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A case of boundedness in

Littlewood's problem on

oscillatory differential equations

G.R. Morris

It is shown that all solutions of x + 2x = pit) are bounded,

the notation indicating that p is periodic. It is not

necessary to have a small parameter multiplying p .

The essential step is to show by appeal to Moser's theorem that,

under the mapping (of the initial-value plane) which corresponds

to the equation, there are invariant simple closed curves. This

implies also that there is an uncountable infinity of almost-

periodic solutions and, for each positive integer m , an

infinity of periodic solutions of least period 2im (2TT being

taken as the least period of p ).

It is suggested that for a large class of equations the same

attack would show all solutions of x + g(x) = pit) bounded.

However, in order to show the method clearly, no generalisation

is attempted here.

1. Introduction

Littlewood proposes, as Problem 29 in [6], the consideration of the

equation

(1.1) x + g(x) = pit) ,
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72 G . R . M o r r i s

where gix) sgn x •*• °° as a; -»• ±°° and

(a) pit) is bounded, or

(b) p(t) is periodic.

As he remarks, i t has been conjectured that if either

(1.2) g{x)lx •+ °°

or g(x)/x -*• 0 then there are no unbounded solutions. In the form

(l.2)(a), that is, when all g(x) satisfying (1.2) and all bounded pit)

are admitted, the conjecture is certainly false: Littlewood himself has

shown in [4] that, given a fairly general g{x) , there exist associated

bounded pit) for which (l.l) has an unbounded solution. Further, what is

more important for us, he has shown in [5] how to construct functions g{x)

with each of which can be associated a periodic pit) such that (l.l) has

an unbounded solution. In his construction any gix) is approximately

equal to hx but is discontinuous. There is a discussion of the relation

of Littlewood's construction to the results of this paper in Section 7.

Evidently the equation

(1.3) x + 2x3 = pit)

is a very special case of (l.l) with g satisfying (1.2). When (in

Section 2) we give a general description of the method employed here, it

will be possible to show why the choice gix) = 2x is forced upon us if

we wish to benefit from all the simplifications in the calculations that

can be foreseen. Nevertheless, I suggest that under suitable conditions on

g (concerning smoothness and regularity of increase) estimations like

those of Section 5 could be carried through; in particular, I should

expect that, whenever gix) is a polynomial of odd degree greater than

1 , all solutions of (l.l) will be bounded. It might be remarked here

that, to avoid special constructions of auxiliary functions, we use results

from the theory of elliptic functions. However, if Lemma 1 is accepted,

the paper is independent of previous knowledge of that theory and it will

be observed that the special notations of elliptic functions do not occur.

THEOREM 1. If pit) has period 2ir and is pieaewise continuous,

then every solution of (1.3) is bounded. Further, there is a B ,

depending only on max|p(i)| , such that every solution satisfies
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- inf{x2(t)+xk(t)f 5 B .

The work which leads to Theorem 1 allows us to establish the existence

of interesting special solutions. We write to for the constant defined by

(3-3) and (3.^) below, and for a typical solution write £ = x(0) and

n = x{0) . It will be observed that the <|> in Theorem 3 is Euler's

totient function and not the function <j> of Sections 4 and 5. We shall

prove

THEOREM 2. There is in [0, 1] a set A of irrationals such that

(i) iA = l ,

(ii) if X € A , there is a u* = u*(A) with the property that,

for every integer y with y 2 y* , there is an almost-

periodic solution of (1.3) having basic frequencies 2TT

and 2irX and satisfying

(y+l) V < n2 + £ < (u+2) V .

THEOREM 3. If p(t) has least period 2TT 3 there is a K* such

that for every integer K with K 2 K* there are, for every positive

integer m , at least 2m<j>(m) solutions of (1.3) having least period 2mr

and satisfying

K V * < n2 + Ĉ  < (K+2)V* .

There is one comment on these results. Since they all follow from

results which hold provided some quantity is "sufficiently small" and there

is at present no prospect of estimating the smallness required, we must

think of B, y* , and K* as not constructible. This is to be compared

with results which are obtained by calculations with error terms. In such

work, although it would be tedious, we should expect to be able to estimate

quantities corresponding to K* above. (For example, in Theorem 6 of my

LSI, which resembles Theorem 3 of this paper, we should expect to be able

to estimate what is there called p .)

