

through a chaining argument. Since no estimate such as (4) is available for hitting times, the
chaining procedure will be different from Talagrand’s, and is taken from [2] and [4].

We need some more notation. Let

T 0(x) = 0, T k(x) = inf(n ≥ T k−1(x) + 1, Xn = x), for all k ≥ 1.

When the chain starts from x, the variable T k(x) is just the kth return time to x. Also, let

Nk =
k−1∑
n=0

δXn

be the empirical measure of the chain X. In other words, Nk(x) is the number of visits to x

before time k.
The following deviation estimate is due to Kahn et al. [4, Lemma 5.2].

Lemma 1. Let x �= y in M . Then, for every ε > 0 and for every integer k,

Px

(
NT k(x)(y) ≤ (1 − ε)

kπ(y)

π(x)

)
≤ exp

[
− ε2k

4π(x)d(x, y)

]
.

Let us sketch the argument we use to prove this result. Because of the strong Markov
property, under Px the variables

(NT i(x)(y) − NT i−1(x)(y))i≥1

are independent and identically distributed. And it is a standard fact (see, for instance, [1,
Chapter 2]) that their law is geometric: for every integer r

Px(NT 1(x)(y) ≥ r) = pxy(1 − pyx)
r ,

where

pxy = Px(T (y) ≤ T 1(x)) = 1

π(x)d(x, y)
.

Therefore, Lemma 1 is a Hoeffding-type estimate for sums of independent geometric variables.
We refer to [4] for the details.

Our next result is taken from Barlow et al. [2, p. 336].

Lemma 2. Let A be a finite subset of M , let z ∈ A, and let k be an integer. Then

EzTcov(A) ≤ EzT
k(z)

Pz(Tcov(A) ≤ T k(z))

= k

π(z)Pz(Tcov(A) ≤ T k(z))
.
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Proof. Let
N = inf(n ≥ 1, Tcov(A) ≤ T nk(z)).

Then, by Wald’s identity,

EzTcov(A) ≤ EzT
Nk(z) = Ez(N)EzT

k(z).

On the other hand, if N is larger than n then the walk fails to cover A during any of the
following intervals of time:

[0, T k(z)), [T k(z), T 2k(z)), . . . , [T (n−1)k(z), T nk(z)),

so that
Px(N > n) ≤ Pz(Tcov(A) ≥ T k(z))n.

The result follows.

Barlow et al. [2] combined these two lemmas with a nice chaining argument. Although it
is not written this way, their result is essentially the Dudley version of Theorem 3 [7, Theorem
1.2.1], i.e.

cov(M) ≤ L

( ∞∑
n=0

en(M,
√

d)2n/2
)2

,

where
en(M,

√
d) = inf

A

(
sup
x∈M

√
d(x, A)

)

(the infimum is taken over all subsets A of M satisfying |A| ≤ Nn). This is weaker than
Theorem 3. Indeed, swapping the supremum and the sum in the definition of γ2, it is easily
seen that

γ2(M,
√

d) ≤ C

∞∑
n=0

en(M,
√

d)2n/2,

for some universal constant C. We show that it is possible to modify the chaining argument in
Barlow et al. [2] to obtain Theorem 3.

Let z, x, and y be in M such that x �= y and let k and l be two integers larger than 1. Observe
that

Pz(T
l(y) > T k(x)) = Pz(NT k(x)(y) ≤ l − 1)

≤ Pz(NT k(x)(y) − NT 1(x)(y) ≤ l − 1)

= Px(NT k−1(x)(y) ≤ l − 1).

The last equality is a consequence of the strong Markov property. If (l − 1)/π(y) < (k −
1)/π(x), applying Lemma 1 to k − 1, l − 1, and

ε = 1 − (l − 1)π(x)

(k − 1)π(y)
,

gives

Pz(T
l(y) > T k(x)) ≤ exp

[
−

(
k − 1

π(x)
− l − 1

π(y)

)2/
4d(x, y)

k − 1

π(x)

]
. (10)
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This will be our key estimate. Lastly, we shall use the following elementary fact: if x and y

are distinct elements of M then

1

π(x)
= ExT

1(x) ≤ ExT (y) + EyT (x) = d(x, y).

Let us reformulate Theorem 3.

Proposition 1. Let A ⊂ M , let z ∈ A, and let (An)n≥0 be an admissible sequence of partitions
of A. Then

Ez(Tcov(A)) ≤ L

(
sup
x∈A

∞∑
n=0

2n/2
√

�(An(x))

)2

.

