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Abstract
Mathematical models of polyelectrolyte gels are often simplified by assuming the gel is electrically neutral. The
rationale behind this assumption is that the thickness of the electric double layer (EDL) at the free surface of the
gel is small compared to the size of the gel. Hence, the thin-EDL limit is taken, in which the thickness of the EDL
is set to zero. Despite the widespread use of the thin-EDL limit, the solutions in the EDL are rarely computed and
shown to match to the solutions for the electrically neutral bulk. The aims of this paper are to study the structure
of the EDL and establish the validity of the thin-EDL limit. The model for the gel accounts for phase separation,
which gives rise to diffuse interfaces with a thickness described by the Kuhn length. We show that the solutions in
the EDL can only be asymptotically matched to the solutions for an electrically neutral bulk, in general, when the
Debye length is much smaller than the Kuhn length. If the Debye length is similar to or larger than the Kuhn length,
then phase separation can be initiated in the EDL. This phase separation spreads into the bulk of the gel and gives
rise to electrically charged layers with different degrees of swelling. Thus, the thin-EDL limit and the assumption
of electroneutrality only generally apply when the Debye length is much smaller than the Kuhn length.

1. Introduction
Polyelectrolyte gels are soft, electroactive materials that are used in a wealth of applications including
smart materials [8, 26], fuel cells [17], gel diodes [32], regenerative medicine [19] and drug-delivery
systems [20]. A polyelectrolyte gel consists of a deformable network of polymers that is swollen with
fluid. The polymers carry a fixed electric charge and can therefore electrostatically interact with ions
that are dissolved in the imbibing fluid. Typically, polyelectrolyte gels are surrounded by a salt bath
composed of a solvent, such as water, and dissolved ions. Solvent and ion exchange across the gel–bath
interface occurs until an equilibrium is established. The degree of swelling and hence the gel volume
are set by this equilibrium, which can be controlled through a number of factors such as temperature
and electric fields, as well as the pH and salt content of the surrounding bath [1]. Slight alterations in
these environmental parameters can trigger enormous changes in the gel volume. In some cases, the
volume of the gel will undergo a discontinuous change, a phenomenon that is called a volume phase
transition [7, 22]. Environmental stimuli can also induce phase separation, whereby a homogeneous gel
spontaneously separates into co-existing phases with different compositions [18, 27]. Phase separation
has been proposed as a facile means of self-assembling nanostructures in polyelectrolyte gels [30, 31].

When a polyelectrolyte gel is surrounded by a salt solution, ions from the solution will migrate to
the free surface of the gel in order to screen the electric charges on the polymers. The accumulation
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of ions leads to a diffuse layer of electric charge that is known as the electric double layer (EDL). The
thickness of the EDL is described by the Debye length and is often on the order of tens of nanometres. An
interesting feature of polyelectrolyte gels is that the EDL is diffuse on both sides of the gel–bath interface
due to the mobile ions in the gel migrating to counter the accumulation of charge in the surrounding bath.
Similar doubly-diffuse EDLs also appear in immiscible liquid drops that are suspended in a different
ion-carrying liquid [24]. Outside of the EDL, the gel and the bath are electrically neutral to a very good
approximation.

Despite the intricate structure of the EDL, it is generally believed to play a passive role in the gel
dynamics. Moreover, due to the smallness of the Debye length (tens of nanometres) relative to the typical
dimensions of a polyelectrolyte gel (microns to centimetres), any impact of the EDL on the gel dynamics
is assumed to be confined to an extremely thin region near the free surface. Thus, the EDL is often
neglected in studies that involve modelling polyelectrolyte gels [9, 10, 14, 15, 23, 34, 35]. The few
exceptions include the works by Hong et al. [13, 29], who compute solutions in the EDL for a limited
range of parameters. Hill [12] accounts for internal EDLs that form in polyelectrolyte gels with liquid
inclusions, neglecting the elasticity of the polymer network and solvent–polymer interactions.

Neglecting the EDL due to its thinness is called the thin-EDL limit. The singular nature of the thin-
EDL limit means there are two components to it. The first involves computing an outer solution that
is valid in regions away from the EDL where the bath and gel are approximately electrically neutral.
The second involves computing an inner solution that is valid within the EDL. Although the thin-EDL
limit is used extensively when modelling polyelectrolyte gels, very little attention is paid to computing
the inner solution and checking that it can, in fact, be asymptotically matched to the outer solution.
For instance, Mori et al. [21] used matched asymptotic expansions to derive a model for an electrically
neutral polyelectrolyte gel, but did not compute solutions in the inner and outer regions nor did they
explore the structure of the EDL in detail.

The aims of this paper are to use matched asymptotic expansions to: (i) revisit the assumption that
the EDL plays a passive role in the dynamics of polyelectrolyte gels and (ii) ascertain the validity of the
thin-EDL limit. In particular, we explore when the outer solutions which govern the electrically neutral
bulk can be asymptotically matched to the inner solutions in the EDL.

The main result of our work is that asymptotic matching of solutions cannot always be carried out
because the EDL can trigger a mode of phase separation that leads to a breakdown of electroneutrality
across the entire gel. In this case, the charge density in the gel oscillates in space, corresponding to the
formation of alternating layers of positive and negative charge. Similar oscillations have been observed
in ionic liquids in contact with a charged surface, where they are attributed to the finite size of ions and
their short-range interactions [6, 11].

Our asymptotic analysis of the EDL builds on that of Yariv [33] by accounting for the nonlinear
electro-chemo-mechanics of the gel. A crucial feature of our analysis is that it is based on a thermo-
dynamically consistent phase-field model of a polyelectrolyte gel. The phase-field model introduces an
additional length scale into the problem, the Kuhn length, which is proportional to the thickness of the
diffuse, internal interfaces that form within the gel if it undergoes phase separation. The governing equa-
tions are fourth order in space and capture the energy cost of mixing ions with finite volume, which is
similar to continuum models for the layering of ionic liquids [2]. Most models for polyelectrolyte gels
do not account for phase separation and take the Kuhn length to be zero. However, we find that the thin-
EDL limit is only asymptotically consistent, in general, when the Kuhn length greatly exceeds the Debye
length. Thus, we argue that particular care must be taken when using the thin-EDL limit to describe the
behaviour of polyelectrolyte gels.

The paper is organised as follows. In Sec. 2, the governing equations for a cylindrical polyelectrolyte
gel that is in equilibrium with a salt solution are presented. In Sec. 3, we carry out the asymptotic analysis
of the EDL assuming the Kuhn length is much larger than the Debye length. In Sec. 4, we discuss how
the analysis differs if the Kuhn length is zero, which is more typical across the literature. The asymp-
totic framework is then used to investigate the structure of the EDL in Sec. 5. The paper concludes in
Sec. 6.
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Figure 1. A swollen polyelectrolyte gel surrounded by a bath. The bath consists of a solvent and a
dissolved binary salt. The polymers of the gel carry an electric charge, which is assumed to be positive.
An electric double layer of thickness O(ε) forms near the gel–bath interface, located at r = a, where
charge neutrality is violated. The non-dimensional Debye length ε is defined in (2.1).

2. Mathematical model
We consider a cylindrical polyelectrolyte gel that is in equilibrium with a stationary salt bath, as shown
in Figure 1. Motivated by the experiments of Horkay et al. [14], we assume the gel can freely swell
in the radial and orthoradial directions but is confined in the axial direction. The gel is composed of
a deformable network of polymers that carry electric charges of the same sign. The bath consists of a
solvent and a dissolved binary salt such as NaCl or CaCl2. We assume that the system remains axisym-
metric and that the gel remains cylindrical; that is, we do not allow for instabilities along the axial or
orthoradial directions.

