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Abstract

This work concerns Markov decision chains with finite state spaces and compact action
sets. The performance index is the long-run risk-sensitive average cost criterion, and it is
assumed that, under each stationary policy, the state space is a communicating class and
that the cost function and the transition law depend continuously on the action. These
latter data are not directly available to the decision-maker, but convergent approximations
are known or are more easily computed. In this context, the nonstationary value iteration
algorithm is used to approximate the solution of the optimality equation, and to obtain a
nearly optimal stationary policy.
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1. Introduction

This paper deals with Markov decision processes (MDPs) with finite state spaces and
compact action sets. The controller has (arbitrary but constant) risk sensitivity λ > 0, and
the performance index of a control policy is the corresponding risk-sensitive average cost
criterion. Besides standard continuity requirements, it is assumed that the whole state space is
a communicating class under each stationary policy. In these circumstances, it has been shown
that the optimal value function is constant and is characterized by the λ-sensitive optimality
equation (λ-OE) (see Cavazos-Cadena and Fernández-Gaucherand (2002)). A similar result
was obtained for MDPs with denumerable state spaces in Borkar and Meyn (2002) – where a
penalized cost structure was assumed – and, under appropriate mixing conditions, for MDPs
on Borel spaces in Di Masi and Stettner (1999), (2000). In the finite state space context
described above, our main objective is to approximate the solution to the λ-OE when the exact
transition law and cost function are not immediately available to the controller, but convergent
approximations to these data are known or are more easily computed. Following Federgruen
and Schweitzer (1981), this problem will be approached via the nonstationary value iteration
algorithm, which has been widely used to construct adaptive optimal policies in the risk-
neutral case (see Hernández-Lerma (1989)). The result, stated as Theorem 3.1, is based on
(a) the application of the extended Schweitzer transformation introduced in Cavazos-Cadena
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906 R. CAVAZOS-CADENA AND R. MONTES-DE-OCA

and Montes-de-Oca (2003) (see also Schweitzer (1971)), which generates an equivalent MDP
having a positive lower bound for the probability of observing the coincidence of two successive
states; and (b) the use of the Birkhoff contraction coefficient, which was first employed in
Bielecki et al. (1999) to analyze the stationary version of the value iteration scheme in a risk-
sensitive context. A similar problem was recently studied for MDPs with locally compact state
spaces in Duncan et al. (2001), where, under strong mixing conditions, nearly optimal adaptive
policies were constructed using large deviations techniques and discrete maximum likelihood
estimates.

The paper is organized as follows. In Section 2 the decision model is briefly described, and
in Section 3 the original MDP is transformed and the main result stated as Theorem 3.1. After
some technical preliminaries in Section 4, Theorem 3.1 is proved in Section 5.

Throughout, R and N as usual denote the sets of real numbers and nonnegative integers,
respectively, and, for a topological space K, B(K) denotes the space of all continuous and
bounded real-valued functions defined on K: for each V ∈ B(K), ‖V ‖ := maxx∈K |V (x)|. If
G = [Gx,y] is a real matrix, set ‖G‖ := maxx,y |Gx,y |.

2. Decision model

Let M = 〈S,A,C, P 〉 be an MDP, where the state space S is a finite set endowed with the
discrete topology; the control set A is a compact metric space and, for each x ∈ S, A(x) ⊂ A

is the measurable and nonempty subset of admissible actions at state x; C : K → R is the cost
function, with K := {(x, a), a ∈ A(x), x ∈ S}; and P = [px,y(·)] is the controlled transition
law. The interpretation of M is as follows. At each time t ∈ N, the state Xt = x ∈ S of a
dynamical system is observed and an action At = a ∈ A(x) is chosen. A cost C(x, a) is then
incurred and, regardless of the previous states and actions, the state of the system at time t + 1
will be Xt+1 = y ∈ S with probability px,y(a); this is the Markov property of the decision
model.

Assumption 2.1. Assume that C ∈ B(K) and, for each x, y ∈ S, that px,y(·) ∈ B(A).

Definition 2.1. (Policy.) A control policy is a rule for choosing actions, and may depend on
both the current state and the record of previous states and actions; the class of all policies is
denoted by P . Given the policy π used to drive the system and the initial stateX0 = x ∈ S, the
distribution Pπx of the state–action process {(Xt , At )} is uniquely determined (see Hernández-
Lerma (1989) and Puterman (1994)), and Eπx stands for the corresponding expectation operator.
Now define F := ∏

x∈S A(x), the compact set consisting of all functions f : S → A. Policy
π is stationary if there exists an f ∈ F such that, under π , the action At = f (Xt ) is applied
at each time t ∈ N; the class of stationary policies is naturally identified with F. Furthermore,
each sequence {ft } ⊂ F corresponds to a policy π that prescribes action At = ft (Xt ) at each
time t ∈ N.