Recall that An(x) denotes the only element of An containing x. Also, � denotes the diameter
with respect to the commute distance.

Proof. Let t0(A) = z, and for each n and for each B ∈ An let tn(B) be an arbitrary element
of B. Given x ∈ A, we let xn = tn(An(x)). We can assume that A is finite and that

An = {{x}, x ∈ A}
for n large enough (the right-hand side of the desired inequality is equal to +∞ otherwise).
Therefore, xn = x eventually. Let

rn(x) = sup
y∈An(x)

+∞∑
k=n

2k/2
√

�(Ak(y))

and
kn(x) = �34π(xn)rn(x)r0(x)� + 1,

where �r� denotes the integer part of r . Observe that rn(x) and kn(x) depend only on An(x).
In particular, k0(x) depends on nothing. Also,

rn(x) − rn+1(x) ≥ 2n/2
√

�(An(x))

≥ 2n/2
√

d(xn, xn+1).

We claim that, for every x and n,

Pz(T
kn+1(x)(xn+1) > T kn(x)(xn)) ≤ e−2n+3 ≤ 1

Nn+3
. (11)

Indeed, if xn = xn+1 then kn+1(x) ≤ kn(x) and the inequality is trivial. Otherwise, write

kn(x) − 1

π(xn)
− kn+1(x) − 1

π(xn+1)
≥ 34(rn(x) − rn+1(x))r0(x) − 1

π(xn)

≥ 34 · 2n/2
√

d(xn, xn+1)r0(x) − 1

π(xn)
.

Since xn �= xn+1 and
√

d(xn, xn+1) ≤ r0(x), we have

1

π(xn)
≤ √

d(xn, xn+1)r0(x).
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Therefore,

kn(x) − 1

π(xn)
− kn+1(x) − 1

π(xn+1)
≥ (34 · 2n/2 − 1)

√
d(xn, xn+1)r0(x)

≥ 33 · 2n/2
√

d(xn, xn+1)r0(x).

Also,
kn(x) − 1

π(xn)
≤ 34rn(x)r0(x) ≤ 34r0(x)2.

Since 332/(4 · 34) ≥ 23, combining (10) with the last two inequalities yields (11).
The number of possible couples (xn, xn−1) is at most NnNn+1. Recall the definition (1)

of Nn and observe that N2
n ≤ Nn+1 for all n. A union bound shows that the probability that

there exists x and n such that

T kn+1(x)(xn+1) ≥ T kn(x)(xn)

is at most ∑
n≥0

NnNn+1

Nn+3
≤

∑
n≥0

1

Nn+2
≤

∑
n≥4

2−n = 1
8 .

Therefore, with a probability of at least 7
8 , we have

T kn+1(x)(xn+1) ≤ T kn(x)(xn),

for all x and n; hence,

T kn(x)(xn) ≤ T k0(x)(x0) = T k0(z).

Since xn = x for n large enough and kn(x) ≥ 1, we obtain

for all x ∈ A, T (x) ≤ T k0(z),

with a probability of at least 7
8 . In other words,

Pz(Tcov(A) ≤ T k0(z)) ≥ 7
8 .

Together with Lemma 2, we get

EzTcov(A) ≤ 8k0

7π(z)
≤ 8

7

(
34r2

0 + 1

π(z)

)
.

Unless A = {z}, in which case cov(A) = 0 and there is nothing to prove, we have 1/π(z) ≤
�(A) ≤ r2

0 . Therefore,

EzTcov(A) ≤ 8 · 35

7

(
sup
x∈A

∞∑
n=0

2n/2
√

�(An(x))

)2

,

which is the required result.
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3. The lower bound

We start this section with another definition; given A ⊂ M let

cov−(A) = min
x∈A

ExTcov(A), cov+(A) = max
x∈A

ExTcov(A).

Note that the cover time of A, which was previously denoted by cov(A), is now denoted by
cov+(A) to avoid confusion with cov−(A). In this section we prove the following result.

Proposition 2. Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain on a discrete
state space M . If the chain is reversible then, for every finite subset A of M ,

γ1(A, d) ≤ L(cov−(A) + �(A, d)),

where L is a universal constant.

Remarks. (i) This result yields Theorem 4 since, clearly,

cov−(A) ≤ cov+(A), �(A, d) ≤ cov+(A).

