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Abstract

This note explores the behaviour of the implied volatility of a European call option far
from maturity. Asymptotic formulae are derived with precise control over the error terms.
The connection between the asymptotic implied volatility and the cumulant generating
function of the logarithm of the underlying stock price is discussed in detail and illustrated
by examples.
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1. Introduction

Recall that the implied volatility of a European call option with strike K and time to maturity
τ is defined as the unique nonnegative solution � (if it exists) to the equation

C

S
= BS

(
log

(
K

S

)
− rτ, τ�2

)
, (1.1)

where C is the current price of the option, S is the price of the underlying stock (assumed to
pay no dividends), r is the yield on a zero-coupon bond with the same maturity as the option,
and the Black–Scholes call price function BS : R × [0, ∞) → [0, 1) is defined by

BS(k, v) =

⎧⎪⎨
⎪⎩

�

(
− k√

v
+

√
v

2

)
− ek�

(
− k√

v
−

√
v

2

)
if v > 0,

(1 − ek)+ if v = 0,

where �(x) = ∫ x

−∞(1/
√

2π) exp[−y2/2] dy is the standard normal distribution function and
a+ = max{a, 0} as usual. Just as the yield of a zero-coupon bond is a dimensionless quantifi-
cation of the value of the bond, the implied volatility is often used to quote an option’s price.
Since v �→ BS(k, v) is strictly increasing onto the interval [(1 − ek)+, 1), (1.1) has a solution
(and, hence, the implied volatility is well defined) if and only if (S − Ke−rτ )+ ≤ C < S.

This note provides a detailed asymptotic analysis of the implied volatility of options very far
from maturity. We work within a standard no-arbitrage framework for modelling the prices of a
given underlying stock and the options written on it. The motivation of this analysis is to better
understand the constraints on the possible shapes of the implied volatility surface imposed by
the no-arbitrage condition. Furthermore, the simple asymptotic formula can be used for model
calibration, especially in models where the moment generating function is known explicitly.
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Many of the techniques used here are familiar from the theory of large deviations, including
saddle-point-type approximations. However, the treatment of the borderline and irregular cases
seems to be new. These results extend and refine the asymptotics found by Jacquier [7] and
Lewis [10, Chapter 6].

In Section 2 we set up the notation and the standing mathematical assumptions used through-
out the paper. In Section 3 we obtain an asymptotic formula for the implied volatility of an
option very far from maturity, with uniform control on the error. In Section 4 we relate the long
implied volatility to asymptotics of the cumulant generating function of the logarithm of the
underlying stock price. Finally, in Section 5 we compute some explicit examples.

2. The mathematical set-up and notation

We consider a market model where the stock price (St )t≥0 is modelled as a nonnegative
stochastic process defined on a probability space, adapted to a filtration (Ft )t≥0. (Since most of
the following results do not depend on whether the time parameter t is discrete or continuous,
no distinction is made unless otherwise indicated.) Without loss of generality, we normalize by
taking S0 = 1, and to simplify the presentation, we assume that the prevailing risk-free interest
rate is identically zero.

We make the following assumption.

Assumption 2.1. There exists a locally equivalent measure P such that S is a local martingale
with P(St > 0) > 0 for all t ≥ 0.

Unless otherwise indicated, all probabilistic statements should be interpreted with respect
to P, and the notation E will denote expectation with respect to P. It is well known that this
market model admits no arbitrage.

We now introduce a family of European call options to this market. We assume that the price
C(t, T , K) of a call with strike K and maturity T is given by

C(t, T , K) = St − E[ST ∧ K | Ft ].

In this way, the call price processes (C(t, T , K))t∈[0,T ] are local martingales, and the market
augmented by these options is free of arbitrage. Furthermore, since

(St − K)+ ≤ C(t, T , K) < St ,

implied volatilities are well defined.

Remark 2.1. We could have equivalently priced put options by the formula

P(t, T , K) = E[(K − ST )+ | Ft ],

and then priced the call options by put-call parity

C(t, T , K) = St − K + P(t, T , K).

It is important to note that the call prices in this framework are not necessarily martingales.
Indeed, note that since S is only assumed to be a nonnegative local martingale, and, hence, a
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supermartingale, we generally have the inequality

E[C(T , T , K) | Ft ] = E[(ST − K)+ | Ft ]
= E[ST − ST ∧ K | Ft ]
≤ St − E[ST ∧ K | Ft ]
= C(t, T , K),

with equality only if S is a true martingale. We have chosen to price the calls in this, perhaps
unorthodox, way because there are models (for instance, the inverse of a three-dimensional
Bessel process) in which the inequality

E[(ST − K)+] < (S0 − K)+

holds for large enough T . In particular, if S is a strictly local martingale then the implied
volatility of a sufficiently long dated option may not be well defined if we were to price the
calls by expectation. See [1] for further discussion of the technicalities that arise when S is a
strictly local martingale.

We now come to the object of our study.

Definition 2.1. The (time-0) implied total variance for log-moneyness k = log(K/S0) and
time to maturity τ ≥ 0 is the unique nonnegative solution V (k, τ ) of the equation

BS(k, V (k, τ )) = C(0, τ, ek)

S0
= 1 − E[Sτ ∧ ek].

We also define the implied volatility by the formula

�(k, τ) =
√

V (k, τ )

τ
,

but we will find it more convenient to express most of the results in terms of the implied total
variance.

Of course, if S is given by the Black–Scholes model, that is, a geometric Brownian motion
of the form St = exp[−σ 2

0 t/2 + σWt ] for a Wiener process W and a constant σ0 > 0, then
E[(Sτ − ek)+] = BS(k, τ σ 2

0 ) and �(k, τ) = σ0 for all k ∈ R and τ > 0.
We make one further assumption.

Assumption 2.2. As t ↑ ∞, St → 0 almost surely.

Recall that a nonnegative supermartingale must converge almost surely to some nonneg-
ative random variable S∞. The assumption that S∞ = 0 is not motivated by no-arbitrage
considerations, but can be justified on the following economic grounds. It is easy to see that
Assumption 2.2 is equivalent to the reasonable property (exhibited by many models, including
Black–Scholes) that C(0, T , K) → S0 for all K > 0 as T ↑ ∞. Alternatively, Assumption 2.2
holds if and only if V (k, τ ) → ∞ as τ ↑ ∞. See [12] for details.

