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1. Introduction. On recent occasions papers have been presented concerned 
with the problem of solving a system of linear congruences. Apparently the 
authors were not aware that this problem was solved very neatly and com
pletely a long time ago by H. J. S. Smith (5; 6). One reason for this situation 
is that recent texts in the theory of numbers go only as far in the discussion 
of systems of congruences as one can with the most elementary tools ; whereas 
older texts, such as the one by Stieltjes (8, pp. 284-377), devote so much space 
to the discussion of the requisite matric theory that the reader is liable to lose 
sight of the elegant results concerning systems of congruences. Perhaps the 
time has come to give a new exposition of this material, particularly since this 
can be done in rather short compass to an audience whose background may be 
assumed to include acquaintance with the invariant factors and the Smith 
normal form of a matrix with elements in a principal ideal ring, $ . 

In the final part of this paper we present some original work extending the 
discussion of systems of linear equations, and systems of linear congruences 
modulo an ideal, from the classical case over the rational domain to the case 
where the systems are over a set of integral elements, with a ^-basis, belonging 
to an associative algebra. Here we assume knowledge of the Hermite normal 
form of a matrix with elements in a principal ideal ring. 

T H E CLASSICAL CASE 

2. The problems. The coefficients, constants, and moduli in the following 
equations and congruences are assumed to be in a specified principal ideal ring 
$ , such as the rational domain. For the system of p linear equations in n 
unknowns represented by 

n 

X^ XtatJ = kjt j = 1, 2, . . . ,p, 

we will use the matric notation 
(1) XA = K, 

where X is 1-by-n, A is n-by-p, and K is l-by-p. 
The first problem is to determine when (1) has a solution X with elements 

in $ , to find how many solutions there may be, and to give a method for 
actually obtaining the solution. 

For the system of linear congruences represented by 
n 

S %i t>u = gj (mod my), j = 1,2, . . . , p, 
i = l 
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we note that if m — [mi, m2, . . . , mp] is the least common multiple of the mjf 

then an equivalent system of congruences is given by 
n 

2 %i a>ij s kj (mod m), j = 1, 2 , . . . , p, 

where atj = &i;ry, &y = g/;-, and m = m/> If we denote this system by 

(2) XA = K(modm), 

then the second problem is to answer for (2) the same three questions we have 
listed for (1). 

3. Necessary and sufficient conditions for solving (1). There exist (4, 
Theorem 105.2) unimodular matrices U and V with elements in $ , U being 
n-by-n and F being p-by-p, such that UA V = E is in Smith normal form, with 
zero elements everywhere except in the main diagonal where there may appear 
non-zero elements d, e2y . . . , er (which are called invariant factors and which 
are uniquely determined up to associates in $) having the property that 
et divides ei+i and either r < £ < n o r r < w < £ . 

Hence the system (1) may be replaced by the equivalent system 

(XU-l)(JJAV) =KV, 

so that by setting Y = XU~l and C = KV, we arrive at 

(3) YE = C. 

The system (3) is so simple that we can immediately conclude that necessary 
and sufficient conditions for its solution are as follows : 

(4) et must divide cu i = 1, 2, . . . , r; ct = 0, i > r. 

If we define A' = (£) as the augmented matrix of (1), then using the con
ventional block notation we have 

(o ?)—(?)• 
so that a further transformation by unimodular matrices U' and V, where V 
is (n + l)-by- (n + 1) and V is p-by-p, will take A' into its Smith normal form, 
say U,(c)V = -E'> which is (n + l)-by-£ with elements é\ in the main dia
gonal. Thus depending on the relative size of n and p, the conditions (4) may be 
given the following form: 

(5) p < n\ e'i = eu i = 1, 2, . . . , p; 

(5') n < p: eft = eu i = 1, 2, . . . , n; and efn+\ = 0. 