(ii) The term �(A, d) cannot be removed from the inequality. Indeed, if M = {0, 1} and the
transitions are given by the matrix (

ε 1 − ε

ε 1 − ε

)
,

then

γ1(M, d) ≥ �(M, d) = 1

ε(1 − ε)
;

whereas cov−(M) = min(1/ε, 1/(1 − ε)).

3.1. Talagrand’s growth condition

Recall the majorizing measure theorem, Theorem 1 If (Ys)s∈S is a centered Gaussian process
then

γ2(S, d) ≤ LE sup
s∈S

Ys,

where d is the L2 distance (3). The proof of this result consists of showing (using Gaussian
concentration and Sudakov’s inequality) that the functional

A → E sup
s∈A

Ys

satisfies an abstract growth condition, and that such functionals dominate γ2. Here is the
definition of the growth condition adapted to the γ1 situation (rather than γ2).

Definition 2. (Growth condition.) Let (M, d) be a metric space. A functional F : P (M) →
R+ is said to satisfy the growth condition with parameters r > 1 and τ ∈ N if, for every
step n ∈ N and every scale a > 0, the followings holds. Let m = Nn+τ ; for every sequence
H1, . . . , Hm of nonempty subsets of M satisfying

1. �(
⋃

i≤m Hi) ≤ ra,

2. d(Hi, Hj ) ≥ a, for all i �= j ,
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3. �(Hi) ≤ a/r , for all i,

we have

F

(⋃
i≤m

Hi

)
≥ a2n + min

i≤m
F(Hi).

Theorem 5. If F is nondecreasing for the inclusion and satisfies the growth condition with
parameters r and τ then

γ1(M, d) ≤ L2τ (�(M, d) + rF (M)),

where L is a universal constant.

We refer to [7, Section 1.3] for a proof of this theorem. The purpose of the rest of this section
is to show that the functional

A → cov−(A)

is nondecreasing and satisfies the growth condition on (M, d) (where d is the commute distance)
with universal parameters τ and r .

Lemma 3. The functional A → cov−(A) is nondecreasing for the inclusion.

Proof. We use the strong Markov property. The shift operator is denoted by σ , i.e. for every
integer k

σk(X0, X1, . . . ) = (Xk, Xk+1, . . . ).

Let A ⊂ B and let x ∈ B. Then

Tcov(B) ≥ T (A) + Tcov(A) ◦ σT (A).

In words: at time T (A) the chain has yet to visit every point of A\{XT (A)}. By the strong
Markov property

ExTcov(B) ≥ ExT (A) + Ex[EXT (A)Tcov(A)]
≥ ExT (A) + cov−(A)

≥ cov−(A),

which is the required result.

3.2. Variations on Matthews’ bound

The following result is due to Matthews [6, Theorem 2.6].

Lemma 4. Let A be a finite subset of M , let a > 0, and assume that ExT (y) ≥ a for every
x �= y in A. Then

cov−(A) ≥ a

|A|−1∑
k=1

1

k
≥ a log(|A|).

Proof. Let x ∈ A. Assuming that |A| ≥ 2 (otherwise the result is trivial) we have

∑
y∈A, y �=x

Px(Tcov(A) = T (y)) = 1.
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So there exists y ∈ A such that

Px(Tcov(A) = T (y)) ≥ 1

|A| − 1
. (12)

Let A′ = A\{y}, let S = Tcov(A
′), and let T = Tcov(A). Clearly,

T = S + (T (y) ◦ σS) 1{S<T (y)},

where 1{·} is the indicator function. By the strong Markov property,

ExT = ExS + Ex[(EXS
T (y)) 1{S<T (y)}].

On the event {S < T (y)} the point XS is an element of A different from y. Therefore,
EXS

T (y) ≥ a. Together with (12) we obtain

ExTcov(A) ≥ ExTcov(A
′) + a

|A| − 1
.

An obvious induction on |A| finishes the proof.

The following lemma is proved the same way.

Lemma 5. Let H1, . . . , Hm be nonempty subsets of M satisfying

ExT (y) ≥ a, for all (x, y) ∈ Hi × Hj , for all i �= j.

Then, for all x ∈ ⋃
i≤m Hi ,

Ex max
i≤m

T (Hi) ≥ a log(m).

An additional application of the strong Markov property yields the following refinement of
Lemma 5.