A thermodynamically consistent model of a polyelectrolyte gel surrounded by a viscous bath has
been derived by Celora et al. [5]. We employ this model here but specialise it to a steady, cylindrical
configuration. For brevity, we only present the non-dimensional form of the governing equations in
the main text; however, the dimensional model is provided in Appendix A. In the equations below, the
subscript m is used to represent quantities associated with the solvent (s), cation (+) or the anion (−).
The set M= {s, +, −} contains all of the mobile species that move into and out of the polymer network.
We let I= {+, −} denote the ionic species.

In non-dimensionalising the model, spatial variables are scaled with a0, the radius of the gel in its
unswollen (dry) state. The chemical potentials of the mobile species, μm, are written as μm = μ0

m +
kBTμ′

m, where μ0
m is a reference chemical potential, kB is Boltzmann’s constant and T is the absolute

temperature. Primes are used to denote dimensionless quantities. The electric potential in the bath and
the gel is scaled with the thermal voltage and written as � = (kBT/e)�′, where e is the elementary charge.
The stresses and pressure in the gel are non-dimensionalised using the shear modulus of the polymer
network, G, as a scale. In the bath, the pressure is non-dimensionalised as p = [εbath(kBT/e)2/a2

0]p′, with
εbath denoting the electrical permittivity of the bath. The pressure scaling for the bath can be motivated
by the condition of mechanical equilibrium for a motionless fluid, which demands that the fluid pressure
balances the Maxwell stress, as these are the only two forces at play. Due to the diluteness of the ions,
the electric permittivity of the gel and the bath, εgel and εbath, respectively, are treated as constants.
However, the composition dependence of the electric permittivity has been shown to impact the swelling
of polyelectrolyte gels [16].

This scaling introduces three key dimensionless parameters given by

G = νG

kBT
, ω = LK

a0

, ε = LD

a0

, (2.1)

where ν is the volume of solvent molecule, LK is the Kuhn length of a polymer chain and LD =
(νεgelkBT)1/2/e is the Debye length. The parameter G characterises the energetic cost of elastically
deforming the gel relative to the energy that is released upon insertion of a solvent molecule into the
polymer network. The parameters ω and ε describe the thickness of diffuse internal interfaces and the
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EDL relative to the size of the gel, respectively. Alternatively, ω can be related to the energetic cost of
gradients in the solvent concentration; see Celora et al. [5] for details. The magnitudes of these numbers
will be estimated in Sec. 2.4.

2.1 Governing equations for the gel

The equations for the gel are formulated in terms of Eulerian coordinates x = rer(θ ) + zez associated
with the current state of the system, where r, θ and z denote the radial, angular and axial coordinates,
respectively, and er, eθ and ez are the corresponding cylindrical basis vectors. An Eulerian coordinate
system enables the equations to be written in a physically intuitive way and it facilitates coupling the
gel and bath models via boundary conditions. A detailed account of Eulerian-based hydrogel modelling
is provided by Bertrand et al. [3]. We let X = R(r)ER(θ ) + Z(z)EZ denote the Lagrangian coordinates
associated with the stress-free reference configuration, which we assume is a dry gel. Here, R, � = θ

and Z represent the radial, angular, and axial Lagrangian coordinates, and ER, E� and EZ are the basis
vectors.

The deformation gradient tensor F describes the distortion of material elements relative to the dry
state of the gel. For an axisymmetric geometry which remains cylindrical, the deformation gradient
tensor can be written as F = λr er ⊗ ER + λθ eθ ⊗ E� + λzez ⊗ EZ , where

λr =
(

dR

dr

)−1

, λθ = r

R
, λz =

(
dZ

dz

)−1

(2.2)

denote the radial, orthoradial and axial stretches, respectively. The axial stretch λz is imposed, whereas
the radial and orthoradial stretches λr and λθ are unknown and must be solved for. The determinant
J = det F = λrλθλz characterises volumetric changes in material elements. Both the polymers and the
imbibed salt solution are assumed to be incompressible. As a result, any volumetric change in a solid
element must be due to a variation in the amount of fluid contained within that element. This leads to
the so-called molecular incompressibility condition

J =
(

1 −
∑
m∈M

φm

)−1

, (2.3)

where φk represent the volume fraction of species k. Since J describes the volume of swollen material
elements relative to their dry volume, we also refer to it as the swelling ratio. It will be convenient to
formulate the incompressibility condition as

R
dR

dr
= λzr

J
, (2.4)

where J is given by (2.3).
The chemical potentials of the mobile species, μm, can be written as

μs = �s + Gp − ω2

r

d
dr

(
r
dφs

dr

)
, (2.5a)

μ± = �± + Gp + z±�, (2.5b)

where z± is the valence of the ions, p is the mechanical pressure in the gel and �m are osmotic pressures
defined as

�s = log φs + χ J−1(1 − φs) + J−1, (2.6a)
�± = log φ± + J−1(1 − χφs). (2.6b)

Here, χ is the Flory interaction parameter, which describes (unfavourable) enthalpic interactions
between the solvent molecules and the polymers. Due to our assumption that the system is in equi-
librium, the chemical potentials are spatially uniform. Hence, μm are constants that will be specified
below.
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The electric potential satisfies Poisson’s equation

−ε2

r

d
dr

(
r
d�

dr

)
= z+φ+ + z−φ− + zf ϕf

J
, (2.7)

where ϕf is the nominal volume fraction of fixed charges on the polymer network and zf denotes the
valence of these charges. We will focus on cationic gels with positive fixed charges, zf > 0.

The conservation of linear momentum in the gel leads to
dTrr

dr
+ Trr − Tθθ

r
= 0, (2.8)

where Trr and Tθθ are the radial and orthoradial components of the Cauchy stress tensor. These stresses
can be expressed as

Trr = Te,rr + TK,rr + TM,rr − p, (2.9a)
Tθθ = Te,θθ + TK,θθ + TM,θθ − p. (2.9b)

The first contributions, Te,rr and Te,θθ , represent elastic stresses, which are calculated by assuming the
polymer network behaves as a neo-Hookean material. This leads to

Te,rr = J−1(λ2
r − 1), (2.10a)

Te,θθ = J−1(λ2
θ
− 1). (2.10b)

The second and third contributions to the Cauchy stresses in (2.9) correspond to Korteweg (TK) and
Maxwell (TM) stresses, respectively, which capture the forces generated within the bulk of the gel due
to internal interfaces and electric fields. The radial and orthoradial components of these stresses are
given by

TK,rr = G−1ω2

[
φs

r

d
dr

(
r
dφs

dr

)
− 1

2

(
dφs

dr

)2
]

, (2.11a)

TK,θθ = G−1ω2

[
φs

r

d
dr

(
r
dφs

dr

)
+ 1

2

(
dφs

dr

)2
]

, (2.11b)

TM,rr = 1

2
G−1ε2

(
d�

dr

)2

, (2.11c)

TM,θθ = −1

2
G−1ε2

(
d�

dr

)2

. (2.11d)

The final contribution to the Cauchy stresses represents the stress induced by the fluid pressure.