4. Necessary and sufficient conditions for solving (2). Since the congruence 
problem (2) requires the existence of elements tj in $ such that 

n 

tjm + X %i aij = kj> J = 1 ,2 , . . . , / ? , 
i = i 
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it is easy to replace the system of congruences (2) by an equivalent system of 
p\ = p equations in n\ = n + p unknowns, say 

(6) XA +TM = K, 

where T is 1-by-p and M = mlp is a scalar p-by-p matrix. 
Since p\ < n\, we apply the test (5) to the system (6). This requires us to 

compute the invariant factors of (M) and (M). Fortunately this task is easy 
because of the form of M. Following an argument by Butson which is more 
direct than that used by Smith, we write 

(u ° )(A)v=(E) \o V-I)\M) \M) 
Because et divides et+i, we see that no further arrangement of columns is 
necessary and that the ith invariant factor of (M) is either (eu ni) when 
i < p < n, or is m when n < i < p. 

Similarly, for (M) the ith invariant factor is (e'u ni) when i < p < n\ but 
when n < py the (n + l)st invariant factor is (e'n+i, ni), and when 
n + 1 < i < p, the ith. invariant factor is m. 

Hence the test (5) shows that the necessary and sufficient conditions for the 
solution of (2) are as follows: 

(7) p < n: (e'u m) = (et, m), i = 1 , 2 , . . . , ^ ; 
(70 n < p: (e'i, m) = (eu m), i = 1, 2, . . . , n; and (e'w+i, m) = m. 

We note that the final condition in (7') may be written e'n+i = 0(mod m). 

5. The number of solutions and their form. To determine how many 
solutions there are and actually to produce them, we return to (3), supposing 
that the necessary and sufficient conditions stated above are satisfied. 

In the case of equations we see from YE = C, that the first r of the y s are 
determined uniquely by yt = cjeu while the remaining n — r of the y s are 
arbitrary. The complete solution of (1) is then given by X — YU and involves 
n — r parameters. Of course, since U and V are not unique, the complete 
solution may be obtained in a variety of forms, differently expressed, but 
actually equivalent. 

In the case of congruences we consider solutions X' and X of (2) to be dis
tinct only when X' ?£ X (mod m), i.e., when for at least one value of i we 
have x\ ^ xt (mod ni). We see from YE s= C (mod m), that the first r of the 
y s are determined by congruences of the form yt et = Ci (mod m). From 
properties of $ we know there are as many solutions yt which are incongruent 
mod m as there are residue classes of $ , mod (eu ni). The remaining y s are 
arbitrary, so for each of these there are as many solutions incongruent mod m 
as there are residue classes of $ (mod ni). The solutions of (2) are given ex
plicitly by X = YU (mod m), so there are as many distinct solutions X as 
there are distinct solutions Y. (Moreover, we may check that (mod ni) 
if and only if t t A \ i o 

x i = xt (mod ntj), j = 1, 2, . . . , p; 
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so there are the same number of incongruent solutions of the original system 
of congruences with moduli mi, m2, . . . , mp.) 

In particular, when $ is the domain of rational integers, the above considera
tions show that there are exactly 

N = (eu m) (e2, m) . . . (eT, m) mn~r 

distinct solutions of (2). 

6. Example. We take 3̂ to be the rational integers and consider the system 

3xi + #2 = 5, 
hx\ + 3x2 = 1. 

Using the notation of the preceding sections, we have 

«*"-(! -iXi X - Ï K !)-* 
KV = (5 1) V = (5 14) = C, 

Since 4 = e2 7̂  e'2 = 2, it follows from (5) that the system has no solution 
in rational integers. 

Considering the same system mod m, we see from (7) that we must have 
(1, m) — (1, ni) and (4, m) = (2, m). If m = 0 (mod 4), there are no solutions; 
if m = 1 or 3 (mod 4), there will be N = 1 solutions; and if m = 2 (mod 4), 
there will be N = 2 solutions. 

Thus if m = 10, we solve j i = 5, 4 j 2 = 14, for y\ = 5, 3^ = 1 ; and yi = 5, 
J2 = 6. Then from X = Ft/ , we compute #i = 1, x2 = 2; and #1 = 6, x2 = 7, 
respectively. 