2. General description of the method

We shall show that in the phase (or initial-value) plane there are

arbitrarily large closed curves invariant under T , the Poincare map

corresponding to (1.3). The essential point is that we express the phase
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plane as the union of a disc and a sequence of (non-circular) annuli

{A } , and then transform each large A into a standard circular annulus

A* . For each large u , we are thus led to define on A* a map T*

which (in the new coordinates) corresponds to the restriction of the map T

to A . Although (1.3) does not contain a small parameter, T* does,

namely l/p for large u . As u -*•«>, T* approaches a twist mapping

and, if we obtain suitable estimates on derivatives, Moser's theorem gives

us that, for large y , there is a dosed curve in A* which is invariant

under T* , a result which, when reinterpreted, shows us there is, for each

large u , a simple closed curve in A which is invariant under T .

From the existence of these curves we obtain Theorem 1. With some

extra detail about such curves we obtain Theorem 2 and, by appeal to

Birkhoff's (Poincare's Last Geometric) Theorem, Theorem 3.

In the above there was no mention of the special choice g{x) = 2x

If we think of functions g satisfying (1.2) it is essential that we can

make the assertions:

(Al) large solutions of (l.l) are well approximated by solutions

of

(2.1) s + g{z) = 0 ;

(A2) all large solutions of (2.1) are periodic, and if P{h)

denotes the least period of a solution with extreme values

h > 0 and -h' < 0 then

(2.2) P(h) + 0

as h •*• °° .

Of these (A2) follows readily from the first integral

(2.3) z2 + 2G(z) = const ,

which leads to the formula

(2.U) P(h) = V2L V{G(h)-G(z)i '

and (Al) by using (2-3) as a basis for successive approximations. (As
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u s u a l , G i s d e f i n e d by

G(x) = f g(u)du .)Jo

Since, in using (Al) and (A2), we need quite detailed information on

the quality of the approximation of the solutions of (l.l) by those of

(2.1) it is natural to look for restrictions which we can lay on g . The

following are useful:

(Rl) g is odd;

(R2) g{x) sgn x > 0 for x + 0 ;

(R3) g(x) = k\x\a sgn x , where a > 1 , k > 0 ;

(R^) g is analytic in a strip containing the real axis;

(R5) g is a polynomial, with deg g £ 3 •

From (Rl) we can deduce that h' = h , from (R2) that all non-trivial

solutions of (2.1) are periodic and from (R3) that (2.U) is simplified to

p(h) = ch(1-a)/2 ,

which gives the strengthening and simplification of (2.2) that P{h) tends

monotonically to 0 . The useful consequences of (Rl+) are that z{t)

•becomes an analytic function of t , whence complex-variable methods are

available for the estimations, and of (R5) that the formulae of e l l i p t i c

functions can be quoted. I t i s clear that a l l these consequences can hold

simultaneously, and that for th i s we must have g{x) = kx . If, further,

we recognise that the most useful standardisation of (2.3) i s

z + z = h ,

we are led to the choice k = 2 , that i s , to g{x) = 2x

3. Properties of the comparison equation

When we make the choice g(x) = 2a; , the comparison equation (2.1)

becomes

(3.1) z + 2s3 = 0 .
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We have already indicated the simpler (real-variable) properties of (3.1)

when we discussed (2.1) and need only introduce enough notation to state

them clearly. The deeper (complex-variable) properties we shall quote.

We write z{t; E,, n) for the solution of (3.1) with z(0) - £ and

z(0) = n , and (2.3) then becomes

(3.2) 'z2(t; £, n) + zk(t; ?, n) = hk ,

where h is defined by

subject to h ^ 0 . From (3.2) i t follows that any solution with h > 0

i s periodic, i t s least period being 2VS/h , where

(3.3)
'0

Since (3.1) is autonomous and involves z only as a power, any solution

can be simply expressed in terms of some standard solution. We choose

c{t) = z{t; w, 0) ,

where w is defined by

we write s(t) = c(t) .

LEMMA 1. (i) The functions ait) and sit) have 2ir as least

real period. They satisfy

( 3 . 5 ) lit) = -2c3(t) ,

S(%IT) = - u s

(3.6) s2it) + a\t) = J* .

(ii) For every p > 0 and every real <f> , pe(pt+<J>) is a solution

of (3-1) for all real t . Conversely, if z{t) 3 not identically 0 , is

a real solution of (3.1) it can be expressed in this form, p being

determined uniquely and <j> modulo 2ir . If p is an integer this

solution has 2TT as a period.