2.2 Governing equations for the bath

The spatially uniform chemical potentials of the solvent and ions are

μs = log φs + εrε
2p, (2.12a)

μ± = log φ± + εrε
2p + z±�, (2.12b)

where εr = εbath/εgel. The electric potential satisfies

−εrε
2

r

d
dr

(
r
d�

dr

)
= z+φ+ + z−φ−. (2.13)

Conservation of linear momentum in the bath implies that
dTrr

dr
+ Trr − Tθθ

r
= 0, (2.14)
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where the components of the Cauchy stress tensor are

Trr = TM,rr − p, (2.15a)
Tθθ = TM,θθ − p. (2.15b)

The Maxwell stresses are given by

TM,rr = 1

2

(
d�

dr

)2

, (2.16a)

TM,θθ = −1

2

(
d�

dr

)2

. (2.16b)

2.3 Boundary conditions

At the centre of the gel, we impose

R|r=0 = 0,
d�

dr

∣∣∣∣
r=0

= 0,
dφs

dr

∣∣∣∣
r=0

= 0. (2.17)

The first condition ensures that the origin in Lagrangian coordinates is mapped to the origin in Eulerian
coordinates. The second and third can be viewed as symmetry conditions. The boundary condition on
φs is needed due to the presence of a second derivative in the expression for the chemical potential of
solvent in the gel (2.5a).

Far from the bath, r → ∞, we set the electric potential to �bath and the pressure to zero. In addi-
tion, we assume that the volume fraction of cations has been fixed to φbath

+ . Assuming electroneutrality
then requires that the volume fraction of anions is given by φbath

− = |z+/z−|φbath
+ . The far-field solvent

fraction is then fixed at φbath
s = 1 − (1 + |z+/z−|)φbath

+ . Consequently, the far-field chemical potentials are
given by

μbath
s = log φbath

s , μbath
± = log φbath

± + z±�bath. (2.18a)

The radius of the deformed gel, and hence the position of the gel–bath interface, is denoted by a.
We use the notation r → a± to describe approaching the interface from the bath (+) and gel (−). Due
to the formulation of the model in terms of Eulerian coordinates, the deformed radius of the gel, a,
is unknown. Since the undeformed radius of the gel has been scaled to unity, the deformed radius is
implicitly determined by the equation

R|r=a− = 1. (2.19)

At the gel–bath interface, r = a, thermodynamic equilibrium demands that the chemical potentials
are continuous. Moreover, since the chemical potentials must also be spatially uniform, we have that

μm = μbath
m (2.20)

in both the gel and the bath. We also impose the condition

dφs

dr

∣∣∣∣
r=a−

= 0 (2.21)

at the gel surface, which is needed due to the second derivative in (2.5a). From a physical point of view,
(2.21) implies that the solvent does not preferentially wet or dewet the interface, both of which would
lead to a localised gradient in the solvent composition. The balance of radial stresses at the interface
leads to

GTrr|r=a− = εrε
2Trr

∣∣
r=a+ . (2.22)

We assume there are no surface charges on the interface and therefore impose continuity of the electric
potential and electric displacement:
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�|r=a− = �|r=a+ , (2.23a)
d�

dr

∣∣∣∣
r=a−

= εr

d�

dr

∣∣∣∣
r=a+

. (2.23b)

2.4 Parameter estimation

We assume that the molecular volume is ν ∼ 10−28 m3 [34], the system is held at a temperature of T = 300
K and dry radius of the gel is a0 ∼ 1 cm. Horkay et al. [14] measured the shear moduli of polyelectrolyte
gels to be around G ∼ 10 kPa, which leads to G ∼ 10−4. Yu et al. [34] reported values of G ∼ 10−3. The
Flory interaction parameter χ is generally a function of the gel composition and temperature. However,
we treat χ as a constant, which is a common simplification in the literature. Yu et al. [34] use constant
values of χ that range from 0.1 to 1.6.

We assume that the electrical permittivity of the gel and the bath are approximately the same as water
due to the ions being dilute. Thus, we set εgel 	 εbath 	 80 ε0, where ε0 is the permittivity of free space.
Hence, εr = εgel/εbath 	 1. The non-dimensional width of the EDL is then ε ∼ 10−8, corresponding to a
dimensional value of 0.1 nm. However, we will show in Sec. 5 that the value of ε underestimates the
width of the EDL because it is based on an imprecise estimate of the ionic volume fractions.

The dimensionless parameter ω is difficult to estimate due to uncertainties in the values of the Kuhn
length. Hua et al. [15] set LK = 0.9 nm in their modelling study. Similarly, Wu et al. [31] take LK = 1
nm. Both values lead to an estimate of ω ∼ 10−7.

3. Asymptotic analysis for large Kuhn lengths
Matched asymptotic expansions in the limit ε → 0 will now be used to formulate the governing equations
away from and within the EDL at the gel–bath interface. The analysis in this section will focus on the
case when the Kuhn length is much larger than the Debye length, ε 
 ω. Thus, we will consider the
limit ε → 0 with ω fixed. Although our estimates suggest that ω and ε are similar in magnitude and
hence the limit ε → 0 with ω = O(ε) may be more physically accurate, we will show that the asymptotic
solutions cannot generally be matched in this case. Analysing the case when ε → 0 with ω fixed, i.e.,
ε 
 ω, provides mathematical and physical insights into why the matching fails.

The asymptotic analysis is split into two parts. In Sec. 3.1, we derive the model in the outer region
away from the gel–bath interface. In Sec. 3.2, we formulate the problem in the inner region near the
gel–bath interface to resolve the EDL.

3.1 The outer problem

We now consider the limit ε → 0 with r = O(1). The outer variables are expanded as f (r) = f (0)(r) +
O(ε), where f is an arbitrary quantity.

3.1.1 Electroneutral equations for the bath
Taking ε → 0 in (2.13) leads to the electroneutrality condition for the bath

z+φ(0)
+ + z−φ(0)

− = 0. (3.1)
The chemical potentials (2.12) reduce to

μbath
s = log φ(0)

s , (3.2a)
μbath

± = log φ(0)
± + z±�(0). (3.2b)

Solving these four equations shows that the outer solution in the bath corresponds to a homogeneous
mixture with the same composition and voltage as the far field:

φ(0)
m (r) = φbath

m , �(0)(r) = �bath. (3.3)
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The radial stress balance (2.14) reduces to dp(0)/dξ = 0. Solving and matching to the far field implies
that

p(0)(r) = 0, T(0)
rr (r) = 0. (3.4)

Thus, the bath is stress free to leading order.

3.1.2 Electroneutral equations for the gel
Motivated by the constant outer solutions for the bath, as well as past works in the literature [9, 10, 14, 15,
23, 34, 35], we assume that the outer solution for the gel represents a homogeneous state. We therefore
write the leading-order contributions to the outer solution as f (0)(r) = f gel, where f gel is a constant, for all
variables except the Lagrangian radius R(0), which retains a dependence on r.

The O(1) contributions to (2.7) lead to the electroneutrality condition for the gel,

z+φgel
+ + z−φgel

− = −zf ϕf /Jgel. (3.5)

The solvent and ionic chemical potentials (2.5) are given by

�gel
s + Gpgel = μbath

s , (3.6a)
�gel

± + Gpgel + z±�gel = μbath
± . (3.6b)

For a homogeneous gel that is free to swell in the radial and orthoradial directions, the radial and orthora-
dial stretches are equal; thus, λgel

r = λ
gel
θ = (Jgel/λz)1/2. The leading-order contribution to the Lagrangian

coordinate can then be obtained from (2.4) as R(0)(r) = (λz/Jgel)1/2r. We define

Rgel ≡ R(0)(a−) = (λz/Jgel)1/2a, (3.7)

where Rgel must be determined by matching to the inner solution. The final quantity to determine is the
mechanical pressure in the gel. The radial stress balance (2.8) implies that the radial Cauchy stress Tgel

rr

must be a constant. Using asymptotic matching, we will show that Tgel
rr = 0. Hence, from (2.9a), we have

that pgel = 1/λz − 1/Jgel.