T H E CASE OF INTEGRAL ELEMENTS OF AN ALGEBRA 

7. Sets of integral elements. Let 31 be an associative algebra defined over a 
field % and possessing a modulus e. Suppose that % contains the principal 
ideal ring ty. Each element of a set Q of elements of SI will be called an integral 
element if the set has the following three properties : 

U (unity): the set contains the modulus e; 
C (closure) : the set is closed under addition, subtraction, and multiplication; 
B (finite basis) : the set contains elements ei = e, e2, . . . , ek such that every 

element of the set is expressed uniquely in the form 

where each at is in $ . 
As an example we may take k = 1 and obtain as G the ring $ itself. Again 

when % is the rational field and ty the rational domain, we see that Q is a set 
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of integral elements (but not necessarily a maximal set) in the sense of Dickson 
(1, Chapter X) . See also (3). 

8. The regular representations. If a = £ a{ u is any element of G , by 

properties C and B there must exist elements rtj and sjt of ty such that 

a ej = ( £ at €,) €j = £ rw €„ j = 1, 2, . . . , fc; 
ê  a = €,(X) o* €*) = L % €f, j = 1, 2, . . . , k. 

Hence with each a in Q there are associated &-by-& matrices i?(«) = (rtj) and 
5(a) = (sjt) with elements in $ . 

If E indicates the 1-by-è matrix with elements ei, €2, . . . , ek> then in matric 
notation we have 
(8) a E = Ei?(a) , E r a = 5 (a )E r . 

Since €1 = e, the first column of R(a) and the first row of 5(a) consist of 
precisely the elements ai, a2, . . . , ak. Then from property B it follows that the 
correspondences defined by (8) are both one-to-one. Moreover, it is easily 
shown that the correspondences are preserved under the addition and multi
plication operations of each system. Hence the matrices R(a) and the matrices 
S (a) provide isomorphic representations for Q , well known, respectively, as 
the first and second regular representations. 

If a and 0 are in Q , we may use (8) and the fact that elements of $ commute 
with elements of G to write 

RT(a)S(/3)ET = RT(a)ET/3 = aIET 0 
= a /5 (0 )E r = 5 (0 )a IE r = S(/3)RT(a)ET; 

then from property B, it follows that 

RT(a)S((3) = S(0)RT(«)-

In particular, letting A = (ai, a2f . . . , ak) and B = (61, 62, . . . , 6*) be the 
first rows of RT(a) and 5(0), respectively, we obtain the useful relation 

(9) ,45(0) = BRT(a). 

9. Systems of linear equations over Q . We consider the following system of 
p linear equations in n unknowns: 

n 

(10) S aij Xi Pa = Yy> j = 1, 2, . . . , £, 

where the a^, 0^, and 7^ are given elements of D . Since G is not necessarily 
commutative, note that coefficients are allowed on both sides of the unknowns. 
We are concerned to establish necessary and sufficient conditions that (10) 
have solutions xi> X2, • • . » x» which are in Q . 

If we assume that such solutions exist we may write xi = X xa €./> where 
the xtj are in $ , and define Xt = (xa, . . . , xik). Supposing jj = X cjt eu we 

https://doi.org/10.4153/CJM-1955-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-039-2


SYSTEMS O F L I N E A R CONGRUENCES 363 

define C, = (cji, . . . , cjk). We define Atj to be the first row of S{atj). Then 
(8), (9) and (10) imply that 

= XXtR
T(atj)S(pti)E

T. 

Hence property B implies that 

C, = Ê Xt RT{atJ) S(0ti), j=l,2,...,p. 

We set 
C = (Cn, . . . 

X = ( X n , . . . , Xik', X21, . . . » X2ki • • • » %nh • • • » %nk)i 

and A = (RT(ai3) S(0ij)) where C is l-by-pk, X is l-by-w&, and the "enlarged 
coefficient matrix" A is nk-by-pk made up of &-by-& blocks of which the one 
in the y-position is RT{an) S(pi3). Then the equations obtained above may be 
written as the single matric equation 
(11) XA = C. 