Remark 2.2. Note that if P(S∞ > 0) > 0 then supT >0 C(0, T , K) < S0. In particular, for
each k ∈ R, the implied total variance V (k, τ ) is bounded by a finite constant, and, hence, the
asymptotic formulae given below do not apply.

https://doi.org/10.1239/jap/1253279843 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279843


632 M. R. TEHRANCHI

3. Asymptotic formula

The main result is the following.

Theorem 3.1. The implied total variance at long maturities is given asymptotically by

V (k, τ ) = −8 log E[Sτ ∧ ek] − 4 log[−log E[Sτ ∧ ek]] + 4k − 4 log π + ε(k, τ ), (3.1)

where, for all κ > 0, we have the limit

sup
−κ≤k≤κ

|ε(k, τ )| + sup
−κ≤k1<k2≤κ

|ε(k2, τ ) − ε(k1, τ )|
k2 − k1

→ 0 as τ ↑ ∞.

The proof is contained in a series of lemmas.

Lemma 3.1. We have

log(1 − BS(k, v)) = −v

8
− 1

2
log v + k

2
+ 1

2
log

(
8

π

)
+ ε1(k, v),

where limv↑∞ supk∈[−κ,κ] |ε1(k, v)| = 0 for all κ > 0.

Proof. We have the calculation

1 − BS(k, v) = �[−d1(k, v)] + ek�[d2(k, v)]
= φ[d1(k, v)]{U [d1(k, v)] + U [−d2(k, v)]},

where, as usual, φ(x) = exp[−x2/2]/√2π is the standard normal density,

d1(k, v) = − k√
v

+
√

v

2
and d2(k, v) = − k√

v
−

√
v

2
,

and U(x) = �(−x)/φ(x) is Mills’ ratio.
Since |xU(x) − 1| ≤ 1/x2 for x > 0, we have

√
vU [d1(k, v)] → 2 and

√
vU [−d2(k, v)] → 2

as v ↑ ∞, uniformly for k ∈ [−κ, κ]. The result now follows.

Lemma 3.2. Let the inverse of the Black–Scholes function IBS : R × [0, 1) → R+ be defined
implicitly by

BS(k, IBS(k, c)) = c.

Then

IBS(k, c) = −8 log(1 − c) − 4 log[−log[1 − c]] + 4k − 4 log π + ε2(k, c),

where limc↑1 supk∈[−κ,κ] |ε2(k, c)| = 0 for all κ > 0.

Proof. We first have the crude estimate

BS(k, N) ≤ BS

(
−N

4
, N

)
= �

(√
N

4

)
− e−N/4�

(
−3

√
N

4

)
≤ 1 − e−N
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for all k ≥ −N/4 and large enough N . Therefore, IBS(k, c) ≥ −log[1 − c] whenever
k ≥ log[1− c]/4 and 1− c is small enough. In particular, infk∈[−κ,κ] IBS(k, c) → ∞ as c ↑ 1.

Now, Lemma 3.1 tells us that

IBS(k, c) = −8 log[1 − c] − 4 log

[
IBS(k, c)

8

]
+ 4k − 4 log π + 8ε1(k, IBS(k, c)).

Dividing both sides by IBS(k, c), and using the limits log v/v → 0 and ε1(k, v) → 0 uniformly,
we have −8 log(1 − c)

IBS(k, c)
→ 1

uniformly in k ∈ [−κ, κ]. Since

ε2(k, c) = 8ε1(k, IBS(k, c)) + 4 log

(
IBS(k, c)

−8 log(1 − c)

)
,

the proof is complete.

Proof of Theorem 3.1. Lemma 3.2 yields

ε(k, τ ) = ε2(k, 1 − E[Sτ ∧ ek]).
But the inequality E[Sτ ∧ ek] ≤ E[Sτ ∧ eκ ], the assumption St → 0 almost surely, and the
dominated convergence theorem, together imply that ε(k, τ ) → 0 uniformly in k ∈ [−κ, κ].

It remains to show that sup−κ≤k1<k2<κ |ε(k2, τ ) − ε(k1, τ )|/(k2 − k2) → 0. To this end,
let c(k, τ ) = 1 − E[Sτ ∧ ek] and note that, for each τ > 0, the function k → c(k, τ ) has both
left-hand and right-hand derivatives at each point, given by

D−c(k, τ ) = −ek P(Sτ > ek) and D+c(k, τ ) = −ek P(Sτ ≥ ek),

respectively. Therefore, computing the derivatives implicitly from the definition of implied
total variance, we have the expression

D−V (k, τ ) = 2
√

V (k, τ )

(
�{d2[k, V (k, τ )]} − P(Sτ ≥ ek)

φ{d2[k, V (k, τ )]}
)

.

Of course, we have a similar expression for D+V (k, τ ). On the other hand, differentiating (3.1)
yields

D−V (k, τ ) = 4 − 8ek P(Sτ ≥ ek)

E[Sτ ∧ ek]
(

1 + 1

2 log(E(Sτ ∧ ek))

)
+ D−ε(k, τ ).

The result follows from noting the following uniform limits:
√

v�[d2(k, v)]
φ[d2(v, k)] → 2

and
ek�{d2[k, V (k, τ )]}

E[Sτ ∧ ek] → 1

2
,

and the inequality P(Sτ ≥ ek)/ E[Sτ ∧ ek] ≤ 1.
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A first corollary of Theorem 3.1 is the leading order term of the long implied total variance.

Corollary 3.1. For all κ > 0,

sup
k∈[−κ,κ]

∣∣∣∣ V (k, τ )

−8 log E[Sτ ∧ 1] − 1

∣∣∣∣ → 0 as τ ↑ ∞.

Proof. This follows quickly from Theorem 3.1 upon noting the inequality

e−κ ≤ log
Sτ ∧ ek

Sτ ∧ 1
≤ eκ for all k ∈ [−κ, κ].

The above corollary shows that the implied volatility surface flattens at long maturities. The
next corollary gives an asymptotic formula for the skew.

Corollary 3.2. We have

D±V (k, τ ) = 4

(
E[Sτ 1{Sτ <ek} −ek 1{Sτ >ek}] ± ek P(Sτ = ek)

E[Sτ ∧ ek]
)

+ ε±(k, τ ),

where supk∈[−κ,κ] |ε±(k, τ )| → 0 as τ ↑ ∞ for all κ > 0. In particular, we have the following
bound:

lim sup
τ↑∞

max{|D−V (k, τ )|, |D+V (k, τ )|} ≤ 4. (3.2)

Remark 3.1. A consequence of the corollary is that the implied volatility flattens in the precise
sense that

sup
−κ≤k1<k2<κ

|�(k1, τ ) − �(k2, τ )| → 0 as τ ↑ ∞,

where �(k, τ) = √
V (k, τ )/τ . This is a model-independent result, and is not a consequence,

for instance, of some notion of ergodicity. This flattening phenomenon has been noticed before:
Gatheral [5] has shown that the gradient of the implied volatility, if it exists, decays pointwise
like 1/τ . See also [9]. Equation (3.2) was established in [12], where the constant 4 was shown
to be sharp.