3.2 The inner problem

The inner problem is formulated by introducing the change of variable r = a + εξ , where ξ is a radial
coordinate that is localised to the free surface of the gel. By definition, ξ > 0 corresponds to the regions
in the bath whereas ξ < 0 corresponds to regions in the gel. Tildes are used to denote dependent vari-
ables in the inner region, which are generally expanded as f̃ = f̃ (0) + εf̃ (1) + O(ε2), where f̃ is an arbitrary
quantity. However, additional rescaling is required in some cases; this will be made explicit in the pro-
ceeding discussion. Near the interface, the outer solutions for the bath and gel are expanded in terms of
inner variables, respectively, as

f (a + εξ ) = f (0)(a+) + O(ε) = f bath + O(ε), (3.8a)
f (a + εξ ) = f (0)(a−) + O(ε) = f gel + O(ε), (3.8b)

which will be used for asymptotic matching.

3.2.1 Inner problem for the bath
3.2.1.1 Mechanics. After changing variables, we anticipate that the Maxwell stresses (2.16) scale as
TM = O(ε−2) because the electric potential � should remain O(1) in size across the EDL. Moreover,
we expect that the pressure will scale like the Maxwell stress so that p = O(ε−2); the rationale behind
this choice is discussed in the introduction of Sec. 2. Therefore, we write TM = ε−2T̃M and p = ε−2p̃.
Consequently, the Cauchy stresses must also be scaled as T = ε−2T̃. Expanding T̃rr and T̃M,rr in powers
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of ε and matching to the far field leads to the stress-free condition T̃
(0)

rr → 0 as ξ → ∞. The leading-
order contribution to the radial stress balance in the bath (2.14) leads to dT̃

(0)

rr /dξ = 0. Integrating and
imposing the far-field condition leads to the conclusion that T̃

(0)

rr = 0. In terms of the original scaling, this
means that, in the EDL, the total stress in the bath must be O(ε−1) in size. The pressure can be obtained
from (2.15a) and is found to be

p̃(0) = 1

2

(
∂�̃(0)

∂ξ

)2

= T̃
(0)

M,rr. (3.9)

Thus, as expected, the pressure in the bath balances the Maxwell stresses.
3.2.1.2 Chemical equilibrium. Expanding the chemical potentials (2.12) gives, to leading order,

log φ̃(0)
s + εrp̃

(0) = μbath
s , (3.10a)

log φ̃(0)
± + εrp̃

(0) + z±�̃(0) = μbath
± . (3.10b)

Equating (3.10) with (2.18a) and using (3.9) to eliminate the pressure leads to an expression for the ion
fractions in the EDL,

φ̃(0)
± = φbath

± exp

⎡
⎣z±(�bath − �̃(0)) − εr

2

(
d�̃(0)

dξ

)2
⎤
⎦ . (3.11)

This is a modification of the Boltzmann distribution for the ions, which arises from accounting for the
pressure dependence of the ionic chemical potentials.
3.2.1.3 Electrostatics. The leading-order electrical problem is obtained by combining (2.13) with the
ionic volume fractions (3.11) to obtain a modified Poisson–Boltzmann equation given by

−εr

d2�̃(0)

dξ 2
= exp

⎡
⎣−εr

2

(
d�̃(0)

dξ

)2
⎤
⎦∑

i∈I
ziφ

bath
i exp

(
zi(�

bath − �̃(0))
)

. (3.12)

Equation (3.12) can be integrated once and the conditions d�̃(0)/dξ → 0 and �̃(0) → �bath as ξ → ∞
used to obtain

d�̃(0)

dξ
= ∓

√√√√ 2

εr

log

{
1 +

∑
i∈I

φbath
i

[
exp

(
zi(�bath − �̃(0))

)
− 1

]}
. (3.13)

The minus sign is taken if �gel − �bath > 0, which will generally be the case if the fixed charges on the
polymer chains are positive, as assumed here.

3.2.2 Inner problem for the gel
3.2.1.4 Chemical equilibrium. The chemical potential of solvent (2.5a) can be expanded as

μbath
s = �̃(0)

s + Gp̃(0) − ε−2ω2

[
d2

dξ 2

(
φ̃(0)

s + εφ̃(1)
s + ε2φ̃(2)

s

)
+ ε

a

d
dξ

(
φ̃(0)

s + εφ̃(1)
s

)
− ε2 ξ

a2

dφ̃(0)
s

dξ

]
+ O(ε).

(3.14)

Similarly, the boundary condition at the gel–bath interface (2.21) can be expanded to give dφ̃(n)
s /dξ = 0

at ξ = 0 for n = 0, 1, 2. The O(ε−2) and O(ε−1) contributions to (3.14) along with the boundary and
matching conditions show that the solvent concentration is uniform to leading and next order,

φ̃(0)
s (ξ ) = φgel

s , φ̃(1)
s (ξ ) = φ(1)

s , (3.15)

which is a distinguishing feature of the asymptotic limit in which ε → 0 with ω fixed. Physically, this
result is a consequence of gradients in the solvent concentration having a high energy cost when the

https://doi.org/10.1017/S0956792523000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000244


368 M. G. Hennessy et al.

Kuhn length is large. The ionic chemical potentials (2.5b) can be expanded as

μbath
± = log φ̃(0)

± + 1

J̃(0)
(1 − χφgel

s ) + Gp̃(0) + z±�̃(0). (3.16)

By combining (3.16) and (2.18a) and using (3.15), we find that

φ̃(0)
± = φbath

± exp

[
z±(�bath − �̃(0)) − Gp̃(0) − 1

J̃(0)
(1 − χφgel

s )

]
. (3.17)

Although (3.17) appears to be a closed-form expression for the volume fraction of ions, it is important
to recall that the swelling ratio J̃(0) also depends on the these quantities; see (2.3).
3.2.1.5 Kinematics and incompressibility. The O(ε−1) part of the incompressibility condition (2.4)
implies that dR̃(0)/dξ = 0. Imposing the boundary condition R̃(0)(0) = 1 leads to R̃(0) = 1. Matching the
inner and outer solutions leads to the condition Rgel = 1, which can be used in combination with (3.7) to
find that the radius of the deformed gel is given by

a = (Jgel/λz)
1/2. (3.18)

The O(1) part of (2.4) gives dR̃(1)/dξ = λza/J̃(0). The leading-order radial stretch can then be found by
expanding (2.2) to find that λ̃(0)

r = (λzJgel)−1/2J̃(0). Similarly, the leading-order orthoradial stretch is given
by λ̃

(0)
θ = (Jgel/λz)1/2.

3.2.1.6 Mechanics. The leading-order part of the stress balance in the gel (2.8) is dT̃
(0)

rr /dξ = 0. Hence,
the total stress in the gel is constant across the EDL. Imposing stress continuity at the interface (2.22)
and using the fact that the stress in the bath is O(ε−1) shows that the gel is stress free to leading order,
T̃

(0)

rr = 0. Matching to the outer solution leads to Tgel
rr = 0, as previously claimed.