Except for the size of the matrices involved, (11) is precisely a system of the 
classical type (1) with kp equations in kn unknowns, with the elements in
volved all in ty. 

Conversely, if (11) has a solution X in $, we can retrace the steps above to 
obtain in Q a solution of (10). Moreover, by property B, distinct solutions of 
(11) lead to distinct solutions of (10). 

Thus the problem of solving (10) in Q has been shown equivalent to solving 
(11) in $ . Referring to (5) and (5') we can assert that if eu e2, . . . are the 
invariant factors of A and if e\, e'2, • • • are the invariant factors of the aug
mented matrix (£), then necessary and sufficient conditions that the system 
(10) have a solution are that 

(12) p<n: e't = eit i => 1,2, . . . ,kp; 
(120 n < P: e'i = tu i = 1 , 2 , . . . , kn; and ekn+i = 0. 

Determining the number of solutions and the most general solution proceeds 
along the lines given in §5. In these matters it is worth a word of caution that 
the rank of A need not be a multiple of k. 

We note, thanks to the referee, that one type of matric equation, well known 
in the literature, is included in the above discussion. For if the algebra 31 is a 
total matric algebra of order k = n2, having the natural basis of elements ez7, 
where ez7 is an n-by-n matrix with 1 in the ij position and zeros elsewhere, so 
that the multiplication table is 

and if E = (en, . . . , eln; e2i, . . . , e2n; . . . ; enl, . . . , enn), then the typical 
element 0 = ^ ba eij> which we ordinarily represent as B = (ô^), has the 
regular representations 

R(p) = J- XB, 5(0) = B- X / , 
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where M- X B indicates the direct product matrix which is n2-by-n2 and whose 
ij block is Mbtj. Then a linear equation like a x 0 — y is replaced, according to 
the theory above for passing from (10) to (11), by an equation X' D' = C , 
where 

D' = RT(a)S(/3) = (/• XA)T(B- XI) = B- X AT 

and X' and C are 1-by-n2, obtained from X = {xtj) and C = (c^), respectively, 
by taking row blocks. The general linear equation in one unknown 
12 oil x &i — 7 may be treated in the same manner, the enlarged coefficient 
matrix being D" — £ Bt- X A?. This is the nivellateur studied by Sylvester 
(9), however, only for the case ty = §. 

Similarly, the system of equations (10) may be generalized to allow each 
unknown to appear in a finite number of summands in each equation; the 
technique for passing to (11) remains the same, except each component block 
of the enlarged coefficient matrix will now be a sum of matrices of the type 

10. Minimal bases for ideals in Q . In the usual manner the left ideal 5DÎ 
generated by f i, f 2, . . . , f u a given set of elements of Q , is defined to be the 
set of elements 

t 

obtained by allowing the left-multipliers vt to vary independently over all of 
O . A minimal basis for the ideal 9K is by definition a set of elements /xi, /*2, . . • , 
Hs such that an element of G is in the ideal 9J£ if and only if it can be repre
sented in the form 

s 

where the ct are in $ ; and this representation is to be unique. 
An argument by MacDuffee (2) shows that if H is the uniquely determined 

left-Hermite form of the matrix 

\5(r«: 
then the non-zero rows Ht of H determine a minimal basis for 3DÎ, having 
s < &, by the relation fxt = HilLT. The notation which we have been using 
makes it simple to reproduce the proof. 

Let U be a unimodular matrix, kt-by-kt, having elements in $ , such that 
US = H. Let V = U-\ so that 5 = VH. If the ith row of U is divided into 
l-by-& blocks Z7î;, then 

M< = ^ ET = E Utj 5(f,) ET = £ ^ E r f, = L ^ f„ 

where vzi = Z7̂  E r is in G, hence fit is in the ideal 9K, and so are all ]|T ^ /ij. 
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Conversely, given any element v = £ vt f t in the ideal, we have Vi = 2Z Wij e/ 
and if we define Nt = (na, . . . , wa) we can write vt — Nt E r . Hence 

where N is 1-by-kt, made up of the l-by-& blocks Nt, and where c* is the 
element in the ith column of NV. Since ct is in ty, a representation of the desired 
type for v has been found. The uniqueness of the representation follows from 
the independence of the non-zero rows in the canonical left-Hermite form H. 