(iii) The functions c and s are analytic on the real axis. More
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generally, if u is a complex variable c(u) and s{u) are analytic in

|lm u\ < %TT .

For (Hi), we quote resul ts from Whittaker and Watson [JO]. A

rearrangement of the i r work on p. 52^ shows that

c[u) = cn(o)V2w, 1/V2) ,

a function which i s analytic in

|lm(wV2u) I < K = TB/V2 ,

t h a t i s , in

4. Geometrical representations of solutions

We write (1.3) as the system

(lt.l) x = y , if = -2x3 + p(t) ,

and then, as foreshadowed, define the mapping T of the phase plane into

itself by

Til, n) = (a;(27r; C, n ) , y(2tr; E,, n)) .

We have of course denoted by [xit; E,, n ) 5 yit; ?> i)) the solution of

C+.1) with a;(0) = %, and J/(0) = r\ ; it will sometimes "be convenient to

write T(£, n) as (C, , 1,) . As is familiar, to a fixed point of T

corresponds a periodic solution of (U.l). As mentioned in Section 2, our

concern will he the search for simple closed curves invariant under T .

However useful it is to talk in terms of the plane mapping T , it is

still essential for us to recall that an unambiguous geometrical

description of a solution of ik.±) is as a curve in it, x, y)-space. We

shall describe £ , parametrised as

{t, xit; c, n), yit; £., n))

as the trajectory corresponding to [xit; E,, n ) , £/( t; E,, r\)) . We shall

also say that Z is the trajectory arising from the point (0, £> n.) •

So far, we have said nothing about the interval of t for which

xit; E,, n.) is defined. In fact, for any (a, b) , xit; a, b) is defined

for -2TT 5 t 5 2TT and hence, by repeated use of this result, xit; E,, n)
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is defined for all t . Rather than pause to prove this, we assert that it

follows from the general observation that x{t; £, n) is usefully

approximated in, say, [-217, 2ir] by z{t; £, n) when h is large, and
that this itself can be established by using the approximate first integral

y2{t; £, n) + xk(t; C, n) = hk + 2 f y{x)p{x)di .
Jo

We shall in passing assume other simple consequences of the above

observation. (With a different emphasis and with much more detail than is

needed here, the application of the approximate first integral is explored

in [7].)

The existence of x{t; £,, r\) for all t is of course reflected in

the existence of £ for all t . Corresponding to the unique

determination of a solution of (4.1) by its initial values we have the

geometrical property that if E and £' arise from distinct points

(0, £,, n) and (0, £', n') they have no common point. As an obvious

development of this property we can say that if, in the plane t = 0 , V

is an arc and P a point off T , then the trajectories arising from points

of F form a piece of surface which is not met by the solution curve

arising from P . The following specialisation of this remark will be an

essential tool.

LEMMA 2. (i) If Y is a simple closed owcve in the plane t - 0

then the trajectories arising from its points form a tube T which meets

any plane t = x in a simple closed curve.

(ii) If P is a point of the plane t = 0 , not on T , then the

trajectory Z arising from P will not meet T . In particular, if P

is inside Y then Z is wholly inside T . D

Suppose now that we have found some simple closed curves which are

invariant under T . From any such curve T in the phase plane (which we

identify with the plane t = 0 of (t, x, !/)-space) there arises a tube,

T say. Since p is periodic, T is easy to describe: the piece between

the planes t = 2mr and t = 2(n+l)ir is congruent to that between the

planes t = 0 and t = 2TT . To prove this we need only remark

(i) that the invariance of F under T is expressed in the

three-dimensional representation by the fact that T cuts
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t = 2TT in a curve direct ly above F ( i f we think of the

t-axis as v e r t i c a l ) , and

( i i ) t ha t , because of the periodici ty of (1.3) with respect to

t , t h i s piece of T i s indeed repeated.

I t wi l l be observed t ha t , on a tube T ar ising from an invariant closed

2 hcurve, y + x i s bounded for a l l t and that T separates (t, x, y)-

space.

Our principal tool in proving Theorem 1 will be the following result.

LEMMA 3. There is an integer \x such that, for every integer y

with p 2 y j there is, in the annulus

A : (y+l)V* 5 n2 + ̂  < (u+2)V* ,

a simple closed curve which encloses (0, 0) and is invariant under T .