4. The cumulant generating function

From Corollary 3.1 and the simple inequality S ∧ 1 ≤ Sp which holds for all 0 ≤ p ≤ 1
and S ≥ 0, we obtain the bound

lim inf
τ↑∞

V (k, τ )

−8 inf0≤p≤1 log E[Sp
τ ] ≥ 1.

In this section we explore conditions under which the above bound can be strengthened to
equality. Indeed, we show how the behaviour of the long implied total variance is related to the
cumulant generation function of the log stock price.

Definition 4.1. The moment generating function Mτ : R → R ∪ {+∞} is defined by

Mτ(p) = E[Sp
τ 1{Sτ >0}] for all τ ≥ 0.

The cumulant generating function 	τ : R → R ∪ {+∞} defined by

	τ (p) = log Mτ(p) for all τ ≥ 0.
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Note that Mτ(0) = P(Sτ > 0) and Mτ(1) = E[Sτ ], so by Assumption 2.1 and Hölder’s
inequality, Mτ(p) takes values in (0, 1] for all p ∈ [0, 1]. In particular, Mτ is finite valued on
the open interval, and, hence, can be extended analytically to the vertical strip {p + iq : 0 <

p < 1, q ∈ R} in the complex plane. Furthermore, there exists a neighbourhood {p + iq : 0 <

p < 1, |q| < ε} on which this extension of Mτ is nonzero and so 	τ can be extended to the
principal branch of the logarithm of Mτ .

Roughly speaking, the asymptotics of the implied total variance depends on the location of
the minimum of the convex function 	τ . Essentially, three types of behaviour are possible,
which we call the regular, borderline, and irregular cases below. Note that if the stock price
S is strictly positive and a true martingale, then the regular case covers most of the interesting
examples. However, there are many popular models in which either S hits zero in finite time with
positive probability, or is a strictly local martingale, or both, and the borderline and irregular
cases become important.

4.1. The regular case

In this subsection we now make the following assumption.

Assumption 4.1. There exist a 0 < p∗ < 1 and a positive increasing functionC withC(τ) ↑ ∞
such that

	τ

(
p∗ + i

θ

C(τ)

)
− 	τ (p

∗) → −θ2

2

as τ ↑ ∞ for all real θ .

Remark 4.1. The above assumption can be verified in practice as follows. Suppose that there
exists a strictly convex function 	̄ on (0, 1) which can be extended to an analytic function on
{0 < p < 1, |q| < ε} for some ε > 0 such that

1

τ
	τ (p + iq) → 	̄(p + iq)

as τ ↑ ∞ for all 0 < p < 1 and |q| < ε. Furthermore, suppose that p∗ ∈ (0, 1) is the unique
minimizer of 	̄, so that in particular, we have 	̄′(p∗) = 0.

Letting 	̄′′(p∗) = a2 > 0, and

	τ (p
∗ + iq)

τ
− 	̄(p∗ + iq) = βτ (q),

we have

	τ

(
p∗ + i

θ

a
√

τ

)
− 	τ (p

∗) = τ

[
	̄

(
p∗ + i

θ

a
√

τ

)
− 	̄(p∗)

]
+ θ

√
τ

a
β ′

τ

(
θ̂

a
√

τ

)

for some |θ̂ | ≤ |θ | by the mean value theorem. Assuming that
√

τβ ′
τ (θ/

√
τ) → 0 uniformly

in θ on compacts, Assumption 4.1 is satisfied with C(τ) = a
√

τ since the first bracketed term
above converges to −θ2/2 by Taylor’s theorem.

In this section we will let

φτ (θ) = 1√
2π

Mτ (p
∗ + iθ/C(τ))

Mτ (p∗)
.
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By assumption, φτ (θ) → φ(θ) = exp[−θ2/2]/√2π , the standard normal density, for each
θ ∈ R.

Before stating and proving the main result of this section, we need a further assumption.
We have assumed that St → 0 almost surely, which implies that 	τ (p) → −∞ for each
p ∈ (0, 1), since the process (S

p
t )t≥0 is uniformly integrable. In this section we make the

following stronger technical assumption.

Assumption 4.2. As τ ↑ ∞,
C(τ)

	τ (p∗)
→ 0.

Remark 4.2. In most examples C(τ) ∼ a
√

τ and 	τ (p
∗) ∼ bτ for constants a, b > 0, so

that Assumption 4.2 is satisfied.

Our first result gives the leading order of long implied total variance with no other assumption
on the cumulant generating function. The proof of this result is similar to the proof of the
classical Cramér large deviation principle; see Chapter 5.11 of [6], for instance. The following
result appears (without the uniform control of the error term) in [13] as an application of the
Cramér theorem in the case where log S has independent stationary increments. This result
also appears in Chapter 6 of [10] for stochastic volatility models under a heuristic asymptotic
factorization assumption on the function Mτ .

Theorem 4.1. As τ ↑ ∞,

sup
k∈[−κ,κ]

∣∣∣∣ V (k, τ )

−8	τ (p∗)
− 1

∣∣∣∣ → 0.

Proof. By the inequality Sτ ∧ 1 ≤ S
p
τ , which holds for all 0 < p < 1, we have the upper

bound
log E[Sτ ∧ 1] ≤ 	(p∗).

Now, for each τ ≥ 0, let Xτ be a random variable such that E[exp[iθXτ ]] = Mτ(p
∗ +

iθ/C(τ))/Mτ (p
∗). Note that by Assumptions 4.1 the distribution of Xτ converges to that of a

standard normal random variable. For each b > 0, we have

log E[Sτ ∧ 1] = 	τ (p
∗) + log E[exp[−p∗C(τ)Xτ ] exp[C(τ)Xτ ] ∧ 1]

≥ 	τ (p
∗) + log E[exp[−p∗C(τ)Xτ ](exp[C(τ)Xτ ] ∧ 1) 1{Xτ <−b	τ (p∗)/C(τ)}]

≥ 	τ (p
∗)(1 + p∗b) + log E[(exp[C(τ)Xτ ] ∧ 1) 1{Xτ <−b	τ (p∗)/C(τ)}].