Definition 2.2. (Performance index.) When the system evolves under π ∈ P and x ∈ S is the
initial state, the λ-sensitive total cost up to time n ∈ N is given by

Jn(π, x) := 1

λ
log

(
Eπx

[
exp

(
λ

n∑
t=0

C(Xt , At )

)])
,

whereas the (long-run) expected λ-sensitive average cost under π , starting at x, is defined by

J (π, x) := lim sup
n→∞

(
1

n+ 1
Jn(π, x)

)
.
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This criterion is the performance index of the policy π , starting at x. The optimal λ-sensitive
average cost at state x is given by

J ∗(x) := inf
π∈P

J (π, x),

and a policy π∗ ∈ P is λ-optimal if J (π∗, x) = J ∗(x) for every x ∈ S.

Assumption 2.2. For each x, y ∈ S and f ∈ F, there exists an n ≡ n(x, y, f ) ∈ N such that
Pfx [Xn = y] > 0.

Lemma 2.1. Under Assumptions 2.1 and 2.2, the following assertions hold.

(i) There exist a g ∈ R and an h : S → R satisfying the λ-OE

eλg+λh(x) = min
a∈A

[
eλC(x,a)

∑
y∈S

px,y(a)e
λh(y)

]
, x ∈ S. (2.1)

(ii) The real numberg in (2.1) is the optimalλ-sensitive average cost at each state, i.e.J ∗(·) =
g, and the function h(·) is uniquely determined modulo an additive constant.

(iii) If f ∈ F is such that action f (x) is a minimizer of the right-hand side of (2.1) for each
x ∈ S, then the stationary policy f is λ-optimal.

A proof of this result can be found in Cavazos-Cadena and Fernández-Gaucherand (2002),
or Borkar and Meyn (2002).

2.1. The problem

Throughout the remainder of the paper, we suppose that the cost function and the transition
law are not immediately available to the controller, but, rather, that the decision-maker knows
approximations Cn : K → R and Pn = [pnx,y(·)] satisfying the following conditions.

Assumption 2.3. (i) Assume that, for each n ∈ N, Cn ∈ B(K) and pnx,y(·) ∈ B(A), x, y ∈ S.

(ii) Assume that ‖Cn − C‖ + maxx,y∈S ‖pnx,y(·)− px,y(·)‖ → 0 as n → ∞.

Under Assumptions 2.1–2.3, the main problem we consider in this note is that of how to use,
for each n ∈ N, the data {(Ck, Pk), k ≤ n} to build convergent approximations (gn,Hn(·)) to
the unique solution (g, h(·)) of the λ-OE satisfying h(z) = 0, for a fixed reference point z ∈ S,
and to determine stationary policies {ψn} whose performance indices converge to the optimal
one (see Theorem 3.1, below). This problem is approached via an appropriate formulation of
the nonstationary value iteration scheme; the results, stated in the following section, extend
those obtained in Federgruen and Schweitzer (1981) for MDPs with risk-neutral criteria. The
following lemma, established as Theorem A in Cavazos-Cadena and Montes-de-Oca (2003),
will be useful.

Lemma 2.2. Let γ ∈ R and H ∈ B(S) be fixed. Under Assumption 2.1, the following
assertions hold.

(i) If

eλγ+λH(x) ≤ min
a∈A

[
eλC(x,a)

∑
y∈S

px,y(a)e
λH(y)

]
, x ∈ S,

then γ ≤ J ∗(·).
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(ii) Similarly,

eλγ+λH(x) ≥ min
a∈A

[
eλC(x,a)

∑
y∈S

px,y(a)e
λH(y)

]
, x ∈ S,

implies that γ ≥ J ∗(·).
(iii) If f ∈ F satisfies

eλγ+λH(x) ≥ eλC(x,f (x))
∑
y∈S

px,y(f (x))e
λH(y), x ∈ S,

then γ ≥ J (f, ·).

3. Transformed model and main result

Henceforth, Assumptions 2.1–2.3 are implicit. The solution to the problem posed above
involves the following extension of Schweitzer’s transformation, introduced in Cavazos-Cadena
and Montes-de-Oca (2003).

Definition 3.1. Let M = 〈S,A,C, P 〉 be as in Section 2 and let α ∈ (0, 1) be fixed.