In the remainder of this section we shall show that Lemma 3 is

equivalent to Lemma h (which is enunciated below and established in Section

6).

We shall, as indicated in Section 2, transform each A (at least for

large ]i ) into a standard circular annulus A* . Corresponding to any

solution (x(t), y(t)) of (4.1) we can imitate (ii) of Lemma 1 and attempt

to define p(t) and ${t) by

tit) = p(t).c[p(t)t+<(>(t)] ,

(t) = p2U).s[p(t)t+cj>(t)] .

2 k
Provided that, for all t in [0, 2ir] , y (t) + x (t) f 0 , which is

certainly the case for large solutions, (*t.2) will define a unique positive

p(t) for 0 5 t 5 2ir . Evidently (J)(0) is determined only modulo 2TT ,

but if a choice of <f>(0) is made and (j>(£) is required to be continuous,

then (k.2) will define <j)(t) uniquely for 0 5 t 5 2ir . Further, these

two functions will enjoy all properties of smoothness that x(t) and y{t)

do.

If x(t) here is an abbreviation for the heavier notation x{t; E,, r\)

it is evident that
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C = p(0).e[4>(0)] and n = p2(0) .s[4>(0) ] .

If we replace p(t) and ()>(*) by the heavier expressions p(t; £, n) and

<)>(£; £» i) , we can think of £ and n as varying (with r| + £ large)

and if <(>(0; £ , ru) is chosen for some convenient (£ , n ) , the

functions p and (j> will depend continuously on t, £, , and r| (with the

proviso that if (£, r|) varies along a path that makes a complete circuit

of (0, 0) then (J)(0; £, n) and, more generally, <j>(t; £, n) will change

by 2TT ) . Hence we have the possibility of specifying the point (£, r|)

in A by specifying p(0; £, n) and ())(0; £, n) . that is, of using

these numbers as "pseudo-polar" coordinates. Instead of this, noticing

that on the inner boundary of A we have p(0) = u + 1 at every point

and on the outer p(0) = y + 2 , we shall use p(0) - y and <j>(0) as

ordinary polar coordinates in an auxiliary plane in which we introduce a

briefer notation.

If (£, r|) € A , introduce pit; £, n.) and <$>(t; £,, n) a s above and

define r, = r(£, n) » and 6, = 9(£, n) » ty

(r = p(0; C, n) - P ,

9 = <))(0; C, n) •

It is clear that we obtain a homeomorphism of A onto the standard

annulus

We now define r , = 3^(5, n) > aXi^- ^1>
 = ^(C^ n) »

i, n) ,

and then define T* for (r, 6) € A* by

We observe that i f we needed only to define T* we could use
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= (u+r)e(6) , n = (v+rfs(Q)

and

and avoid the introduction of the functions p and (J> . However, for the

estimations connected with T* we need to follow the continuous change of

(r, 6) into [r , 9 ) , and to do this we need to consider pit) and

*(*) •

We can now enunciate Lemma h and assert, on the basis of this

discussion, that it is indeed equivalent to Lemma 3.

LEMMA 4. There is an integer y such that, for every integer y

with y > y j there is in the annulus A* a simple closed curve which

encloses the pole of coordinates and is invariant under T* . •

5. The estimations

We rewrite {h.k) as

G1 = 9 + 2-nr + F^ir, 6) ,

r± = r + G (r, 6) .

LEMMA 5. Suppose that {£,, n) is in A and that (r, 9), pit),

<)>(*) j and [r , 6 ) are defined as in (U.3), {h.2), and ih.k). Then

F^ir, 9) = 2TT(P(2TT)-P(0)) + <J>(2TT) - <|)(0) J

Gvir, 9) = P(2TT) - p(0) . •

LEMMA 6. The functions p and § corresponding to a given £ and

n in A are determined by

(5.1) p = %o~1*p(t)8(pt+(j)).p"1 ,

(5.2) \

subject to p(0) = y + r , $(0) = 9 .
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We h a v e f rom {k.2) t h a t