The mechanical pressure can be obtained from (2.9a) as

p̃(0) = T̃
(0)

e,rr + T̃
(0)

K,rr + T̃
(0)

M,rr. (3.19)

The leading-order radial components of the elastic, Korteweg, and Maxwell stresses can be obtained
from (2.10a), (2.11a), and (2.11c) as

T̃
(0)

e,rr = 1

λz

J̃(0)

Jgel
− 1

J̃(0)
, (3.20a)

T̃
(0)

K,rr = ω2

G φgel
s

d2φ̃(2)
s

dξ 2
, (3.20b)

T̃ (0)
M,rr = 1

2G

(
d�̃(0)

dξ

)2

. (3.20c)

In order to evaluate the Korteweg stresses without explicitly solving for φ̃(2)
s , the O(1) contributions to

the solvent chemical potential (3.14) can be used in (3.20b) to obtain

T̃
(0)

K,rr = φgel
s

G
(
�̃(0)

s + Gp̃(0) − μbath
s

)
. (3.21)

Note that setting ω = 0 leads to �̃(0)
s + Gp̃(0) − μbath

s = 0 from (3.14) and hence T̃
(0)

K,rr = 0. Substitution of
(3.21) into (3.19) gives an algebraic relation for the pressure p̃(0).
3.2.1.7 Electrostatics. The leading-order electrical problem in the gel is given by

−d2�̃(0)

dξ 2
= z+φ̃(0)

+ + z−φ̃(0)
− + zf ϕf

J̃(0)
, (3.22)

which is coupled to the algebraic equations for the volume fractions of ions (3.17) and the mechanical
pressure (3.19). The electrical problems for the bath and gel can be decoupled by combining the first
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integral for the electric potential in the bath (3.13) with the electrostatic boundary conditions (2.23) to
obtain

d�̃(0)

dξ

∣∣∣∣∣
ξ=0−

= ∓
√√√√2εr log

{
1 +

∑
i∈I

φbath
i

[
exp

(
zi(�bath − �̃(0))

)
− 1

]}∣∣∣∣∣∣
ξ=0−

, (3.23a)

which acts as a boundary condition for (3.22). The electrical problem in the gel is closed by imposing
the matching condition

�̃(0) → �gel, ξ → −∞. (3.23b)

3.3 Summary

The asymptotic analysis has produced a closed system of algebraic equations that determines the outer
solution in the gel. The inner problems for the gel and the bath decouple. In the case of the gel, the inner
problem can be condensed into a nonlinear system of differential-algebraic equations; this system will be
presented in Sec. 5. The inner problem for the bath has been solved in terms of the electric potential; this
can be obtained by integrating (3.13) once the electric potential at the gel surface has been determined
by solving the inner problem for the gel.

4. Asymptotic analysis for Kuhn lengths of zero
We now briefly mention how the asymptotic analysis of the inner region is carried out when the dimen-
sionless Kuhn length, ω, is naively set to zero. Mathematical models of polyelectrolyte gels in the
zero-Kuhn-length limit (ω = 0) are common throughout the literature. Analysing the inner region when
ω = 0 will serve as a useful point of comparison. However, the zero-Kuhn-length limit is only valid
when phase separation does not occur. The terms that are proportional to ω2 in the governing equations
provide a regularisation that ensures the problem remains well posed when the system undergoes phase
separation. As we will show in Sec. 5, the EDL can trigger phase separation which then spreads into the
bulk of the gel. Hence, setting ω = 0 is not trivial and may render the model ill posed.

Assuming that phase separation does not occur, we can set ω = 0 in (3.14), in which case the leading-
order contribution (in ε) to the solvent chemical potential in the EDL becomes

�̃(0)
s + Gp̃(0) = μbath

s , (4.1a)

The osmotic pressure �̃(0)
s is given by (2.6a). The mechanical pressure p̃(0) can be calculated directly from

(3.19) after neglecting the Korteweg stresses. Thus, (4.1a) can be interpreted as a nonlinear algebraic
equation for the solvent fraction φ̃(0)

s , which can now be a function of ξ and hence vary across the EDL.
The corresponding ion fractions are given by

φ̃(0)
± = φbath

± exp

[
z±(�bath − �̃(0)) − Gp̃(0) − 1

J̃(0)

(
1 − χφ̃(0)

s

)]
. (4.1b)

5. Case studies
We now use our formulation to study the structure of the EDL by computing numerical solutions to
the inner and outer problems. We restrict our attention to monovalent salts with z± = ±1. The cation
fraction in the bath, φbath

+ , is treated as a control parameter.
In Sec. 5.1, the outer problem in the gel is formulated. This consists of a system of nonlinear alge-

braic equations for homogeneously swollen states that are in equilibrium with the bath. In Sec. 5.2, the
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(a) (b)

Figure 2. (a) Equilibrium swelling ratio Jgel as a function of cation fraction in the bath φbath
+ showing

swollen and collapsed branches. (b) The swelling ratio along the collapsed branch. Solid lines corre-
spond to solutions of (5.1). Dashed lines represent solutions to the reduced equation (B.4) for a dilute
concentration of cations. The parameter values are G = 5 × 10−4, χ = 1.2, ϕf = 0.05 z± = ±1, zf = 1.

corresponding inner problems are formulated when ω = 0 and ω  ε. The inner solutions are used to
explore the structure of the EDL in Sec. 5.3.

5.1 Solution of the outer problem for the gel

In the outer region of the gel, the volume fraction of solvent and ions, as well as the electric potential,
are determined from (3.5) to (3.6). This nonlinear algebraic system can be formulated as

log φgel
s + 1

Jgel
+ χ (1 − φgel

s )

Jgel
+ G

(
1

λz

− 1

Jgel

)
= log (1 − 2φbath

+ ), (5.1a)

φgel
± = φbath

+ exp

[
±(�bath − �gel) − G

(
1

λz

− 1

Jgel

)
− 1

Jgel

(
1 − χφgel

s

)]
, (5.1b)

2φbath
+ sinh (�bath − �gel) = − zf ϕf

Jgel
exp

[
G
(

1

λz

− 1

Jgel

)
+ 1

Jgel

(
1 − χφgel

s

)]
, (5.1c)

where Jgel is given by (2.3). When the cation fraction in the bath is small, φbath
+ 
 1, the nonlinear system

(5.1) can be reduced to a single equation, as described in Appendix B.
We numerically solve (5.1) over a range of values of φbath

+ using pseudo-arclength continuation. Three
values of λz ≤ 1 are considered, corresponding to gels in axial compression. The equilibrium swelling
ratios Jgel computed from the solutions of (5.1) are shown as solid curves in Figure 2. The dashed black
lines represent numerical solutions to the reduced model derived in Appendix B. The figure shows that
for each value of λz there are three branches of solutions, two of which intersect and then vanish as
the salt fraction in the bath φbath

+ increases beyond a critical value. The loss of equilibrium solutions at
this critical point indicates that a volume phase transition can occur, as the gel volume will undergo a
discontinuous decrease as the salt content of the bath is increased. For a given value of λz, the branch
of solutions corresponding to the largest and smallest values of Jgel are referred to as the swollen and
collapsed branches, respectively. The branch of solutions corresponding to intermediate values of Jgel is
unstable [4] and will not be considered further.

For a fixed value of the salt fraction, increasing the axial compression reduces the degree of swelling
that occurs. Moreover, increasing the axial compression also decreases the critical salt fraction at which

https://doi.org/10.1017/S0956792523000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000244


European Journal of Applied Mathematics 371

the volume phase transition occurs. Both of these findings are in agreement with experimental obser-
vations [14]. Due to the incompressibility of the gel, imposing an axial compression results in a radial
stretch. The elastic energy cost of inserting a molecule into a pre-stretched gel is greater than for an
unstretched gel. Hence, the balance between the mixing and elastic energies is established at smaller
concentrations, resulting in the equilibrium swelling ratio Jgel decreasing with the axial stretch λz.