In an analogous way we define the right-ideal generated by f i, f 2, . . . , f t 
to be the set of elements £ f t Vi obtained by allowing the right-multipliers 77* 
to vary independently over Q . In this case a minimal basis can be found by 
computing the left-Hermite form D of the matrix R which is kt-by-k with its 
ith &-by-& block being RT(Çi); for if D\y . . . , Dr are the non-zero rows of D, 
necessarily with r < k, then the elements 8j = Dj ET serve as a minimal basis. 

By combining these observations we can find a minimal basis for the two-
sided ideal generated by f 1, f2. . • . , f/whose typical element is 

t Qi 

where the g* are all finite. For we may first compute a minimal basis 
/xi, M2, . . . , Ms for the left ideal generated by f 1, f 2, . . • , f < and replace each 
"<j f « by £ /xm. Then 

S t Qi 

a = X) Mm *?m, where 77m = X S £<*» ^o-

Hence if, secondly, we compute a minimal basis 5i, 52, . . . , ôr for the right ideal 
generated by AH, /Z2, • • • , Ms, we shall have arrived at a suitable minimal basis 
5i, ô2, . . . , ôr for the two-sided ideal generated by f 1, f2, . . . , $v 

However, not every matrix H in left-Hermite form represents a minimal 
basis for an ideal of O (2, p. 76). 

When a and 0 are in Q , by the notation a = /5 (mod 93?) we mean that 
a — 0 is in the ideal 5DÎ and we say that a and 0 are in the same residue class 
mod 9K. For the sequel it is important to notice that, in general, it is only 
when the ideal 3D? is two-sided that multiplication of residue classes mod 99? is 
well defined. 

11. Systems of linear congruences modulo ideals. Over Q we consider the 
following system of p linear congruences, modulo ideals of Q , in n unknowns: 

n 

(13) £ atj Xi Pa = y j (mod m,), j=l,2,...,p. 

We shall assume as explained in §10 that for the ideal Wlj, whether it be left, 
right, or two-sided, a minimal basis of Sj elements has been found, say 

Miy> M2y, • . • , Hsu, 

given by ixtj = Hi3 ET where the H a are non-zero rows of a left-Hermite 
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£-by-& matrix. We let Hj be the srby-k matrix with rows Htj, so that Hj is 
what is called an echelon row form. 

The system (13) is then equivalent to the system 
n SJ 

X oiij Xi Pa + X hi Ha = 7j, j = 1, 2, . . . , p, 

where the unknowns t^ are in $ . Following the same development and using 
the same notation as in §9, we may show that solving (13) in Q is equivalent 
to solving in $ the following system : 

(14) (X T) 

where 

& ) -

T — ( / n , . . . , t8x\\ tu,..., tSa2)... ; hP, • • . i tSvP) 

and H is the direct sum H = Hi + H2 + . • • + Hv. 
The number of unknowns in (14) is nk + s, where s = £ ^» and the number 

of equations is pk. 
If pk K nk + 5, we apply (5) to obtain the conditions 

(15) eA CJ = dify , i= 1,2, ...,pk. 

H nk + s < pk, we apply (5r) to obtain the conditions 

(15') = v * \H) yi = lj 2' * * * *nk + 5' 
I 0 , i = nk + s + 1. 

Thus (15) and (15') represent necessary and sufficient conditions for the 
solution of (13). 

If the solution is obtained as in §5, starting from (14), unnecessary para
meters may be noticed. We have made a further study of (14) in which the 
Smith forms Dù of Hj play a part, as well as the least common multiple m of the 
elements of all the Dj. This method seems of some interest because of avoiding 
unnecessary parameters, but the alternative set of conditions which is obtained 
lacks the directness of (15) and (15r). This further study emphasized the need 
of care in the definitions of congruent solutions. 