Proposition 3. Let H1, . . . , Hm be nonempty subsets of M satisfying ExTy ≥ a, for all (x, y) ∈
Hi × Hj , for all i �= j . Then

cov−
(⋃

i≤m

Hi

)
≥ a log(m) + min

i≤m
cov−(Hi). (13)

Proof. Let x ∈ ⋃
i≤m Hi . Let S = maxi≤m T (Hi) and T = Tcov(

⋃
i≤m Hi). If S = T (Hi)

then at time S the chain has yet to visit every point of Hi\{XS}. Therefore,

T ≥ S +
m∑

i=1

(Tcov(Hi) ◦ σS) 1{S=T (Hi)} .

Using the strong Markov property, we get

ExT ≥ ExS +
m∑

i=1

Ex[(EXS
Tcov(Hi)) 1{S=T (Hi)}]

≥ ExS + min
i≤m

cov−(Hi).

Together with the previous lemma we get the result.
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We are close to the desired growth condition. We would like to obtain the inequality (13)
under the weaker hypothesis

d(x, y) = ExT (y) + EyT (x) ≥ a, for all x, y ∈ Hi × Hj , i �= j.

This is done in the next subsection. Roughly speaking, reversibility insures that, for a reasonable
proportion of x and y, the hitting times ExT (y) and EyT (x) are of the same of order of
magnitude.

3.3. Reversibility

Again, this part of the argument is taken from [4]. We start with a simple lemma concerning
directed graphs. Given a directed graph G = (V , E), a path of G is a sequence x1, . . . , xm of
vertices satisfying (xi, xi+1) ∈ E for i ≤ m. The length of such a path is defined to be m. An
independent set is a subset A of V satisfying (x, y) /∈ E for all x, y in A.

Lemma 6. If every path of G has length of at most m then G has an independent set of
cardinality of at least |V |/m.

This is a standard result, but we still sketch the argument used in the proof. It is easy to
show by induction on m that G is then m-colorable: it is possible to map the vertices of G to
{1, . . . , m} in such a way that connected points have different images. Then, by the pigeon hole
principle, at least |V |/m vertices have the same image, which is the result.

From now on, the chain (Xn)n≥0 is assumed to be reversible. Consequently, we have the
following commuting property for hitting times.

Lemma 7. For every sequence x1, . . . , xm of elements of M we have

Ex1T (x2) + · · · + Exm−1T (xm) + ExmT (x1)

= Ex1T (xm) + ExmT (xm−1) + · · · + Ex2T (x1).
(14)

We refer to [5, Lemma 10.10] for a proof.

Corollary 1. Let A be a subset of M and a > 0. If �(A, d) ≤ 16a and if d(x, y) ≥ a for all
x �= y in A, then there exists a subset A′ of A satisfying

• |A′| ≥ |A|/33,

• ExT (y) ≥ a/4 for all x �= y in A′.

Proof. We define a graph G with vertex set A by saying that the edge (x, y) is present if
x �= y and ExT (y) ≤ a/4. Let x1, . . . , xm be a path of G. Then the inequalities

Exi
T (xi+1) ≤ a

4
, Exi+1T (xi) ≥ 3a

4

and (14) give
(m − 1)a

4
+ ExmT (x1) ≥ 3(m − 1)a

4
+ Ex1T (xm).

Together with the bound on the diameter of A, we obtain m − 1 ≤ 32. Therefore, G has an
independent set of cardinality at least |A|/33. This is our set A′.
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3.4. The growth condition for the cover time

Proposition 4. The functional A → cov−(A) satisfies the growth condition with parameters
r = 16 and τ = 5.

Proof. Let n ∈ N, a > 0, and m = Nn+5. Let H1, . . . , Hm satisfy

1. �(
⋃

i≤m Hi) ≤ 16a,

2. d(Hi, Hj ) ≥ a, for all i �= j ,

3. �(Hi) ≤ a/16, for all i ≤ m.

Let x1, . . . , xm belong to H1, . . . , Hm, respectively. By the first two properties and Corollary 1,
there exists a subset I of {1, . . . , m} satisfying

• |I | ≥ m/33,

• Exi
T (xj ) ≥ a/4, for every i �= j in I .

Let i �= j in I and let (x, y) ∈ Hi × Hj . Then

ExT (y) ≥ Exi
T (xj ) − Exi

T (x) − EyT (xj ) ≥ a

4
− a

16
− a

16
= a

8
.

Proposition 3 gives

cov−
(⋃

i∈I

Hi

)
≥ a

8
log(|I |) + min

i∈I
cov−(Hi).