Up3p = d{y2+xk)/dt = 2p(t)y ,

which gives us (5.1) • Except when s(pi+<J>) = 0 , (5-2) comes from

p e(pt+<)>) = y = d[pe(pt+<t>)]/dt ,

i f we subst i tu te for p and divide by ps(pi+<j>) . In the excepted case we

know e(pt+<j)) # 0 and we can obtain the equation from

-2p3e3(pt+(f>) + pit) = -2x3 + p(t) = d[p2sipt+$)~\/dt

i f we subs t i tu te for p , use (3.5) and (3.6) and divide by

2p2c3(pi+<j>) . Q

LEMMA 7. Suppose that, in ihe differential equations (5.1) and

(5.2) j p and cj> are allowed to be complex, t always being real. If,

for p(0) and <(>(0) in a domain A , pit) and <j>(t) are defined for

0 5 t 5 2it , then p(2ir) and <f>(2ir) depend analytically on p(0)

Since p i s piecewise continuous on [0, 2IT] , there i s a dissection

0 = tQ < t 1 < . . . < t n = 2

such tha t p i s continuous on each (i , t ) and p ( t ) tends to a

l imi t as t tends to e i ther endpoint.

If p(0) and (j)(0) vary in A we can write

where by [3], Theorem 8.U, page 36, U, is analytic. Similarly we can

write

(p(*2), <f.(t2)) = ^ ( p ^ ) , •(*!))

with U ana ly t ic , and so on, and obtain f inal ly

(p(2ir), <j>(2ir)) = VnUn_x ... U2U±{pi0), <(>(0)) .

Since the composition of analytic transformations gives an analytic

transformation our resu l t i s proved. O
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LEMMA 8. Suppose that in (5-1) and (5.2)., p and <j> are allowed to

be complex, t always being real. Given y > 0 , there is an integer

K(y) such that any solution for which

Ee p ( 0 ) i Jf(y) , | lm p ( 0 ) | 2 jg , | Im

is defined for 0 £ t 5 2ir and satisfies there

| p ( t ) - p ( O ) | < Y , 14>( t)-<\>( 0 ) | < TTY .

Without loss of generality we may assume y < 1/18 . Choose an

integer K(y) so that

PQ < J and K(y) > g ,

where

P = max |p(t)|

and

Q = max [|s(u)|+|e(u)IJ •
|lmM|5Tr/3

Any solution whose initial values satisfy the conditions is defined in

some interval [0, 3) . Write 3. for the least positive t for which

one of

( i ) |P(*)-P(O)| = Y ,

( i i ) |<f>(t)-<l>(0) j = Try ,

( i i i ) t = 2TT

occurs. Then, for 0 - t £ 3 , we have

and hence

|p(*) | £

which shows that
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|p(t)-p(O)| 5 \p(u)\du < y
J0

and therefore that (i) cannot occur. Similarly (ii) cannot occur for

0 5 4 5 1 and (3_ must be determined by condition (iii), that is,

3n = 2TT and the asserted inequalities hold. D

We shall use Lemma 8 in discussing derivative norms of F and G

If h(r, 6) is 0s in A* we define

where the supremum is taken over A* and all a + T - s .

LEMMA 9. If 6, c. , and I are given, there is an integer

' c 0 *

(5-3)

Choose y so that 5TTY < 5

and write )ip = K(y) . Lemmas 5 to 8 show that if,

u > K(y) , |lm r\ 5 1/18 , | Im 91 5 TT/18 »

then F (r, 9) and G (r, G) are defined, and hence analytic, and satisfy

k u ( r , 9) | < 3TTY , | < y r , 9 ) | < 2TTY ,

which give (5-3)- If *"„ and 6- are r e a l , we see that F (r, 9) and

G ( r , 9) are analytic at least in

|r-ro| < 1/18 , | 0—eQ| s TT/18

and hence, by using Cauchy's inequality for the coefficients in a (double)

power series, that
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( V 90^
,afl8lT

3TTY.O-!T!18U\^\

with a similar result for G . From these, {5.k) follows. O

6. Proofs of the theorems

For the proof of our main resul t on boundedness we can work with a

considerably simplified statement of Moser's theorem.

THEOREM A (Moser). Suppose that F{r, 9) and G{r, 9) have period

2ir in 9 and that

19 = 9 + 2irr + F(r, 9) ,

= r + G(r, 9)

gives a mapping of the annulus 1 5 r 5 2 wndsr which every closed curve

encircling the pole intersects its -image curve. Then there are an integer

Z-(l) and a real number 6 such that from

\F\Q* M 0 < S 0

and

it follows that the mapping has a closed invariant curve.