5.2 Formulation of the inner problems

The inner problem for the gel can now be constructed using the results from the previous sections. In
particular, if ω = 0, then the governing equations for the gel can be condensed into

�̃(0)
s + Gp̃(0) = log (1 − 2φbath

+ ), (5.2a)

φ̃(0)
± = φbath

+ exp

[
±(�bath − �̃(0)) − Gp̃(0) − 1

J̃(0)

(
1 − χφ̃(0)

s

)]
, (5.2b)

−d�̃(0)

dξ
= φ̃(0)

+ − φ̃(0)
− + zf ϕf

J̃(0)
, (5.2c)

p̃(0) = 1

λz

J̃(0)

Jgel
− 1

J̃(0)
+ 1

2G

(
d�̃(0)

dξ

)2

, (5.2d)

J̃(0) = (1 − φ̃(0)
s − φ̃(0)

+ − φ̃(0)
− )−1, (5.2e)

�̃(0)
s = log φ̃(0)

s + χ (1 − φ̃(0)
s )

J̃(0)
+ 1

J̃(0)
. (5.2f)

In the case ω  ε, equation (5.2a) is replaced with φ̃(0)
s = φgel

s , resulting in the system

φ̃(0)
± = φbath

+ exp

[
±(�bath − �̃(0)) − Gp̃(0) − 1

J̃(0)

(
1 − χφgel

s

)]
, (5.3a)

−d2�̃(0)

dξ 2
= φ̃(0)

+ − φ̃(0)
− + zf ϕf

J̃(0)
, (5.3b)

G(1 − φgel
s )p̃(0) = G

(
1

λz

J̃(0)

Jgel
− 1

J̃(0)

)
+ φgel

s

(
�̃(0)

s − μbath
s

)
+ 1

2

(
d�̃(0)

dξ

)2

, (5.3c)

J̃(0) = (1 − φgel
s − φ̃(0)

+ − φ̃(0)
− )−1, (5.3d)

�̃(0)
s = log φgel

s + χ (1 − φgel
s )

J̃(0)
+ 1

J̃(0)
. (5.3e)

In both cases, the boundary conditions for the electrical potential are given by (3.23a). The expression
for the hoop stress in the gel is the same in both cases as well:

T̃
(0)

θθ
= 1

λz

(
Jgel

J̃(0)
− J̃(0)

Jgel

)
− G−1

(
d�̃(0)

dξ

)2

. (5.4)

The first term represents the elastic contribution to the total hoop stress, which can be compressive or ten-
sile. The second term captures the contribution from the Maxwell stresses, which is always compressive.

5.3 The structure of the electric double layer

The systems (5.2) and (5.3) are discretised using finite differences and solved using Newton’s method.
The asymptotic solution is validated against numerical solutions of the full problem in Appendix C.
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(a) (b)

(c) (d)

Figure 3. Numerical solutions of the inner problems with far-field conditions corresponding to the
collapsed state. The regions of gel and bath are defined by ξ < 0 and ξ > 0, respectively. Dashed lines
represent the solution to (5.2) when ω = 0. Solid lines represent the solution to (5.3) when ω  ε. The
parameter values are χ = 1.2, G = 5 × 10−4, ϕf = 0.05, φbath

+ = 10−5, λz = 1, εr = 1, z± = ±1, and zf = 1.

We consider the case where the axial stretch and salt content in the bath are set to λz = 1 and
φbath

+ = 10−5, with the remaining parameters being the same as those in Figure 2. There are three possi-
ble solutions to the outer problem. We are only concerned with two of these, which correspond to the
collapsed state (Jgel 	 1.447) and the swollen state (Jgel 	 82).

In Figure 3, we plot the inner solution when the outer solution corresponds to the collapsed state
(Jgel 	 1.447). The solid and dashed lines correspond to the cases ω  ε and ω = 0, respectively.
In both cases, we see that our non-dimensionalisation underestimates the width of the double layer,
which is about 10ε in the gel (or 1 nm) and 1000ε in the bath (or 100 nm). For this parameter set,
the value of ω does not lead to noticeable changes in the electric potential and ion fractions; see
Figure 3 (a)–(b). However, substantial differences arise in the gel pressure and the solvent fraction; see
Figure 3 (c)–(d). When ω = 0, the gel pressure balances a large Maxwell stress. This large pressure
causes a local decrease in the solvent fraction and a slight volumetric contraction of the gel (Figure 3
(d)), which can be rationalised in terms of equation (4.1a). At equilibrium, the osmotic pressure �̃s

must balance the mechanical pressure p̃. To compensate for the increase in mechanical pressure that
arises from the Maxwell stress, the osmotic pressure must decrease, which drives solvent out of the gel
and causes it to shrink. When ω  ε, gradients in the solvent fraction are energetically penalised; thus,
the solvent fraction remains uniform across the EDL. From a mechanical perspective, this penalisation
occurs through the development of a large Korteweg stress, which counters the effect of the Maxwell
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(a) (b)

(c) (d)

Figure 4. Numerical solution of the inner problem with far-field conditions corresponding to the
swollen state when ω  ε. The regions of gel and bath are defined by ξ < 0 and ξ > 0, respectively.
The curves are obtained by solving (5.2). Parameter values are the same as in Figure 3: χ = 1.2,
G = 5 × 10−4, ϕf = 0.05, φbath

+ = 10−5, λz = 1, εr = 1, z± = ±1, and zf = 1.

stress in order to maintain a uniform solvent fraction. The mechanical contribution from the Korteweg
stress manifests as an increase in the gel pressure compared to the ω = 0 case, as seen in Figure 3 (c).
Although the solvent fraction is constant across the EDL when ω  ε, the swelling ratio still decreases
relative to the bulk value (Figure 3 (d)) due to the variation in ionic content (Figure 3 (b)).

The inset of Figure 3 (c) shows the total hoop stress in the gel, which is the same in both models owing
to the strong similarities in the electric potential. Due to the large Maxwell stress, the gel experiences a
substantial compressive hoop stress, which leads to the intriguing possibility of mechanical instabilities
in the EDL.

In Figure 4, we show the numerical solution of the inner problem with ω  ε when the outer solution
corresponds to the swollen state (Jgel 	 82). The qualitative features of the inner solution are similar
to those obtained when the outer solution corresponds to the collapsed state (Figure 3). However, an
important difference is that the volume fraction of anions has decreased by more than a factor of ten.
This decrease is driven by the reduction in the volume fraction of fixed charges on the polymers that
occurs when the gel is highly swollen; see Figure 4 (b). Consequently, the EDL in the gel has increased
in thickness by a roughly factor of ten to approximately 250ε (or 25 nm). The gradient in the electric
potential in the gel is therefore ten times weaker, resulting in a 100-fold reduction in the Maxwell stress
and the total hoop stress; see Figure 4 (c). Despite these decreases, the pressure in the gel remains
large because of the Korteweg stress. Due to convergence issues, it was not possible to compute the
corresponding inner solution when ω = 0.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Phase separation in the inner region. (a)–(c) The swelling ratio and (d)–(f) total electric
charge density for different salt fractions in the bath φbath

+ . The curves are obtained by numerically
solving the inner problem in the intermediate asymptotic limit ω = O(ε) as ε → 0; see (5.5). We have
taken ω = �ε with � = 10−1. The remaining parameters are χ = 0.7, G = 4 × 10−3, ϕf = 0.04, z± = ±1,
zf = 1, εr = 1, and λz = 1.