(i) We define D : K → R and Q = [qx,y(·)] as follows. For each x, y ∈ S and a ∈ A,

D(x, a) := 1

λ
log((1 − α)eλC(x,a) + α),

qx,y(a) := (1 − α)eλC(x,a)px,y(a)+ αδx,y

(1 − α)eλC(x,a) + α
,

(3.1)

where δx,y = 0 if x �= y and δx,x = 1.

(ii) Let {Cn} and {Pn} be as in Assumption 2.3. For every n ∈ N, a ∈ A, and x, y ∈ S, set

Dn(x, a) := 1

λ
log((1 − α)eλCn(x,a) + α),

qnx,y(a) := (1 − α)eλCn(x,a)pnx,y(a)+ αδx,y

(1 − α)eλCn(x,a) + α
.

(iii) The transformed MDP M̃ is given by M̃ := 〈S,A,D,Q〉, and M̃n := 〈S,A,Dn,Qn〉 for
each n ∈ N, where Qn := [qnx,y(·)].

For each (x, a) ∈ K, (3.1) implies that {qx,y(a), y ∈ S} is a probability distribution on S
and

qx,x(a) ≥ α

(1 − α)e|λ| ‖C‖ + α
=: β > 0; (3.2)

thus, in model M̃ the probability of observing the equality of two successive states is bounded
away from 0. Also from (3.1), it is not difficult to see that M̃ satisfies Assumptions 2.1 and 2.2,
and an application of Lemma 2.1 to M̃ shows that there exists a pair (g̃, h̃(·)) satisfying

eλg̃+λh̃(x) = min
a∈A

[
eλD(x,a)

∑
y∈S

qx,y(a)e
λh̃(y)

]
, x ∈ S, (3.3)

which is the λ-OE associated with M̃ . The number g̃ is the optimal λ-sensitive average cost
associated with M̃ , and h̃(·) is uniquely determined up to an additive constant. The following
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lemma shows that the solutions to the λ-OEs associated with M and M̃ are related in a simple
way; for a proof see Cavazos-Cadena and Montes-de-Oca (2003).

Lemma 3.1. (i) Suppose that the pair (g, h(·)) satisfies the optimality equation (2.1), and define
g̃ by g̃ := (1/λ) log((1 − α)eλg + α). In this case, (g̃, h(·)) is a solution to (3.3).

(ii) If the pair (g̃, h̃(·)) satisfies (3.3) then eλg̃ > α and, with g := (1/λ) log((eλg̃−α)/(1−α)),
the pair (g, h̃(·)) satisfies (2.1).

Remark 3.1. (i) Throughout the remainder of the paper, z ∈ S is a fixed reference point and
(g, h(·)) stands for the unique solution to (2.1) satisfying h(z) = 0. Consequently, with g̃
defined as in Lemma 3.1(i), (g̃, h(·)) is the unique solution to (3.3) for which the functional
part vanishes at z (i.e. for which h(z) = 0).

(ii) In model M̃ , P̃
π

x denotes the distribution of the state–action process {(Xt , At )} under the
action of policy π when the initial state is X0 = x. From (3.2), it is not difficult to see that

P̃
π

y [Xr = y] ≥ βr, y ∈ S, π ∈ P , r ∈ N. (3.4)

(iii) Notice that
‖Dn −D‖ + max

x,y∈S ‖qnx,y − qx,y‖ → 0 as n → ∞,

by Assumption 2.3 and Definition 3.1. In particular, since D ∈ B(K) and K is a compact
space, supn∈N ‖Dn‖ =: � < ∞.

The nonstationary value iteration algorithm is now introduced in terms of the models M̃n.

Definition 3.2. (i) The sequence {Vn : S → R, n = −1, 0, 1, 2, . . .} is recursively determined
as follows: V−1 := W , where the seed W ∈ B(S) is arbitrary but fixed, and, for n ∈ N,

Vn(x) := min
a∈A

[
1

λ
log

(
eλDn(x,a)

∑
y∈S

qnx,y(a)e
λVn−1(y)

)]
, x ∈ S. (3.5)

(ii) For each n ∈ N, the nth differential cost function g̃n : S → R is defined by

g̃n(x) = Vn(x)− Vn−1(x), x ∈ S. (3.6)

(iii) The nth relative value function Hn : S → R is given as follows:

Hn(x) = Vn(x)− Vn(z), x ∈ S, n = −1, 0, 1, 2, 3, . . . . (3.7)

Notice that (3.5) is equivalent to

eλVn(x) = min
a∈A

[
eλDn(x,a)

∑
y∈S

qnx,y(a)e
λVn−1(y)

]
, x ∈ S, n ∈ N, (3.8)

and, by Assumption 2.1 and Definition 3.1, the term within brackets in this equation depends
continuously on a ∈ A; since the action space A is compact, for each n ∈ N there exists a
ψn ∈ F such that

eλVn(x) = eλDn(x,ψn(x))
∑
y∈S

qnx,y(ψn(x))e
λVn−1(y), x ∈ S. (3.9)
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Our main result can be now stated as follows (recall Remark 3.1(i)).