Suppose that xu X2, . . . » Xn is a solution of (13). If all the ideals 3Rj are 
two-sided and if 
(16) X'i - Xi (mod 2R,)f i = 1, 2, . . . , n;j = 1, 2, . . . , p; 

then X'I, Xr2> . . . , x'n is also a solution of (16). But if one or more of the ideals 
93?̂  is one-sided, (16) is no longer sufficient to guarantee that x'u Xi, • • • > Xn 
is a solution of (13). Having given these words of caution, we now define sets 
of solutions of (13) which satisfy (16) to be congruent sets. 
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In matric form (16) may be written 

X\ - Xt = WtJHj9 i = 1, 2, . . . , n;j = 1, 2, . . . , p. 

Hence X'i — Xt is a common left multiple of the Hj. By repeated application 
of the method described in (7), there is a constructive way of finding M the 
least common left multiple of Hi, Hi, . . . , Hp. Then (16) is equivalent to the 
existence of Ç< with elements in $ such that 

X't-Xt = QiM, i= 1 ,2, . . . ,**; 

and hence to the single matric equation 

(17) X' - X = QM* 

where M* = M + M + . . . + M with n summands. Hence we may apply 
(5) and (5') to obtain conditions equivalent to (16) expressed in terms of the 
invariant factors of M * and 

/ M* \ 
\X' - X) * 

12. Example. Letting % be the rational field and $ the rational domain, we 
consider the algebra 21 having as a basis e\ = c, €2, e3 with €2 e2 = e2, €3 €2 = e3, 
and €2 €3 = €3 €3 = 0. If we take as O the set of all a = a €1 + b e2 + c e3 

where a, b, c are in $ , we have a set of integral elements with the basis d, €2, €3. 
Using (8) we find 

( a b c\ l a b c \ 

0 a + b c\, S(a) = I 0 a + b 0 ) . 
0 0 a / \ 0 0 a + b/ 

Taking a = (3, 3, 1) W, 0 = (1,5,2) E r , 7 = (0, 0, 2) ET, f = (6, 2,12) E r , 
we will study 
(18) a x 0 = 7, 
(19) « X 0 3S Y(mod(r]) , 
(20) a X | 8 s 7 ( m o d [ f ) ) f 

where (f ] and [f ) indicate, respectively, the left and right ideals generated by f. 
First we compute 

/ 3 3 1\ /1 5 2 \ / 3 33 12\ / 3 0 0\ 
^ = RT(a)S(p) = 1 0 6 1 1 0 6 O h 0 36 6 ] , E = ( 0 6 0 1. 

\ 0 0 3 / \ 0 0 6 / \ 0 0 18/ \ 0 0 108/ 

When we find that A' = (c) has e\ = 1, e'2 = 6, e'3 = 108, it follows from 
(12) that there is no solution to (18). 

Since 5(f) has the left-Hermite form 

/24 0 0\ 
L = I 12 4 0 1, 

V 6 2 4/ 
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we find that (£) has e\ = 1, e2 = 2, e3 = 12, and that (£') has e\ = 1, e'2 = 2, 
6% = 12, so by (15) there is a solution of (19). 

Since i? r(f) has the left-Hermite form 

/24 0 0 \ 
i ? = 6 2 0 ] , 

\ 0 0 6/ 

we find that (£) has <?i = 1, e2 = 6, e3 = 12, but that («') has e\ = 1, e'2 = 2, 
e'3 = 12, so by (15) there is no solution to (20). 

When we carry through the actual solution of (19) we find that the most 
general solution involves three parameters : 

xi = — 24zi + 2JS3, X2 = 22si — 2z3, xz = 1 + 78zi + A.z2 — 12z3. 

When we apply (17) we find that pairs of the solutions are congruent mod ({"], 
if and only if 

z'i = Zi(mod 4), zf
2 = 22(mod 2), z'z = s3(mod 3). 
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