If this enunciation is compared with that of Theorem 1 in [9] it will

be seen that we have left e unmentioned (that is, we do not try to

specify the rotation number of our curve), that we have taken a = 1 ,

b = 2 , a(r) = 2irr , and c = 2TT , and that we have taken s = 1 (that

is, we do not seek a curve smoother than u ) .

Proof of Lemma 4. Since T is area-preserving, any simple closed

curve and its image under T either intersect or have their interiors

disjoint. For a curve in A which encircles the origin the latter

possibility is excluded for large u , say for p 2 ) ) , and the two curves

must intersect. It follows that for p > y any simple closed curve in
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A* which encircles the pole meets its image under T* .

If we write

[y3, P2(60, 2ir, 1(1))]

then, for y > y T* satisfies all the hypotheses of Theorem A. •

Proof of Theorem 1. For each y > y consider the invariant curve in

A and the tube T arising from it. Since no trajectory can cross a

tube we see that every solution of (1.3) is bounded.

Any point (t, x, y) on the tube T satisfies

It follows that two points [t., x., y .) , i = 1, 2 , which lie between

and T n have

%

< (y+3)w .

In particular, if these points belong to the same trajectory we have, on

this trajectory,

k - ±nf{'x2(t)+xk(t)}k <

TFor a trajectory inside T we have

- inf{'x2(t)+x
k(t)}k 5 (p1+2)ui .

Hence the assertion about the oscillation of solutions is established, with

B = (y +2)w , if we observe that y depends on p only through the

definition of K(y) in Lemma 8, a definition which refers only to

P, = max|p(*)| . D

For the discussion of Theorem 2 we do need to specify rotation numbers

of curves.

THEOREM B (Moser). If 6 > 0 then, for every irrational X in

(3, 1-3) which satisfies the diophantine condition that
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(6.2) \n\-m\ > 3n~3 / 2

for all integers m, n with, n > 0 , there is a 6 = 6 ( 3 ) such that if

(6 .1 ) satisfies

then there is a closed curve, T say, with the following properties:

(i) r is invariant vender the mapping,

(ii) the mapping induced on r has rotation number X ,

(Hi) F can be parametrised

9 = 6' + q±{Q') ,

r = X +

with q and q~ both Cr functions of period 2IT ,

(iv) \qx\1 + \q2\1 < 3 , and

(v) the mapping induced on V is given by

Q'± = 6 ' + 2TTX .

If this enunciation is compared with Theorem 1 and the remark

following it in [9] it will be seen that e is now mentioned and renamed

2TT$ , and that, to avoid clashes of notation with the work here, u, p, q ,

and 6. have been changed to 2ir(l+X), q , q , and 6 respectively.

Proof of Theorem 2. if 3 is small the set, A(3) say, of X in

(3, 1-3) satisfying the diophantine condition (6.2) has positive measure,

since it is greater than

1 - 23 - 23 I n~3/2 .
1

Write

A = U A(3) •
3>0
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Evidently mA = 1 .

If H A , there i s a 3 such that A € A(f$) . If we imitate the

proof of Lemma k and write

y* = maxfy,, yo(6 (8), 2ir, Z-(l))] ,

we see that, for y > y* , there is a curve V in 4 which is invariant

under T and has rotation number A .

The property (v) shows that the mapping induced by T is ergodic. It

follows, if we consider the differential equation induced on T by (1.3)

and use Bohl's Theorem 5-3 from [3] page Ul4, that any trajectory arising

from a point of V is almost-periodic, with basic frequencies 2ir and

2A1T . •

For the proof of Theorem 3 it will be convenient to have Poincare's

Last Geometric Theorem presented for a strip, as in Birkhoff's proof.

THEOREM C (Birkhoff). Suppose that W is a topological mapping of

the strip

- o o < x < ° ° j a S y 5 b

onto itself which has the following properties:

(i) W has a positive integral invariant,

(ii) W has period 2TT in x ,

2
(Hi) W regresses points on y = a and advances points on

Then, either

(a) W has an infinity of inequivalent fixed points, or

(f3) W has a finite number of inequivalent fixed points,

including two at which the rotations are of opposite signs.

(if we write R for the mapping of the strip defined by

R(x, y) = (x+2ir, y) ,

we say z±, = [x±, j / , ) , and z^ are equivalent if, for some integer v ,
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R 3 = 3p .) Theorem C is proved in [/] (or, in the weak form that W has

"in general" at least two fixed points, in [2], pages 165-169).