Theorem 3.1. Under Assumptions 2.1–2.3, the following assertions hold.

(i) (g̃n(z),Hn(·)) → (g̃, h(·)) as n → ∞.

(ii) For each n ∈ N, we have g̃n(z) > α. With

gn := 1

λ
log

(
eλg̃n(z) − α

1 − α

)
, (3.10)

it follows that limn→∞ gn = g.

(iii) For a given n ∈ N, let ψn ∈ F satisfy (3.9). Then J (ψn, ·) → g as n → ∞.

The proof of this theorem will be presented in Section 5.

4. Technical preliminaries

The technical tools that will be used to prove Theorem 3.1 are established in the two lemmas
below. The first one concerns a communication property of the transformed model M̃ with
respect to arbitrary policies.

Lemma 4.1. There exist a positive integer N0 and a β∗ > 0 such that, for each x, y ∈ S and
π ∈ P ,

P̃
π

x [XN0 = y] ≥ β∗.

Proof. First, for each y ∈ S define the hitting time Ty by

Ty := min{n > 0 : Xn = y}. (4.1)

Next, let x, y ∈ S be arbitrary but fixed, and recall that the transition kernel Q = [qx,y(·)]
of model M̃ satisfies the conditions in Assumptions 2.1 and 2.2. By combining the Markov
property with Proposition 18 of Royden (1968, p. 232), it is not difficult to see that the mappings
f → P̃

f

x [Xn = y] and f → P̃
f

x [Ty ≤ n] are continuous in f ∈ F. Also, given an f ′ ∈ F, there
exists an n(x, y, f ′) satisfying

P̃
f ′
x [Xn(x,y,f ′) = y] > 0

and, by continuity, there exists a neighborhood N (f ′) of f ′ such that

f ∈ N (f ′) ⇒ P̃
f

x [Xn(x,y,f ′) = y] > 0. (4.2)

Since F is compact, there exist policies f ′
i ∈ F, i = 1, 2, . . . , N1, such that F = ⋃N1

i=1 N (f ′
i ).

Set n0(x, y) := max{n(x, y, f ′
i ), i = 1, 2, . . . , N1} and let f ∈ F be arbitrary. In this case,

f ∈ N (f ′
i ) for some i between 1 and N1, meaning that (4.1) and (4.2) yield

P̃
f

x [Ty ≤ n0(x, y)] ≥ P̃
f

x [Xn(x,y,f ′
i )

= y] > 0;

since F is compact and f → P̃
f

x [Ty ≤ n0(x, y)] is a continuous mapping, there exists a
ρ(x, y) > 0 such that

P̃
f

x [Ty ≤ n0(x, y)] ≥ ρ(x, y) for every f ∈ F.
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With n0 := maxx,y∈S n0(x, y) and ρ := minx,y∈S ρ(x, y), it follows that n0 < ∞ and ρ > 0,
by the finiteness of S, and that

P̃
f

x [Ty ≤ n0] ≥ P̃
f

x [Ty ≤ n0(x, y)] ≥ ρ(x, y) ≥ ρ, x, y ∈ S, f ∈ F.

Consequently, for each f ∈ F, the inequality P̃
f

x [Ty > n0] ≤ 1 − ρ holds for all states x
and y, and an induction argument using the Markov property yields P̃

f

x [Ty > rn0] ≤ (1 − ρ)r

for each r ∈ N, f ∈ F, and x, y ∈ S, meaning that

Ẽ
f

x [Ty] ≤ n0

∞∑
r=0

(1 − ρ)r = n0

ρ
.

From this, it follows that there exists a constantB such that Ẽ
π

x [Ty] ≤ B for every policy π ∈ P
and all x, y ∈ S (see Thomas (1980) and Cavazos-Cadena (1988)). Therefore, if the integer
N0 is larger than 2B, we have

P̃
π

x [Ty < N0] ≥ 1
2 , x, y,∈ S, π ∈ P ,

by Markov’s inequality. Observing that

P̃
π

x [XN0 = y] ≥
N0−1∑
r=1

P̃
π

x [Ty = r, XN0 = y],

from the above display and (3.4) we find, via the Markov property, that

P̃
π

x [XN0 = y] ≥
N0−1∑
r=1

P̃
π

x [Ty = r]βN0−r

≥ βN0

N0−1∑
r=1

P̃
π

x [Ty = r]

= βN0 P̃
π

x [Ty < N0]
≥ 1

2β
N0

=: β∗ > 0.