Since (exp[C(τ)Xτ ] ∧ 1) 1{Xτ <−b	τ (p∗)/C(τ)} is bounded and converges in distribution to a
Bernoulli random variable with parameter 1

2 by Assumption 4.2, we have

lim sup
τ↑∞

∣∣∣∣ log E[Sτ ∧ 1]
	τ (p∗)

− 1

∣∣∣∣ ≤ bp∗.

Now let b ↓ 0, and apply Corollary 3.1.

If we supplement this pointwise convergence, φτ → φ, with some sort of uniform integra-
bility condition, we can get good estimates of the long implied volatility.

Theorem 4.2. If ∫ ∞

−∞
|φτ (θ)|

1 + θ2/C(τ)2 dθ → 1
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then

V (k, τ ) = −8	τ (p
∗) + 4k(2p∗ − 1) + 8 log

[
C(τ)p∗(1 − p∗)√−	τ (p∗)/2

]
+ δ(k, τ ),

where supk∈[−κ,κ] |δ(k, τ )| → 0 as τ ↑ ∞ for each κ > 0.

Remark 4.3. Based on the theorem above, we might guess that the implied total variance is
always approximately affine in the log-moneyness for long maturities. We will see in Section 5
that this conjecture is false. The symmetric binomial model is affine in the regular case with
p∗ = 1

2 , but the long implied total variance is not affine. Of course, for this example, the
integrability condition in Theorem 4.2 fails to hold.

We begin with a lemma.

Lemma 4.1. The following identity is valid for all p ∈ (0, 1), k ∈ R, and τ ≥ 0:

E[Sτ ∧ ek] = ek(1−p)

2π

∫ ∞

−∞
Mτ(p + iy)e−iky

(p + iy)(1 − p − iy)
dy.

Proof. It is straightforward to show by contour integration that the formula

∫ ∞

−∞
eizy

(p + iy)(1 − p − iy)
dy = 2π

{
e−pz if z ≥ 0,

e(1−p)z if z < 0

holds for all real z. Furthermore, since∫ ∞

−∞
E

∣∣∣∣exp[(p + iy) log Sτ − iky] 1{Sτ >0}
(p + iy)(1 − p − iy)

∣∣∣∣ dy ≤ Mτ(p)

∫ ∞

−∞
dy

p(1 − p) + y2 < ∞,

Fubini’s theorem implies that

ek(1−p)

2π

∫ ∞

−∞
Mτ(p + iy) e−iky

(p + iy)(1 − p − iy)
dy

= 1

2π
E

[∫ ∞

−∞
exp[p log Sτ + k(1 − p) + iy(log Sτ − k)] 1{Sτ >0}

(p + iy)(1 − p − iy)
dy

]
= E[Sτ ∧ ek].

Remark 4.4. Note that, for all real z, contour integration yields

∫ ∞

−∞
eizy

(p + iy)(1 − p − iy)
dy = 2π

{
−e−pz(ez − 1)+ if p > 1,

e−pz(1 − ez)+ if p < 0.

In particular, the above proof cannot be valid if p∗ > 1 or p∗ < 0. We will see shortly that, in
fact, genuinely different behaviour arises in these cases.

Proof of Theorem 4.2. By Lemma 4.1 and the change of variables θ = yC(τ), we have

E[Sτ ∧ ek] = exp[k(1 − p∗) + 	τ (p
∗)]

p∗(1 − p∗)C(τ)
√

2π

∫ ∞

−∞
fτ (θ, k) dθ,
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where

fτ (θ, k) = φτ (θ)e−ikθ/C(τ)

[1 + iθ/(p∗C(τ))][1 − iθ/((1 − p∗)C(τ))] .
Define auxiliary functions gτ and hτ by

gτ (θ) = φτ (θ)

1 + θ2/C(τ)2

and

hτ (θ) = eikθ/C(τ)fτ (θ, k)

gτ (θ)
= 1 + θ2/C(τ)2

[1 + iθ/(p∗C(τ))][1 − iθ/((1 − p∗)C(τ))] .
First note that gτ → φ and hτ → 1 pointwise. We have the computation

|fτ (θ, k) − φ(θ)| = |gτ (θ)e−ikθ/C(τ)hτ (θ) − φ(θ)|
≤ |gτ (θ) − φ(θ)||hτ (θ)| + φ(θ)|e−ikθ/C(τ) − 1| + φ(θ)|hτ (θ) − 1|
≤ |gτ (θ) − φ(θ)| + φ(θ)

(
κ|θ |
C(τ)

∧ 2

)
+ φ(θ)|hτ (θ) − 1|

for all k ∈ [−κ, κ], where we have used the inequalities |hτ (θ)| ≤ 1 and |eix − 1| ≤ |x| ∧ 2.
All three of the terms above vanish pointwise as τ ↑ ∞, and the second and third terms are
dominated by integrable functions. Furthermore, since∫ ∞

−∞
|gτ (θ)| dθ → 1 =

∫ ∞

−∞
φ(θ) dθ

by hypothesis, we have the convergence∫ ∞

−∞
|gτ (θ) − φ(θ)| dθ → 0

by Scheffé’s theorem.
If we write

∫ ∞
−∞ fτ (θ, k) dθ = 1 + δ1(k, τ ), the above computation shows that

sup
k∈[−κ,κ]

|δ1(k, τ )| ≤
∫ ∞

−∞
sup

k∈[−κ,κ]
|fτ (θ, k) − φ(θ)| dθ → 0

by the dominated convergence theorem.
Now, applying Theorem 3.1 we have

δ(k, τ ) = ε(k, τ ) − 8 log[1 + δ1(k, τ )]

− 4 log

[
1 + k(1 − p∗) − log[p∗(1 − p∗)C(τ)

√
2π/(1 + δ1(k, t))]

	τ (p∗)

]
,

and the conclusion follows since log[C(τ)]/	τ (p
∗) → 0 by Assumption 4.2.

Remark 4.5. The asymptotic formula appearing in Theorem 4.2 is essentially Equation (3.8)
in Chapter 6 of Lewis’s book [10] under a suggestive, if not completely rigorous, assumption of
the form Mτ(p) ≈ e−λ(p)τ u(p). Under a similar assumption, Jacquier [7] showed that Lewis’s
formula as stated cannot be correct since the constant term is missing. The main contribution of
this paper is both the explicit sufficient condition on the function 	τ under which the formula
holds and the uniform control on the error term.
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We can now study the skew. If the distribution of Sτ is continuous, the smile is differentiable,
and intuitively, DV(k, τ ) → 4(2p∗ − 1) by Theorem 4.2. The following theorem makes this
intuition precise.