Since

|I | ≥ Nn+5

33
≥ Nn+5

N3
≥ Nn+4 ≥ e8·2n

,

we obtain

cov−
(⋃

i≤m

Hi

)
≥ a2n + min

i≤m
cov−(Hi),

which is the result.

Now, by Theorem 5 we obtain

γ1(M, d) ≤ L(cov−(M) + �(M, d)).

Obviously we can replace M by any subset A of M in this inequality: if a functional F satisfies
the growth condition on (M, d) then it also satisfies it on (A, d).

Appendix A. The log(log(|M|)) gap

We have seen in Section 1 that, for any metric space (M, d),

[γ2(M,
√

d)]2 ≤ C log(log|M|)γ1(M, d). (15)

We show in this appendix that this is sharp and that the example saturating the inequality can be
chosen to be the state space of a reversible Markov chain equipped with the commute distance.
The example is taken from [4] and was pointed out to the author by James Lee.
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Let M be a rooted tree of depth D (large enough) satisfying

• nodes at depth i ≤ D − 1 have Ni + 1 children,

• edges between depth i and depth i + 1 have multiplicity 2i ,

and let X be the random walk on this graph. The stationary measure is given by π(x) = d(x)/2E

for every x, where d(x) is the number of edges (counted with multiplicity) starting from x and
E is the total number of edges. Also, π is reversible. Let us compute the commute distance d.
Because of the tree structure it is easily seen that

d(x, y) =
n−1∑
i=0

d(xi, xi+1), (16)

where x0, . . . , xn is the shortest path from x to y. Therefore, it is enough to compute d(x, y)

when x and y are neighbors, in which case we use the following formula:

Px(T (y) < T 1(x)) = 1

π(x)d(x, y)

(see [1]). Because of the tree structure, Px(T (y) < T 1(x)) is just the transition probability
from x to y. We obtain

d(x, y) = 2E · 2−i ,

when (x, y) is an edge between depth i and depth i + 1. When x and y are any two nodes
of M , (16) then implies that

E · 2−i+1 ≤ d(x, y) ≤ E · 2−i+3, (17)

where i is the depth of their closest common ancestor.

Proposition 5. There is a universal constant C such that

DE

C
≤ γ1(M, d) ≤ CDE, (18)

D
√

E

C
≤ γ2(M,

√
d) ≤ CD

√
E. (19)

Since D is of the order of log(log|M|), this shows that (15) is sharp (up to the constant).

Proof. Let us start with the upper bound of (18). It is more convenient to use the following
definition for γ1:

γ1(M, d) = inf sup
x∈M

+∞∑
i=0

2id(x, Mi),

where the infimum is taken over every sequence (Mi)i∈N of subsets of M satisfying the
cardinality condition |Mi | ≤ Ni for every i. It is well known (see [7]) that this definition
coincides with the one with partitions, up to a universal factor.

For 0 ≤ i ≤ D let Si be the set of vertices of depth at most i. Using (17) we obtain
d(x, Si) ≤ E · 2−i+3 for every x ∈ M . Therefore,

sup
x∈M

+∞∑
i=0

2id(x, Si) ≤ E

D∑
i=0

2i2−i+3 = 8E(D + 1).
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Also, it is easily shown that
|Si | ≤ Ni+3.

The sequence (Si)n∈N does not quite satisfy the right cardinality condition, but this is not a big
deal. If we shift the sequence by letting M0 = M1 = M2 = S0 and Mi = Si−3 for i ≥ 3, we
still have

sup
x∈M

+∞∑
i=0

2id(x, Mi) ≤ CED,

for some universal C, which proves the upper bound of (18).
To prove the lower bound we need to show that the previous sequence of approximations is

essentially optimal. Let (Mi)i≥0 be a sequence of subsets of M satisfying |Mi | ≤ Ni for every
i. A vertex x of depth i ≤ D − 1 has Ni + 1 children. So at least one of them, call it y, has the
following property: neither y nor any of its offspring belong to Mi . Using this observation, we
can construct inductively a sequence x0, x1, . . . , xD , where x0 is the root of M and such that

• xi+1 is a child of xi ,

• neither xi+1 nor any of its offspring belong to Mi ,

for every i ≤ D − 1. Let i ≤ D − 1 and let x ∈ Mi . Since x is not an offspring of xi+1 we
have d(x, xD) ≥ E · 2−i+1. Thus,

∞∑
i=0

2id(xD, Mi) ≥ E

D−1∑
i=0

2i2−i+1 = 2ED,

which proves the lower bound of (18).
Inequality (19) is proved in exactly the same way.
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