This completes the proof.

The second preliminary result involves the following contraction coefficient.

Definition 4.1. (i) Given an m ∈ N \ {0}, let Pm consist of all m-dimensional vectors with
positive components, and, for each x, y ∈ Pm, define the Birkhoff (pseudo)distance between x
and y by

d(x, y) := log

(
maxr [xr/yr ]
minr [xr/yr ]

)
,

where xr and yr , r = 1, . . . , m, are the respective components of x and y.
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(ii) Let G be a matrix of order n × m, and suppose that all the components of G are positive.
The Birkhoff contraction coefficient of G is defined by

τ(G) := min{τ > 0 : d(Gx,Gy) ≤ τd(x, y) for all x, y ∈ Pm}. (4.3)

Lemma 4.2. If the matrixG = [Gi,j ] has positive components, the following Birkhoff formula
holds:

τ(G) = 1 − φ(G)1/2

1 + φ(G)1/2
, where φ(G) := min

r,i,j,k

Gr,jGi,k

Gi,jGr,k
. (4.4)

A proof of this lemma can be found in Seneta (1981, pp. 100–110) or Cavazos-Cadena
(2003).

5. Proof of Theorem 3.1

The foregoing preliminaries will be now used to establish Theorem 3.1. The argument relies
on the three lemmas stated below, particularly on the assertion (of Lemma 5.2) that {sp(g̃n)},
where sp(g̃n) is the span seminorm of g̃n, converges to 0. The span seminorm is given by

sp(W) := max
x∈S W(x)− min

x∈S W(x), W ∈ B(S). (5.1)

Before going any further it is convenient to introduce the following notation.

Definition 5.1. For each policy f ∈ F and each n ∈ N, the matrices Bf = [Bfx,y, x, y ∈ S]
and Bn,f = [Bn,fx,y , x, y ∈ S] are determined as follows:

B
f
x,y := eλD(x,f (x))qx,y(f (x)), B

n,f
x,y := eλDn(x,f (x))qnx,y(f (x)), x, y ∈ S.

From Assumption 2.3 and Definition 3.1, it follows that

lim
n→∞

(
max
f∈F

‖Bf − Bn,f ‖
)

= 0,

which yields the following convergence, with N0 as in Lemma 4.1:

max
f0,f1,...,fN0−1∈F

∥∥∥∥
N0−1∏
i=0

Bn−i,fi −
N0−1∏
i=0

Bfi

∥∥∥∥ → 0 as n → ∞. (5.2)

Next observe that, by Definition 5.1 and Remark 3.1(iii), the inequalityBfx,y ≥ e−λ�qx,y(f (x))
always holds. Via Lemma 4.1, it follows that, for each f0, f1, . . . , fN0−1 ∈ F,

eλN0� ≥
[N0−1∏
i=0

Bfi
]
x,y

≥ e−λN0�P̃
π

x [XN0 = y] ≥ e−λN0�β∗, x, y ∈ S, (5.3)

where policy π is given by π := (f0, f1, . . . , fN0−1, fN0−1, fN0−1, . . .).

Lemma 5.1. Let f0, f1, f2, . . . , fN0 ∈ F be arbitrary but fixed, and define the matrix G by

G :=
[∏N0−1

i=0 Bfi∏N0
i=1 B

fi

]
. (5.4)
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Then

τ(G) ≤ 1 − β∗e−2λN0�

1 + β∗e−2λN0�
=: τ ∗ < 1

(see (4.3) and (4.4)).

Proof. By (5.3), all the components of G lie between β∗e−λN0� and eλN0�; hence, the
inequalities Gr,j /Gi,j ≥ β∗e−2λN0� and Gi,k/Gr,k ≥ β∗e−2λN0� always hold, meaning that
φ(G) ≥ (β∗e−2λN0�)2, by (4.4). Using the formula for τ(G) in (4.4), the result follows from
the observation that the mapping w → (1 − √

w)/(1 + √
w) is decreasing in w ∈ [0, 1].

Now note that, by (5.2) and (5.3), there exists an integerN1 ≥ N0 such that the components
of

∏N0−1
i=0 Bn−i,fi are always positive when n ≥ N1; set

εn := max
x,y∈S

fi∈F, i=0,1,...,N0−1

∣∣∣∣log
[∏N0−1

i=0 Bn−i,fi ]x,y
[∏N0−1

i=0 Bfi ]x,y

∣∣∣∣ ∈ (0,∞), n ≥ N1, (5.5)

and observe that (5.2) and (5.3) together yield

lim
n→∞ εn = 0. (5.6)

The following lemma provides the central step in the proof of Theorem 3.1.