Theorem 4.3. Suppose that the distribution of Sτ is continuous for all τ ≥ 0. If∫ ∞

−∞
|φτ (θ)|

1 + |θ |/C(τ)
dθ → 1

then
DV(k, τ ) = 4(2p∗ − 1) + δ′(k, τ ),

where supk∈[−κ,κ] |δ′(k, τ )| → 0 as τ ↑ ∞ for each κ > 0.

Remark 4.6. Note that if the asymptotic formula DV(k, τ ) → 4(2p − 1) holds for some p

then, by Corollary 3.2, we must have 0 ≤ p ≤ 1.

The proof of this result closely follows the proof of Theorem 4.2. Hence, we only outline
the argument. Again, we begin with a lemma.

Lemma 4.2. The following identity is valid for all p ∈ (0, 1), k ∈ R, and τ ≥ 0:

E[Sτ 1{Sτ <ek} −ek 1{Sτ >ek}]

= (2p − 1) E[Sτ ∧ ek] − ek(1−p)

π i
lim

N→∞

∫ N

−N

yMτ (p + iy)e−iky

(p + iy)(1 − p − iy)
dy.

Proof. Again, contour integration and Fubini’s theorem proves the lemma.

Proof of Theorem 4.3. By Lemma 4.2 and the proof of Theorem 4.2, we need only show
that ∫ ∞

−∞
φτ (θ)e−ikθ/C(τ)θ/C(τ)

[p∗ + iθ/C(τ)][(1 − p∗) − iθ/C(τ)] dθ → 0

uniformly in k. The given condition is sufficient for this convergence.

4.2. The borderline cases

In this section we tackle the cases where the saddle-point method outlined above still
yields asymptotics. However, since these cases sit on the borderline between the regular and
irregular cases, the asymptotic formulae are different. The following assumption will be in
force throughout this section.

Assumption 4.3. There exist a p∗ ∈ {0, 1} and an increasing function C with the following
properties: there exists a neighborhood of p∗ on which 	τ is finite valued for all τ ≥ 0, and,
hence, the mapping y �→ 	τ (p

∗ + yi) is well defined and smooth. The function is such that
C(τ) → ∞ and

	τ

(
p∗ + i

θ

C(τ)

)
− 	τ (p

∗) → −θ2

2
for all θ ∈ R.

Curiously, for the borderline cases (and with the irregular cases treated below), no extra
uniform integrability condition is required to obtain the full asymptotics.
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Theorem 4.4. If p∗ = 1 then

V (k, τ ) = −8	τ (1) − 4 log[−	τ (1)] + 4k − 4 log

[
π

4

]
+ δ(k, τ ),

and if p∗ = 0 then

V (k, τ ) = −8	τ (0) − 4 log[−	τ (0)] − 4k − 4 log

[
π

4

]
+ δ(k, τ ),

where in both cases supk∈[−κ,κ] |δ(k, τ )| → 0 for all κ > 0.

Proof. Let Xτ be a random variable with characteristic function

E[exp[iθXτ ]] = Mτ(p
∗ + iθ/C(τ))

Mτ (p∗)
.

If p∗ = 1 then
E[Sτ ∧ ek] = E[Sτ ] E[1 ∧ exp[k − C(τ)Xτ ]].

But 1 ∧ exp[k − C(τ)Xτ ] is bounded and converges in distribution to a Bernoulli random
variable with mean 1

2 . Furthermore, since

E[1 ∧ exp[−κ − C(τ)Xτ ]] ≤ E[1 ∧ exp[k − C(τ)Xτ ]] ≤ E[1 ∧ exp[κ − C(τ)Xτ ]],
we have

E[Sτ ∧ ek]
E[Sτ ] → 1

2

uniformly for k ∈ [−κ, κ], and the conclusion follows from Theorem 3.1.
Similarly, if p∗ = 0 then

E[Sτ ∧ ek] = P(Sτ > 0) E[exp[C(τ)Xτ ] ∧ ek],
and the conclusion follows as before.

We can apply Corollary 3.2 to obtain the asymptotic skew, again with no further integrability
assumption.

Theorem 4.5. Assume that the distribution of Sτ is continuous. If p∗ = 1 then

DV(k, τ ) = 4 + δ′(k, τ ),

and if p∗ = 0 then
DV(k, τ ) = −4 + δ′(k, τ ),

where supk∈[−κ,κ] |δ′(k, τ )| → 0 for all κ > 0.

Proof. We must estimate the quantity

E[Sτ 1{Sτ <ek} −ek 1{Sτ >ek}]
E[Sτ ∧ ek] = 1 − 2

ek P(Sτ > ek)

E[Sτ ∧ ek] = 2
E[Sτ 1{Sτ <ek}]

E[Sτ ∧ ek] − 1.

As in the proof above, let Xτ have characteristic function

E(exp[iθXτ ]) = Mτ(p
∗ + iθ/C(τ))

Mτ (p∗)
.
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If p∗ = 1 then
E[Sτ 1{Sτ <ek}]

E[Sτ ] = P(C(τ)Xτ < k) → 1

2
,

and if p∗ = 0 then
P(Sτ > ek)

P(Sτ > 0)
= P(C(τ)Xτ > k) → 1

2
.

In both cases the convergence is uniform in k ∈ [−κ, κ], proving the claim.

4.3. The irregular cases

Now we deal with the irregular cases. As before, we split them into subcases.

Assumption 4.4. There exists a p∗ such that either

1. p∗ > 1 and 	τ (p
∗) − 	τ (1) → −∞, or

2. p∗ < 0 and 	τ (p
∗) − 	τ (0) → −∞.

Theorem 4.6. If p∗ > 1 then

V (τ, k) = −8	τ (1) − 4 log[−	τ (1)] + 4k − 4 log π + δ(k, τ ),

and if p∗ < 0 then

V (τ, k) = −8	τ (0) − 4 log[−	τ (0)] − 4k − 4 log π + δ(k, τ ).

In both cases, supk∈[−κ,κ] |δ(k, τ )| → 0 for all κ > 0.

Proof. If p∗ > 1, we have the inequality

E[Sτ ] ≥ E[Sτ ∧ ek]
≥ E[Sτ ∧ e−κ ]
= E[Sτ − (Sτ − e−κ)+]
≥ E[Sτ ] − e(p∗−1)κ E[Sp∗

τ ]

for all k ∈ [−κ, κ], where we have used the simple inequality (a − b)+ ≤ apb1−p which holds
for all a, b > 0 and p > 1. Hence, if p∗ > 1, we have the bound

∣∣∣∣E[Sτ ∧ ek]
E[Sτ ] − 1

∣∣∣∣ ≤ exp[(p∗ − 1)κ + 	τ (p
∗) − 	τ (1)] → 0.