Proof of Theorem 3. Consider two curves F and F , invariant

IC K+l
under T , which lie in consecutive annul! A and A and have the

same irrational rotation number modulo 1 . At least for large K , say

for K > K* , we can say, by analogy with the comparison equation (3-1)>

that their rotation numbers differ by 1 , being X and X + 1 say. We

shall show that in the ring between F and F there lie at least

2m<|i(m) fixed points of (proper) order m of T .

By any convenient diffeomorphism take this ring into the circular ring

0 < a 5 r 5 b ,

and by writing

x = 6 , y = r2

2 2
take the circular ring into the infinite strip a - y - b . On the

circular ring and the infinite strip we see that T is represented by a

homeomorphism U and a periodic homeomorphism V respectively.

Corresponding to the area-preserving property of T , each has a positive

integral invariant.

If 3 is any point of the strip, write Fs for the corresponding

point of the non-circular ring between A and A . Evidently, for any
K K+X

integers m and s ,

Ft = F]/" and Fi?s = F ,

and if z is fixed under ./7sv"* then Fs is fixed under F . Further,

Fz = Fz' , if and only if 3 and 2' are equivalent.

Consider any positive integer m . Under F and IT the rings have

their inner and outer boundaries rotated, on an average, through m\ and

m(l+X) revolutions, and, correspondingly, V advances points on y = a

2
through an average distance mX.2ir and those on y = b through

m(l+X).2ir . We see that, for any integer k with 0 < k 2 m , the

https://doi.org/10.1017/S0004972700024862 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024862


90 G.R. Morris

compound mapping

gives average advances (-k+{mX}) .217 and (m-k+{mX}) .2TT , that is, it

2 2

regresses points on y = a and advances those on y = b . (Here

{mX}, = mX - [mX] , is the fractional part of mX , and not 0 since X

is irrational.) It follows that (a) or (g) of Theorem C holds for this

mapping.

Whether (a) or (3) occurs, suppose that z. is a fixed point, that

is,

(6.3) fzx = /
+[mX]

2l .

We shall show that if k + [mX] is prime to m then the points

(6.h) Tzx, TFzx, ..., 2'n-1Fa1

are distinct. Suppose if possible that T Fs = Vz , that is, that

(6.5) F F ^ = Fax

with 0 < I < m . Since we know Fs is fixed under T we must have

m = (3£ , where 3 is an integer. From (6.5) we have that there is an

integer V for which

from which we could deduce

which is inconsistent with (6.3). Hence the points (6.1*) are distinct and

none can be fixed under T with 0 < I < m . We know each is fixed under

y"1 , and thus have m fixed points of T of order m .

If it is (a) which holds, we have an infinity of fixed points of order

m . If it is ((3), we can suppose without loss of generality that z-^ has
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positive rotation and assert that there is a z having negative rotation.

We evidently obtain at least 2m fixed points of order m corresponding

to this value of k and at least 2mt>(m) altogether.

If we restate this for periodic solutions of (1.3) and note that T

and F lie in the annulus specified, we have the enunciated statement.'-'

7. The relation of this work to Littlewood's

In Littlewood's example of an equation of the type (1.1) which has an

unbounded solution, both g and p are discontinuous. This is obviously

irrelevant for p but might seem to matter for g ; for definiteness I

show here that his construction of g can be modified so that the function

is in C . The existence of such a g is quite consistent with the

suggestion that (l.l) with g many times differentiable, on whose

derivatives we could place strong bounds, would be accessible to the

methods of this paper since we can claim we have indirect evidence that any

modification of Littlewood's g which preserved an unbounded solution of

the equation would, even if C or CT on the real axis, have some very

large derivatives.

OO

To modify Littlewood's g to a C function, we notice t ha t , in the

notation of p . 503 of [5 ] , T_ {y) i s continuous in

i?2 , = Q/p , t/p . ] and defined in each half of t h i s interval as a

polynomial. We can modify th is definition in neighbourhoods of y ,

with

for all r , while keeping the modification small enough to allow c_ to
dn

be chosen. Then, defining g as before in i?_ by

giy) =

OO

we have that it is C in that interval and, because of (7-1), that,

' a n d y2n+l S° a S t O m a k e T2n i n f i n i t e l y differentiable
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however a and c? „ are chosen, the derivatives are continuous as we

cross into
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