Lemma 5.2. The sequence {g̃n} of differential costs in Definition 3.2(ii) satisfies the following
assertions.

(i) With the integer N1 and τ ∗ ∈ [0, 1) as in (5.5) and Lemma 5.1, respectively, we have

sp(g̃n) ≤ 2(εn + εn−1)/λ+ τ ∗ sp(g̃n−N0), n > N1 (5.7)

(see (5.1)).

(ii) It follows from (i) that limn→∞ sp(g̃n) = 0.

Proof. (i) Identify the set of all mappings x → eλVk(x), x ∈ S, with the components of a
column vector Vk , say (so Vk = [eλVk(x)]x∈S); let n > N1 be arbitrary; and note that (3.8),
(3.9), and Definition 5.1 together yield the relations

Vn = Bn,ψnVn−1, Vn−1 ≤ Bn−1,ψnVn−2,

Vn−1 = Bn−1,ψn−1Vn−2, Vn ≤ Bn,ψn−1Vn−1,

implying that

Vn =
N0−1∏
i=0

Bn−i,ψn−iVn−N0 , Vn−1 ≤
N0−1∏
i=0

Bn−1−i,ψn−iVn−N0−1,

Vn−1 =
N0−1∏
i=0

Bn−1−i,ψn−1−iVn−1−N0 , Vn ≤
N0−1∏
i=0

Bn−i,ψn−1−iVn−N0 .
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Together with (5.5), these lead to

Vn ≥ e−εn
N0−1∏
i=0

Bψn−iVn−N0 , Vn−1 ≤ eεn−1

N0−1∏
i=0

Bψn−iVn−N0−1, (5.8)

Vn−1 ≥ e−εn−1

N0−1∏
i=0

Bψn−1−iVn−1−N0 , Vn ≤ eεn
N0−1∏
i=0

Bψn−1−iVn−N0 . (5.9)

Now set (f0, f1, . . . , fN0) := (ψn, ψn−1, . . . , ψn−N0) and let G be the matrix in (5.4). In this
case

∏N0−1
i=0 Bψn−i = ∏N0−1

i=0 Bfi is a submatrix of G and (5.8) implies that, for each x ∈ S,

eλg̃n(x) = eλ[Vn(x)−Vn−1(x)]

≥ e−εn−εn−1
[∏N0−1

i=0 Bψn−iVn−N0 ]x
[∏N0−1

i=0 Bψn−iVn−N0−1]x
≥ e−εn−εn−1 min

r

[GVn−N0 ]r
[GVn−N0−1]r , (5.10)

where r is the row index of the vector to which it is affixed. Similarly, using the fact that∏N0−1
i=0 Bψn−1−i = ∏N0

i=1 B
fi is a submatrix of G, from (5.9) we find that, for every y ∈ S,

eλg̃n(y) ≤ eεn+εn−1
[∏N0−1

i=0 Bψn−1−iVn−N0 ]y
[∏N0−1

i=0 Bψn−1−iVn−N0−1]y
≤ eεn+εn−1 max

r

[GVn−N0 ]r
[GVn−N0−1]r .

Together with (5.10) and Definition 4.1, this leads to

λ[g̃n(y)− g̃n(x)] ≤ 2(εn + εn−1)+ log

(
max
r

[GVn−N0 ]r
[GVn−N0−1]r

)
− log

(
min
r

[GVn−N0 ]r
[GVn−N0−1]r

)
= 2(εn + εn−1)+ d(GVn−N0 ,GVn−N0−1)

≤ 2(εn + εn−1)+ τ(G)d(Vn−N0 ,Vn−1−N0)

= 2(εn + εn−1)+ λτ(G) sp(Vn−N0 − Vn−1−N0),

where the last equality follows from d(Vn−N0 ,Vn−1−N0) = λ sp(Vn−N0 − Vn−1−N0), which
in turn follows from Definition 4.1(i) and (5.1). Since x, y ∈ S and n > N1 are arbitrary, the
observation that g̃n−N0 = Vn−N0 − Vn−1−N0 now completes the proof of part (i).