Similarly, if p∗ < 0, we have the inequality

ek P(Sτ > 0) ≥ E[Sτ ∧ ek]
= E[ek 1{Sτ>0} − (ek − Sτ )

+ 1{Sτ>0}]
≥ E[ek 1{Sτ>0} − (eκ − Sτ )

+ 1{Sτ>0}]
≥ ek P(Sτ > 0) − e(1−p∗)κ E[Sp∗

τ 1{Sτ >0}]
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for all k ∈ [−κ, κ], where we have used the inequality (b − a)+ ≤ apb1−p which holds for all
a, b > 0 and p < 0. Thus, if p∗ < 0, we have the corresponding bound∣∣∣∣E[Sτ ∧ ek]

P(Sτ > 0)
− ek

∣∣∣∣ ≤ exp[(1 − p∗)κ + 	τ (p
∗) − 	τ (0)] → 0.

The result now follows from Theorem 3.1.

In fact, we also have convergence of the skews.

Theorem 4.7. Assume that Sτ has a continuous distribution for all τ ≥ 0. If p∗ > 1 then

DV(k, τ ) = 4 + δ′(k, τ ),

and if p∗ < 0 then
DV(k, τ ) = −4 + δ′(k, τ ),

where supk∈[−κ,κ] |δ′(k, τ )| → 0 for all κ > 0.

Proof. Note that if p∗ > 1 then, by Chebychev’s inequality,

0 ≤ ek P(Sτ > ek) ≤ ek(1−p∗) E[Sp∗
τ ] ≤ exp[κ(p∗ − 1) + 	τ (p

∗)]
for all k ∈ [−κ, κ]. Similarly, if p∗ < 0, we have

0 ≤ E[Sτ 1{Sτ <ek}] ≤ exp[κ(p∗ − 1) + 	τ (p
∗)].

The theorem now follows from Corollary 3.2 and the estimates in the proof of Theorem 4.6.

5. Examples

In this section we consider some examples to illustrate Theorem 4.2.

5.1. Models with stationary, independent increments

The easiest case to analyse is when St = exp[Xt ], where X has stationary, independent
increments such that S is a martingale. If time is continuous, we take X to be a Lévy process, but
our discussion is also valid for discrete time. When X has stationary, independent increments,
the cumulant generating function has the nice form

	τ (p) = τ 	1(p),

and 	1(0) = 	1(1) = 0. The function 	1 has a unique global minimum at some point
p∗ ∈ (0, 1) at which 	′

1(p
∗) = 0.

Letting a2 = 	′′
1(p

∗) > 0 we have, by Taylor’s theorem,

τ

[
	1

(
p∗ + i

θ

a
√

τ

)
− 	1(p

∗)
]

→ −θ2

2
,

and Assumption 4.1 is satisfied with C(τ) = a
√

τ . Clearly, Assumption 4.2 is also satisfied.
In particular, the leading order behaviour of the implied volatility is given by

sup
k∈[−κ,κ]

∣∣∣�(k, τ)2 + 8 min
p∈R

log E[Sp
1 ]

∣∣∣ → 0.
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Example 5.1. (The Black–Scholes model.) This example is simply a reality-check. Let St =
exp[−σ 2

0 t/2 + σ0Wt ] for a Brownian motion W . The cumulant generating function is

	1(p) = 1
2σ 2

0 p(p − 1),

which is minimized at p∗ = 1
2 , and we may take C(τ) = σ0

√
τ in Assumption 4.1. Now

φτ = φ for all τ > 0, and in particular, supτ>0 φτ is integrable. Hence, both Theorems 4.2
and 4.3 apply, and we have

V (k, τ ) = σ 2
0 τ + δ(τ, k)

and
DV(k, τ ) = δ′(τ, k).

Of course, for this example, δ(τ, k) = 0 identically.

5.1.1. A sufficient condition. Let the stock price be given by St = exp[Xt ], where X has
independent, stationary increments. As usual, let M1(p) = E[exp[pX1]], 	1(p) = log M1(p),
and p∗ = argmin	1. We now exhibit a sufficient condition for Theorem 4.2 to hold.

Theorem 5.1. Suppose that, for some b > 0, the inequality

|M1(p
∗ + iq)| ≤ exp[−b (q2 ∧ 1)]M1(p

∗)

holds for all q ∈ R. Then the asymptotic implied total variance is given by

V (k, τ ) = −8	1(p
∗)τ + 4k(2p∗ − 1) + 4 log

[
2	′′

1(p
∗)[p∗(1 − p∗)]2

−	1(p∗)

]
+ δ(k, τ ),

where supk∈[−κ,κ] |δ(k, τ )| → 0 for all κ > 0.

Proof. Let a = √
	1(p∗). Since∫
|θ |>a

√
τ

|φτ (θ)|
1 + θ2/τ

dθ ≤ 1√
2π

∫
|θ |>a

√
τ

e−bτ

1 + θ2/τ
dθ

=
√

2τ

π
e−bτ tan−1(1/a)

→ 0,

and 1{|θ |≤a
√

τ } |φt (θ)| < exp[−bθ2/a2]/√2π is integrable and converges pointwise to φ(θ),
we have ∫ ∞

−∞
|φτ (θ)|

1 + θ2/τ
dθ → 1

by the dominated convergence theorem. Hence, Theorem 4.2 applies.

Remark 5.1. For models satisfying the hypothesis of Theorem 5.1, the long implied total
variance is approximately affine in both the log-moneyness k and the time to maturity τ :

V (k, τ ) ≈ Aτ + Bk + C.

In Chapter 5 of [4], it is observed, in the context of a fast-mean reverting stochastic volatility
model, that such affine structure could be exploited for model calibration. Indeed, we need only
regress observed values of V (k, τ ) against (k, τ ) for small k and large τ to obtain estimates of
A, B, and C. For a model with three parameters, such as the variance gamma model studied
below, the values of A, B, and C can be inverted to yield the model parameters.
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Example 5.2. (Subordinated Brownian motion and the variance gamma process.) For an
example of a Lévy process which satisfies the sufficient condition given by Theorem 5.1,
consider the following construction. Let Y be a subordinator with characteristic function

E[exp[iqYt ]] = exp

[
iqta +

∫
(0,∞)

t (eiqx − 1)µ(dx)

]
,

where a ≥ 0 and µ is a measure such that∫
(0,∞)

(x ∧ 1)µ(dx) < ∞.