To understand the origin of these numerical difficulties, we consider an intermediate asymptotic limit
where ω = �ε, with � = O(1) as ε → 0. By assuming that the gel remains in a homogeneous, swollen
state away from the EDL, the outer problem in this limit is still given by (5.1). The corresponding inner
problem can be formulated by changing (3.14) or (4.1a) to

�̃(0)
s + Gp̃(0) + �2 d2φ̃(0)

s

dξ 2
= μbath

s . (5.5a)

The pressure (3.19) can be evaluated using a Korteweg stress given by

T̃
(0)

K,rr = G−1�2

⎡
⎣φ̃(0)

s

d2φ̃(0)
s

dξ 2
− 1

2

(
dφ̃(0)

s

dξ

)2
⎤
⎦ . (5.5b)

We solve the intermediate asymptotic model based on (5.5) by imposing the boundary conditions
dφ̃(0)

s /dξ = 0 as ξ → −∞ and ξ → 0−. A second parameter set is used to reduce the degree of swelling
that occurs in the gel. This parameter set leads to the outer problem having single branch of equilibrium
solutions that does not fold back on itself. Thus, the gel monotonically and continuously decreases in
volume as the salt fraction in the bath φbath

+ increases.
It is important to point out that the intermediate asymptotic model based on (5.5) is only fourth

order in space. Therefore, it can be solved without explicitly imposing that its solutions tend to the
homogeneous and electrically neutral outer solutions determined by (5.1). However, if the inner solutions
tend to constants in the far field, then these constants must satisfy (5.1) and hence a match with the outer
solution will be obtained.
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(a) (b)

Figure 6. Phase separation drives the breakdown of charge neutrality in the gel when the Debye
length is comparable to the Kuhn length. (a) The swelling ratio and (b) the total electric charge density
computed from the full steady problem in cylindrical coordinates. The gel self-organises into a highly
swollen, negatively charged core (dark blue); a moderately swollen interior with alternating electric
charge (blue), and a weakly swollen, positively charged shell (light blue). We set ε = 10−2, ω = 10−3.
The remaining parameter values correspond to Figure 5 (b) and (e) and are φbath

+ = 6.6 × 10−4, χ = 0.7,
G = 4 × 10−3, ϕf = 0.04, z± = ±1, zf = 1, εr = 1, and λz = 1.

The inner problem in the intermediate asymptotic limit is solved at three specific values of φbath
+ with

� = 0.1. The swelling ratio J̃(0) and total charge density Q̃(0) = φ̃
(0)
+ − φ̃

(0)
− + zf ϕf /J̃(0) are computed and

plotted in Figure 5. In this case, decreasing the salt fraction in the bath from φbath
+ = 10−3 triggers the onset

of phase separation, which gives rise to a periodic array of electrically charged phases that spans the
entire inner region. Charge neutrality is not recovered in the far field, even if the domain used to numer-
ically solve the inner problem is increased. Moreover, enforcing the boundary condition φ̃(0)

s → φgel
s as

ξ → −∞ leads to convergence issues. Hence, the inner solution cannot be matched to the homoge-
neous and electroneutral outer solutions computed from (5.1). We therefore posit that homogeneous
outer solutions do not always exist in the thin-EDL limit ε → 0 if ω = O(ε) or ω = 0.

To explore the hypothesis that the bulk of the gel may not be homogeneous and electrically neutral at
equilibrium, we solved the full steady problem in the regime ω = O(ε) by setting ε = 10−2 and ω = 10−3.
The salt fraction in the bath was set to φbath

+ = 6.6 × 10−4, corresponding to the parameters in Figure 5
(b) and (e). The swelling ratio J and the total charge density Q, which are shown in Figure 6, reveal that
phase separation occurs throughout the entire gel and gives rise to a periodic arrangement of electrically
charged domains. Using numerical integration, we find that the total amount of electric charge contained
within a pair of adjacent domains is on the order of 10−7. Thus, the gel effectively separates into three
distinct regions consisting of an electrically negative, highly swollen core (0 < r < 0.073); a moderately
swollen interior that is electrically neutral on average (0.073 < r < 2.0); and a positively charged, col-
lapsed shell (2.0 < r < 2.1). Overall, the gel carries a net positive charge which exactly balances the
net negative charge in the bath to ensure that charge neutrality holds on a global scale. The pointwise
breakdown of charge neutrality across the gel indicates that it is not always appropriate to decompose
the problem into inner and outer regions that are characterised by the local charge density of the gel.

6. Discussion and conclusion
Asymptotic and numerical methods are used to study the EDL that forms at the interface between a
polyelectrolyte gel and a salt bath. The gel is described using a phase-field model, which introduces an
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additional length scale, the Kuhn length, into the problem. The Kuhn length measures the thickness of
diffuse internal interfaces that can form due to phase separation within the gel. The ratio of the non-
dimensional Kuhn and Debye lengths, ω and ε, has a profound influence on the structure of equilibrium
solutions.

When ω  ε, there is a high energy cost associated with forming gradients in the solvent volume
fraction in the gel. Therefore, the solvent volume fraction is spatially uniform across the EDL and phase
separation is suppressed. In this case, it is always possible to match the inner solutions to electrically
neutral, homogeneous outer solutions. In contrast, when ω = 0, there is no energy penalty associated
with forming gradients in the solvent fraction. In this case, the solvent fraction, which is set by a balance
between the osmotic and mechanical pressures, can vary across the EDL. However, it is not always
possible to compute a numerical solution to the inner problem when ω = 0.

Our preliminary investigation of the intermediate asymptotic limit where ε → 0 with ω = O(ε)
reveals that phase separation can result in heterogeneous gels consisting of repeating pairs of posi-
tively and negatively charged domains. The breakdown of charge neutrality means that the inner region
effectively spans the entire gel. The difficulties in numerically computing inner solutions with ω = 0 are
attributed to the gel undergoing phase separation and the loss of homogeneous, electrically neutral outer
solutions.

The breakdown of electroneutrality due to phase separation can be rationalised as follows. Phase
separation leads to the formation of diffuse interfaces that separate domains with distinct compositions
and electric potentials. The gradient in the electric potential across the diffuse interface generates an
electric field. When the Kuhn and Debye lengths are commensurate, the electric field near the diffuse
interface will be of sufficient magnitude to trigger the formation of an EDL within the gel. If the Kuhn
length greatly exceeds the Debye length, then the electric field is too weak to generate an internal EDL
and hence the gel remains electrically neutral.

In Celora et al. [5], we used numerical continuation to track solutions of the full steady problem as
the salt fraction in the bath is varied in the regime when ω and ε are comparable. We found that the
breakdown of charge neutrality in the gel occurs via a cascade of saddle-node bifurcations associated
with a spatially localised mode of phase separation that originates from the EDL. A more in-depth anal-
ysis of the asymptotic limit ε → 0 with ω = O(ε) can shed light on how phase separation is triggered
near the free surface of the gel and spreads into the bulk. Setting ε → 0 with ω = O(ε) is expected to
be mathematically interesting as it requires relaxing the assumption that the outer solutions are homo-
geneous and it involves taking the limit in which the thickness of the EDL and the thickness of diffuse
internal interfaces simultaneously tend to zero.

Models of polyelectrolyte gels usually do not account for phase separation and thus implicitly set
ω = 0. Homogeneous and hence electrically neutral solutions that neglect the EDL are often sought
and compared against experimental data. However, our results show that these homogeneous ‘solu-
tions’ may be asymptotically inconsistent because there is no inner solution that can be matched to
them. Importantly, when ω = 0, the bulk behaviour of the gel can be strongly coupled to the behaviour
in the EDL and thus the latter must be explicitly considered when constructing model solutions. The
extensive use of homogeneous, electroneutral solutions to characterise the response of highly swollen
polyelectrolyte gels is more consistent with the assumption that ω  ε, as this limit enables the success-
ful matching of inner and outer solutions and prohibits the breakdown of electroneutrality in the bulk
of the gel.