(ii) By (5.5) and (5.6), there exists a b0 ∈ (0,∞) such that 2(εn + εn−1)/λ ≤ b0 for each
n > N1. Part (i) then yields sp(g̃n) ≤ b0 + τ ∗ sp(g̃n−N0), meaning that

sp(g̃n) ≤ b0

r−1∑
i=0

(τ ∗)i + (τ ∗)r sp(g̃n−rN0)

if r, n ∈ N satisfy n− (r − 1)N0 > N1. Given an integer n > N1, let k be the smallest integer
such that n− kN0 ≤ N1. Then

sp(g̃n) ≤ b0

k−1∑
i=0

(τ ∗)i + (τ ∗)k sp(g̃n−kN0) ≤ b0

1 − τ ∗ + b1 < ∞,
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where b1 := maxt≤N1 sp(g̃t ), and, consequently, lim supn→∞ sp(g̃n) is finite. To conclude,
note that (5.6) and (5.7) together imply that

lim sup
n→∞

sp(g̃n) ≤ τ ∗ lim sup
n→∞

sp(g̃n)

and, thus, lim supn→∞ sp(g̃n) = 0, since τ ∗ < 1.

Lemma 5.3. The sequences {‖g̃n(·)‖} and {sp(Vn)} are bounded.

Proof. By combining (3.6)–(3.8), we find that

exp(λg̃n(x)+ Vn−1(x)) = min
a∈A

[
eλDn(x,a)

∑
y∈S

qnx,y(a)e
λVn−1(y)

]
, x ∈ S, n ∈ N. (5.11)

Let z ∈ S be the fixed reference point introduced in Definition 3.2, note that

g̃n(z)− sp(g̃n) ≤ g̃n(x) ≤ g̃n(z)+ sp(g̃n) for every x ∈ S,
and observe that (5.11) yields

exp(λ[g̃n(z)− sp(g̃n)] + Vn−1(x)) ≤ min
a∈A

[
eλDn(x,a)

∑
y∈S

qnx,y(a)e
λVn−1(y)

]

≤ exp(λ[g̃n(z)+ sp(g̃n)] + Vn−1(x)).

By applying Lemma 2.2 to model M̃n in Definition 3.1(iii), we find that

g̃n(z)− sp(g̃n) ≤ J n∗(·) ≤ g̃n(z)+ sp(g̃n),

where J n∗(·) is the optimal λ-sensitive average cost for model M̃n; since |J n∗(·)| ≤ ‖Dn‖ ≤
� < ∞ (see Remark 3.1(iii)), it follows that |g̃n(z)| ≤ sp(g̃n)+�, meaning that

|g̃n(x)| ≤ sp(g̃n)+ |g̃n(z)| ≤ 2 sp(g̃n)+�,

which, via Lemma 5.2, yields
sup
n∈N

‖g̃n‖ =: b̃ < ∞. (5.12)

Observe now that, since S is finite, for each k ∈ N the functionVk(·) has a minimizer x∗
k ∈ S:

Vk(x
∗
k ) = min

x∈S Vk(x).

Next, let n ≥ N1 be arbitrary. From (5.3) and the first inequality in (5.8) (with n+N0 instead
of n), it follows that

eλVn+N0 (x
∗
n) ≥ e−εn+N0 e−N0λ�

∑
y∈S

P̃
π

x∗
n
[XN0 = y]eλVn(y),

where π = (ψn, ψn−1, . . . , ψN0 , ψN0 , . . .) and each policy ψn is as in (3.9). Lemma 4.1 then
yields

eλVn+N0 (x
∗
n) ≥ e−εn+N0 e−N0λ�β∗eλVn(w) for every w ∈ S.
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This implies that

Vn+N0(x
∗
n) ≥ Vn(w)−N0�− εn+N0

λ
+ log(β∗)

and, thus,

N0�+ εn+N0

λ
− log(β∗)+ Vn+N0(x

∗
n)− Vn(x

∗
n) ≥ Vn(w)− Vn(x

∗
n), w ∈ S, n ≥ N1.

(5.13)
To conclude, observe that

Vn+N0(x
∗
n)− Vn(x

∗
n) =

N0−1∑
i=0

g̃n+N0−i (x∗
n) ≤ N0b̃,

by (3.6) and (5.12). Equation 5.13 then yields

N0�+ εn+N0

λ
− log(β∗)+N0b̃ ≥ sp(Vn) for n ≥ N1,

and from (5.6) it follows that {sp(Vn)} is a bounded sequence.