Now let W be an independent Brownian motion and define a new Lévy process X by

Xt = σW(Yt ) + �Yt + mt

for real constants σ and � such that m defined by

m = −a

(
� + σ 2

2

)
−

∫
(0,∞)

(
exp

[(
� + σ 2

2

)
x

]
− 1

)
µ(dx)

is finite. Then, by construction, the process St = exp[Xt ] defines a martingale.
The cumulant generating function of X1 is given by

	1(p) = aσ 2 p(p − 1)

2
+

∫
(0,∞)

(
exp

[(
p� + p2σ 2

2

)
x

]
− exp

[(
� + σ 2

2

)
x

])
µ(dx),

and, hence,

Re(	1(p + iq)) − 	1(p)

= −aσ 2 q2

2
+

∫
(0,∞)

exp

[(
p� + p2σ 2

2

)
x

]

×
(

cos[(� + σ 2p)qx] exp

[
−q2σ 2x

2

]
− 1

)
µ(dx)

≤ −aσ 2 q2

2
− q2 ∧ 1

∫
(0,∞)

exp

[(
p� + p2σ 2

2

)
x

](
σ 2x

2 + σ 2x/2

)
µ(dx),

where we have used the inequalities cos α < 1 and e−αβ − 1 ≤ −(α ∧ 1)β/(1 + β) for all
α, β > 0. Therefore, Theorem 5.1 applies, as claimed.

One realization of the above construction, popularised by Madan et al. [11], is when µ(dx) =
(1/νx)e−x/ν dx for some constant ν > 0 and a = 0, so that Y is a gamma process, X is a
variance gamma process, and

	1(p) = p log[1 − (� + σ 2/2)ν] − log[1 − (p� + p2σ 2/2)ν]
ν

.

In this case, the minimizer p∗ ∈ (0, 1) of 	1 can be found by solving the equation 	′
1(p) = 0,

which is equivalent to the quadratic equation

σ 2

2
p2 +

(
� − σ 2

log[1 − (� + σ 2/2)ν]
)

p −
(

1

ν
+ �

log[1 − (� + σ 2/2)ν]
)

= 0.
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Figure 1: A comparison of the results of numerical integration (solid lines) with the affine approximation
(dashed lines) of the variance gamma model with parameters σ = 0.1213, ν = 0.1686, and � = −0.1436
for times to maturity τ = 1, 5, and 10 years. The horizontal axis is log-moneyness k = log[K/S0] and

the vertical axis is implied total variance V (k, τ ).

Note that, for the variance gamma model, the call option prices can be expressed as

E[(Sτ − ek)+]

= E

[
exp

[
mτ +

(
� + σ 2

2

)
Yτ

](
exp[−σ 2Yτ + σW(Yτ )]

− exp

[
k − mτ −

(
� + σ 2

2

)
Yτ

])+]

= E

[
exp

[
mτ +

(
� + σ 2

2

)
Yτ

]
BS

(
k − mτ −

(
� + σ 2

2

)
Yτ , σ

2Yτ

)]

=
∫ ∞

0
exp

[
mτ +

(
� + σ 2

2

)
νu

]
BS

(
k − mτ −

(
� + σ 2

2

)
νu, σ 2νu

)
ut/ν−1e−u

�(t/ν)
du,

and, hence, can be calculated by numerical integration.
In Figure 1 we compare the affine approximation as given by Theorem 5.1 with the ‘true’

smile given by numerical integration with the parameter values σ = 0.1213, ν = 0.1686, and
� = −0.1436 as found by Madan et al. [11] to fit S&P 500 European option prices between
1992 and 1994. The fit is surprisingly good even when the time to maturity is five years.

5.1.2. A counterexample. We now consider the extremely simple binomial model where we
can do the calculations very explicitly. It turns out that the long implied total variance is not
approximately affine in log-moneyness k as suggested by Theorem 5.1. Of course, the sufficient
condition on the cumulant generating function fails to hold in this example.

Example 5.3. (Binomial model.) Suppose that Sτ+1 = ξτ+1Sτ , where ξ is a sequence of
independent random variables such that

P(ξτ = eb) = 1

eb + 1
= 1 − P(ξτ = e−b)
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for a constant b > 0. In this case, the moment generating function of log S1 is given by

M1(p) = ebp + eb(1−p)

eb + 1
= cosh[b(p − 1/2)]

cosh(b/2)
.

The minimizing exponent is p∗ = 1
2 by symmetry. A naive application of Theorem 5.1 would

predict the following formula:

V (k, τ ) = 8τ log cosh

(
b

2

)
+ 4 log

(
b2

8 log cosh(b/2)

)
+ δ(k, τ ).

However, the above formula is not correct! Indeed, note that M1(
1
2 + iy) = cos(by)M1(

1
2 ), so

the sufficient condition in Theorem 5.1 does not hold. In this simple example we can actually
compute the long implied total variance explicitly:

V (k, τ ) = 8τ log cosh

(
b

2

)
− 8 log cosh g(k, τ ) + 4 log

(
(sinh b/2)2

2 log cosh(b/2)

)
+ δ(k, τ ),

where g(·, τ ) is the 2b-periodic function whose restriction to the interval (−b, b] is given by

g(k, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

|k|
2

if τ is odd,

b − |k|
2

if τ is even.

The above asymptotic formula may be regarded as something of a curiosity, as it would be hard
to argue that the binomial model provides a good fit to stock price data. However, it serves as a
warning that the integrability condition cannot be dropped from the statement of Theorem 4.2.

The above asymptotic formula is a consequence of the following proposition.

Proposition 5.1. For each τ ∈ N, let

Fτ (y) =
∫ ∞

−∞
(cos x)τ

√
τeixy

a2 + x2 dx.

Then F2m+1 → H and F2m → H(· + 1) uniformly on compacts, where H is the 2-periodic
function whose restriction to (−1, 1] is given by

H(y) = √
2π

cosh(ay)

a sinh a
.