A useful extension of this work is to carry out the asymptotic analysis for a general geometry to
produce an asymptotically consistent electroneutral model in three dimensions. Such a model would
be a useful tool for designing polyelectrolyte gels that undergo programmable shape changes driven by
mechanical instabilities [28], phase transitions [4] or imposed electric fields [25].
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A. Summary of the governing equations in dimensional form
A.1 Bulk equations for the gel
The governing equations for the gel are formulated in terms of Eulerian coordinates. These coordinates
are associated with the current (or deformed) configuration of the gel. The incompressibility condition
is given by

J =
(

1 −
∑
m∈M

φm

)−1

, (A.1)

where φm denotes the volume fraction of species m, i.e. solvent (s), cation (+) or anion (−). The chemical
potentials of solvent and ions can be written as

μs = μ0
s + ν(p + �s) − kBTL2

K

r

d
dr

(
r
dφs

dr

)
, (A.2a)

μ± = μ0
± + ν(�± + p) + z±e�, (A.2b)

where T is temperature, kB is Boltzmann’s constant, ν is the volume of a molecule (assumed to be
the same for all mobile species), LK is the Kuhn length, p is the mechanical pressure, �m are osmotic
pressures, χ is the Flory interaction parameter, � is the electric potential, e is the elementary charge,
and z± are the valence of the ions. The quantities μ0

m are reference values of the chemical potential. The
osmotic pressures are defined as

�s = kBT

ν

[
log (φs) + χ (1 − νφs)

J
+ 1

J

]
, (A.3a)

�± = kBT

ν

[
log (φ±) + 1

J
(1 − χφs)

]
. (A.3b)

The electric potential satisfies

−εgel

r

d
dr

(
r
d�

dr

)
= eν−1(z+φ+ + z−φ− + zf φf ) (A.4)

where εgel is the electrical permittivity of the gel and φf is the current volume fraction of fixed charges.
The conservation of linear momentum in the gel reads as

dTrr

dr
+ Trr − Tθθ

r
= 0 (A.5)

where Trr and Tθθ are the radial and orthoradial components of the Cauchy stress tensor,

Trr = Te,rr + TK,rr + TM,rr − p, Tθθ = Te,θθ + TK,θθ + TM,θθ − p. (A.6)

The elastic components of the stress tensor Te,rr and Te,θθ are

Te,rr = GJ−1(λ2
r − 1), Te,θθ = GJ−1(λ2

θ
− 1), (A.7)

where G is the shear modulus of the polymer network and the stretches are defined in (2.2). The Korteweg
stresses are given by
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TK,rr = kBTL2
K

[
φs

r

d
dr

(
r
dφs

dr

)
− 1

2

(
dφs

dr

)2
]

, (A.8a)

TK,θθ = kBTL2
K

[
φs

r

d
dr

(
r
dφs

dr

)
+ 1

2

(
dφs

dr

)2
]

. (A.8b)

The Maxwell stresses are

TM,rr = εgel

2

(
d�

dr

)2

, TM,θθ = −εgel

2

(
d�

dr

)2

. (A.9)

A.2 Governing equations for the bath
The chemical potentials are given by

μs = μ0
s + ν(�s + p), (A.10a)

μ± = μ0
± + ν(�± + p) + z±e�, (A.10b)

where

�m = kBT

ν
log (φm). (A.11)

The electric potential satisfies

−εbath

r

d
dr

(
r
d�

dr

)
= eν−1(z+φ+ + z−φ−). (A.12)

The radial stress balance in the bath is given by
dTrr

dr
+ Trr − Tθθ

r
= 0 (A.13)

where the radial and orthoradial stresses Trr and Tθθ are

Trr = TM,rr − p, Tθθ = TM,θθ − p. (A.14)

The Maxwell stresses are

TM,rr = εbath

2

(
d�

dr

)2

, TM,θθ = −εbath

2

(
d�

dr

)2

. (A.15)

A.3 Boundary conditions
At the origin we impose

R(0) = 0,
d�

dr
= 0,

dφs

dr
= 0; r = 0. (A.16)

The boundary conditions at the free surface are given by

[μm]r=a+
r=a− = 0,

[
Trr

]r=a+

r=a+ = 0, [�]r=a+
r=a− = 0,

[
−ε

d�

dr

]r=a+

r=a−
= 0, (A.17)

along with
dφs

dr

∣∣∣∣
r=a−

= 0. (A.18)

https://doi.org/10.1017/S0956792523000244 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000244


380 M. G. Hennessy et al.

The far-field boundary conditions are

φm → φbath
m , p → 0, � → �bath; r → ∞. (A.19)

B. Simplification of the outer problem for cylindrical gels
The nonlinear system for the outer solution (5.1) can be greatly simplified in the limit of a dilute salt,
φbath

+ 
 φf , where φf = ϕf /J. Balancing terms in the electroneutrality condition (5.1c) gives

�gel − �bath ∼ log

(
zf φf

φbath
+

)
+ G

(
1

λz

− 1

Jgel

)
+ 1

Jgel
(1 − χφgel

s ), (B.1)

where we have assumed that G/Jgel at most O(1) in size. The ion fractions in the gel are approximately
given by

φgel
+ ∼ (φbath

+ )2

zf φf

exp

[
−2G

(
1

λz

− 1

Jgel

)
− 2

Jgel
(1 − χφgel

s )

]
, φgel

− ∼ zf φf , (B.2)

showing that the anions, to leading order in φbath
+ , balance the fixed charges on the polymer chains. Since

the cation fraction φ
gel
+ will be extremely small relative to the anion fraction φ

gel
− , the swelling fraction

reduces to

Jgel ∼ 1 + zf ϕf

1 − φ
gel
s

. (B.3)

The solvent fraction can then be obtained by solving

log φgel
s + 1 − φgel

s

1 + zf ϕf

+ χ (1 − φgel
s )2

1 + zf ϕf

+ G
(

1

λz

− 1 − φgel
s

1 + zf ϕf

)
= −2φbath

+ , (B.4)

and used to evaluate the swelling fraction, ion fractions, and jump in electric potential. The black dashed
lines in Figure 2 represent solutions of (B.3)–(B.4), which are in very good agreement with the full
nonlinear system (5.1).

C. Validation of the asymptotic solution to the inner problem
To validate the asymptotic approach, we numerically solve the full problem in axisymmetric cylindrical
coordinates using finite differences. To deal with the free boundary, we use the change of variable r̂ = r/a
and R̂ = R/a. The position of the free boundary can now be determined as a = 1/R̂(r̂ = 1).

We consider the case where the axial stretch and salt content in the bath are set to λz = 1 and φbath
+ =

10−5, with the remaining parameters being the same as those in Figure 2. Of the three possible solutions
to the outer problem, we select the solution corresponding to the collapsed state (Jgel 	 1.447). The
non-dimensional Debye thickness is set to ε = 10−3. Although this is higher than the estimate given in
Sec. 2.4, it facilitates numerically solving the full model.

In Figure C1 (a)–(c), we compare the solutions of the full steady problem (circles) and the inner
problem (lines) when ω = 0. The solutions are found to be in excellent agreement. The comparison
between the inner and full solutions in the case of ω  ε is shown in Figure C1 (d)–(f). To ensure
a sufficient separation between the Debye length and the width of diffuse interfaces, we have taken
ω = 0.5 = 500ε. Overall, there is good agreement between the solutions, with the main discrepancy
occurring in the solvent fraction; see Figure C1 (f).
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(a) (b) (c)

(d) (e) (f)

Figure C1. Numerical solutions of the inner problem (lines) and the full steady problem (circles)
showing the structure of the EDL. Only the solution to the gel problem is shown. The parameter val-
ues are χ = 1.2, G = 5 × 10−4, ϕf = 0.05, φbath

+ = 10−5, λz = 1, εr = 1, z± = ±1, zf = 1, and ε = 10−3.
Panels (a)–(c) correspond to the case when ω = 0; the inner problem is defined by (5.2). Panels (d)–(f)
correspond to the case when ω  ε with ω = 0.5; the inner problem is defined by (5.3).
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