Proof of Theorem 3.1. Notice that, by (3.6) and (3.7), (3.8) can be equivalently written as

exp(λg̃n(z)+ λHn(x)) = min
a∈A

[
eλDn(x,a)

∑
y∈S

qnx,y(a)e
λHn−1(y)

]
, x ∈ S, n ∈ N. (5.14)

Next, observe that |Hn(x)| = |Vn(x) − Vn(z)| ≤ sp(Vn); the sequences {g̃n(z)} and {‖Hn‖}
are therefore bounded, by Lemma 5.3. Now let (γ,H(·)) be an arbitrary limit point of
{(g̃n(z),Hn(·))}, so that there exists a sequence {nk} of positive integers satisfying

lim
k→∞ g̃nk (z) = γ, lim

k→∞Hnk (x) = H(x), x ∈ S. (5.15)

Observing that |Hnk−1(x)−Hnk (x)| = |g̃nk (x)− g̃nk (z)| ≤ sp(g̃n) by (3.6) and (3.7), we find
that

lim
k→∞Hnk−1(x) = H(x), x ∈ S, (5.16)

by Lemma 5.2. If we replace n by nk in (5.14) and take the limit as k → ∞ on both sides of
the resulting equation, the finiteness of S, Assumption 2.3, (5.15), and (5.16) together imply
that

eλγ+λH(x) = min
a∈A

[
eλD(x,a)

∑
y∈S

qx,y(a)e
λH(y)

]
, x ∈ S. (5.17)

Since, by (3.7) and (5.15), H(z) = 0, it follows that (γ,H(·)) = (g̃, h(·)); see Remark 3.1(i).
Thus, we have shown that an arbitrary limit point of (g̃n(z),Hn(·)) coincides with (g̃, h(·)),
meaning that limn→∞(g̃n(z),Hn(·)) = (g̃, h(·)), which establishes part (i). Next, using
Definition 3.1(ii), (5.14) can be equivalently written as

exp(λg̃n(z)+ λHn(x)) = min
a∈A

[
(1−α)eλCn(x,a)

∑
y∈S

pnx,y(a)e
λHn−1(y)+αeλHn−1(x)

]
, x ∈ S,

(5.18)
whence

exp(λg̃n(z)+ λHn(x)) > αeλHn−1(x);
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by setting x = z in this inequality and recalling that Hn(z) = Hn−1(z) = 0, we find that
eλg̃n(z) > α, meaning that gn in (3.10) is well defined and, by part (i) and Lemma 3.1,
limn→∞ gn = g. This proves part (ii). To conclude, observe that via Definition 3.1, for
each x ∈ S and n ∈ N, (3.9) yields

eλVn(x) = (1 − α)eλCn(x,ψn(x))
∑
y∈S

pnx,y(ψn(x))e
λVn−1(y) + αeλVn−1(x),

which, using (3.6) and (3.7), is equivalent to

exp(λg̃n(z)+ λ[Hn(x)−Hn−1(x)])− α

1 − α
eHn−1(x) = eλCn(x,ψn(x))

∑
y∈S

pnx,y(ψn(x))e
λHn−1(y).

(5.19)
Next, let x ∈ S be arbitrary but fixed, and notice that part (i) yields

lim
n→∞

exp(λg̃n(z)+ λ[Hn(x)−Hn−1(x)])− α

1 − α
= eλg̃ − α

1 − α
= eλg,

whereas Assumption 2.3 and the convergence Hk(·) → h(·) established in part (i) together
imply that

lim
n→∞

eλCn(x,ψn(x))
∑
y∈S pnx,y(ψn(x))eλHn−1(y)

eλC(x,ψn(x))
∑
y∈S px,y(ψn(x))eλHn−1(y)

= 1.

Therefore, given an ε > 0, there exists a positive integer N such that, for each n > N ,

exp(λg̃n(z)+ λ[Hn(x)−Hn−1(x)])− α

1 − α
≤ eλ(g+ε)

and

eλCn(x,ψn(x))
∑
y∈S

pnx,y(ψn(x))e
λHn−1(y) ≥ e−εeλC(x,ψn(x))

∑
y∈S

px,y(ψn(x))e
λHn−1(y).

These inequalities and (5.19) together imply that, for each x ∈ S and n > N ,

exp(λ(g + 2ε)+ λHn−1(x)) ≥ eλC(x,ψn(x))
∑
y∈S

px,y(ψn(x))e
λHn−1(y).

Then J (ψn, ·) ≤ g + 2ε for n > N , by Lemma 2.2(iii). Since J (ψn, ·) ≥ J ∗(·) = g always
holds, it follows that g ≤ J (ψn, ·) ≤ g + 2ε if n is large enough, meaning that J (ψn, ·) → g

as n → ∞.

As mentioned in Section 1, characterizations of the optimal λ-sensitive average cost for
MDPs with denumerable or Borel state spaces via the λ-OE have recently been given in Borkar
and Meyn (2002) and Di Masi and Stettner (1999), (2000), respectively. Extending Theorem
3.1 to the cases considered in those papers is an interesting problem.
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