Proof. We have by the absolute integrability of the integrand for each fixed τ ∈ N and y ∈ R

the calculation

Fτ (y) =
∑
n∈Z

∫ (n+1/2)π

(n−1/2)π

√
τ(cos x)τ eixy

a2 + x2 dx

=
∑
n∈Z

∫ π/2

−π/2
(−1)nτ

√
τ(cos z)τ (−1)τneizy+iynπ

a2 + (z + nπ)2 dz

=
∫ π/2

−π/2

√
τ(cos z)τ eizyG(z, y, τ ) dz,

where

G(z, y, τ ) =
∑
n∈Z

(−1)nτ einyπ

a2 + (z + nπ)2 .
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For all τ , the series defining G(·, ·, τ ) converges absolutely and uniformly on [−π/2, π/2] ×
[−κ, κ], and, hence, defines a continuous function.

Make the substitution z = θ/
√

τ in the last integral above. First note that the integrand is
uniformly bounded by an integrable function of θ , since G(·, ·, ·) is bounded on [−π/2, π/2]×
[−κ, κ] × N and the inequality cos z ≤ 1 − z2/π on [−π/2, π/2] implies that∣∣∣∣cos

(
θ√
τ

)τ

1[−π
√

τ/2,π
√

τ/2](θ)

∣∣∣∣ ≤ exp

[
−θ2

π

]
.

Now letting τ take only odd values, we have the pointwise in θ ∈ R uniform in y ∈ [−κ, κ]
convergence

[
cos

(
θ√
τ

)]2m+1

eiyθ/
√

τG

(
θ√
τ

, y, τ

)
1[−π

√
τ/2,π

√
τ/2](θ) → exp[−θ2/2]G(0, y, 1),

and, hence, the dominated convergence theorem implies that F2m+1(y) → √
2πG(0, y, 1)

uniformly. Similarly, F2m(y) → √
2πG(0, y, 0) uniformly.

It is now a simple matter to check that the series

G(0, y, 1) =
∑
n∈Z

(−1)neiynπ

a2 + n2π2

is the Fourier series for the function (1/
√

2π)H . Since H is continuous and of bounded
variation, its Fourier series converges everywhere. The case of even τ is similar.

To show that the long implied volatility in the binomial model is given by the announced
formula, we need only work through the proof of Theorem 4.2 and substitute the integral in the
above proposition with a = b/2 and y = k/b in the appropriate place. In Figure 2 we compare
the true implied total variance for the binomial model with b = 0.15 with the approximation.
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Figure 2: A comparison of the true implied total variance (solid line) with the approximation (dashed
line) for the binomial model with b = 0.15 for times to maturity τ = 1, 5, and 10 years. The horizontal

axis is log-moneyness k = log[K/S0] and the vertical axis is implied total variance V (k, τ ).
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5.2. Affine models

In Markovian stochastic volatility models, the moment generating function of the stock price
can be found generally by solving a partial differential equation. Affine models, however, have
the attractive feature that the moment generating function can be found by solving a coupled
family of ordinary differential equations, and in many cases are known in closed form. See [2]
for a complete account of such models. We include the canonical example of an affine stochastic
volatility model, the Heston model, to illustrate the technique. We only sketch the outline of
the story. For full details for this example, see the recent preprint [3].

Example 5.4. (Heston model.) Consider the following coupled stochastic differential equation:

dSt = St

√
Vt dW

(S)
t , dVt = λ(θ − Vt ) dt + ζ

√
Vt dW

(V )
t

for correlated Wiener processes W(X) and W(V ) with 〈W(X), W(V )〉t = rt , and positive
constants λ, θ , and ζ .

Let
H(t, v, p) = eA(t,p)v+B(t,p),

where the function A solves the Riccati equation,

∂

∂t
A(t, p) = 1

2
p(p − 1) + (prζ − λ)A(t, p) + 1

2
ζ 2A(t, p)2, A(0, p) = 0,

and B is given by

B(t, p) = λθ

∫ t

0
A(s, p) ds.

It is easy to see by Itô’s formula that the process Mt = S
p
t H(t, Vt , p) defines a positive local

martingale. We suppose that M is a true martingale for each p in some set � ⊆ R, so that

	τ (p) = A(τ, p)V0 + B(τ, p) for all p ∈ �.

Following Keller-Ressel’s paper [8], we note that when (prζ − λ)2 > ζ 2p(p − 1), the
Riccati equation has two fixed points, A−(p) < A+(p), with A−(p) stable and A+(p) unstable.
Hence, when p ∈ (0, 1) or prζ < λ, the unstable fixed point A+(p) is positive, so that A(τ, p)

converges to A−(p), and in particular,

	̄(p) = lim
τ↑∞

	τ (p)

τ
= λθA−(p).

The minimizer p∗ of this function 	̄ gives information about the long implied volatility, and
was found in Chapter 6 of [10] to be

p∗ = 1

2(1 − r2)ζ
(ζ − 2rλ + r

√
ζ 2 − 4λζr + 4λ2

).

Note there are parameter values for which p∗ defined by the above formula is such that p∗ > 1
and p∗rζ > λ. (The referee has observed that the parameters ζ = 1, r = 3

4 , and λ = 1
4 have

this property.) In these cases, it is not at all clear whether p∗ satisfies Assumption 4.1 since
	τ (p)/τ may not converge as τ ↑ ∞.
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5.3. Irregular cases

We conclude with examples which illustrate what happens in the irregular case. Remember,
the irregular case can only arise when the stock price is either a strictly local martingale, or hits
zero in finite time with positive probability.

Example 5.5. The first example is extremely simple and is related to an example appearing
in [12] verifying that the bound in Corollary 3.2 is sharp.

Let T be a random time where the distribution of 1/T is uniform on [0, 1], and let

St = 1{0≤t<1} +t 1{1≤t<T }.

Then S is a martingale with respect to its natural filtration. Now, it is easy to see that 	τ (p) =
(p − 1) log t for t ≥ 1. Letting p∗ = −1 < 0, say, we have

	τ (p
∗) − 	τ (0) = −log t → −∞,

so Theorem 4.6 applies. The full asymptotics are then

V (k, τ ) = 8 log τ − 4 log log τ − 4k − 4 log π + δ(τ, k).

Example 5.6. (CEV models.) The CEV models, i.e. the models with constant elasticity of
variance, are given by the stochastic differential equation

dSt = Sα
t dWt.

It is well known that if α > 1 then S is a strictly positive, strict local martingale. To illustrate the
phenomenon, we consider the case α = 2, corresponding to the inverse of a three-dimensional
Bessel process. In this case we have

E[St ] = 2�

(
1√
t

)
− 1,

so that 	τ (1)/ log τ → − 1
2 . A routine calculation shows that 	τ (2)/ log τ → −1, and, hence,

the long implied total variance can be read off, using Theorem 4.6:

V (k, τ ) = 4 log τ − 4 log log τ + 4k + δ(k, τ ).
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