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A FORWARD ALGORITHM FOR SOLVING
OPTIMAL STOPPING PROBLEMS

ALBRECHT IRLE,∗ University of Kiel

Abstract

We consider the optimal stopping problem for g(Zn), where Zn, n = 1, 2, . . . , is a
homogeneous Markov sequence. An algorithm, called forward improvement iteration, is
presented by which an optimal stopping time can be computed. Using an iterative step,
this algorithm computes a sequence B0 ⊇ B1 ⊇ B2 ⊇ · · · of subsets of the state space
such that the first entrance time into the intersection F of these sets is an optimal stopping
time. Various applications are given.
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1. Introduction

Let us consider the following general situation for a problem of optimal stopping. Starting
with some probability space (�, A, P), we have a filtration (An)n, where n = 0, 1, 2, . . . ,
and an adapted real-valued stochastic process (Xn)n such that each Xn is integrable and
X∞ = lim sup Xn.

A stopping rule is a mapping τ : � → {0, 1, 2, . . . ,∞} satisfying {τ = n} ∈ An for all n,
and we let T denote the set of all stopping rules. We assume that E Xτ exists (possibly infinite)
for all τ ∈ T . It is our aim to find a stopping rule τ ∗ satisfying

E Xτ∗ = sup
τ∈T

E Xτ .

The following algorithm, whose conception goes back to Howard’s policy improvement of
dynamic programming, was treated in Irle (1980). We shall refer to this algorithm as forward
improvement iteration (FII). To describe FII and state the result of Irle (1980), we use the
following notation. Let

M = {C = (Cn)n : Cn ∈ An for all n, C∞ = �}
and, for C ∈ M,

T (C) = {τ ∈ T : {τ = n} ⊆ Cn for all n},
τn(C) = inf{k ≥ n : I (Ck) = 1}, with τ(C) = τ0(C).

Here, I (A) denotes the indicator of a set A; hence, τn(C)(ω) = inf{k ≥ n : ω ∈ Ck}. We shall
use the convention inf ∅ = ∞.
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A forward algorithm for solving optimal stopping problems 103

For C ∈ M, we define C∗ ∈ M by

C∗
n = {E(Xτn+1(C) | An) ≤ Xn} ∩ Cn, C∗∞ = �.

Clearly, τn(C), τn(C
∗) ∈ T (C). FII proceeds in the following way. Let

C0 = (�)n and, by induction, Ck = (Ck−1)∗.

Define D by

Dn =
⋂
k

Ck
n.

Then it is obvious that τ(Ck) ≤ τ(Ck+1) for any k and lim τ(Ck) = τ(D). The following
result on the validity of FII was given by Irle (1980).

Theorem 1. Assume that
E Xlim σn = lim E Xσn,

for any increasing sequence of stopping rules (σn)n. Then we obtain

E Xτ(C0) ≤ E Xτ(C1) ≤ · · · ↑ E Xτ(D)

and
E Xτ(D) = sup

τ∈T
E Xτ , i.e. τ is optimal.

If Ck+1 = Ck for some k then Ck+n = Ck for all n; hence, D = Ck , and the algorithm has
found the optimal stopping rule in k steps.

We note that C1 = ({E(Xn+1 | An) ≤ Xn})n; hence, τ(C1) is the 1-stage look-ahead rule,
also known as the myopic rule. Theorem 1 may thus be used to provide a proof of optimality
of this rule for monotone stopping problems in the sense of Chow et al. (1971). We come back
to this in Section 3.2.

It is the aim of this paper to adapt the FII algorithm to the Markovian situation where
Xn = g(Zn) for a homogeneous Markovian sequence. In the general situation, FII works in
the space �, which may be viewed as the space of infinite sequences. Here, we will show in
Section 2 that, in the Markovian setting, we can adapt FII so that it works in the state space
of the Markovian sequence. This makes the algorithm easily applicable, and we shall provide
various examples in Section 3. An attractive feature of the algorithm is its property that it can be
viewed as a Monte Carlo algorithm which only uses simulations but no numerical calculations.
Its performance in some specific situations will be described in Section 4.

Let us remark that the proofs of Theorems 1 and 2 are self-contained in the sense that they
do not use any results from the theory of optimal stopping.

2. Markovian stopping problems

Let (Zn)n be a homogeneous Markov process with respect to the underlying filtration. The
measurable state space will be denoted by (S, S). So we have

P(Zn+1 ∈ B | An) = Q(B, Zn), for all B ∈ S,

with respect to a kernel Q : S × S → [0, 1].
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104 A. IRLE

Let g : S → R be measurable. We consider the problem of optimal stopping for

Xn = g(Zn), n = 0, 1, . . . .

To simplify the notation, we set

g(Z∞) = lim sup g(Zn); hence, X∞ = g(Z∞),

and we have Xτ = g(Zτ ) for any stopping rule τ .
We write Pz for P(· | Z0 = z) and Ez for E(· | Z0 = z), where z ∈ S. As before, we assume

that Ez g(Zτ ) exists for all stopping rules τ and that z ∈ S. We are looking for a stopping rule
τ ∗ with

Ez g(Zτ∗) = sup
τ∈T

Ez g(Zτ ), for all z ∈ S.

We set
v(z) = sup

τ
Ez g(Zτ ), z ∈ S.

In the Markovian case, FII only has to work in the systems of subsets of the state space S. Let
B ⊆ S, where B is measurable, and set

T (B) = {τ ∈ T : Zτ ∈ B on {τ < ∞}},
τn(B) = inf{k ≥ n : Zk ∈ B}, with τ(B) = τ0(B).

Define B∗ ⊆ S by
B∗ = {z : g(z) ≥ Ez g(Zτ1(B))} ∩ B.

Clearly, τn(B), τn(B
∗) ∈ T (B). We set

B0 = S, Bk = (Bk−1)∗, F =
⋂
k

Bk.

Obviously, τ(B0) ≤ τ(B1) ≤ · · · and lim τ(Bk) = τ(F ).

Theorem 2. Assume that
Ez g(Zlim σn) = lim

n
Ez g(Zσn),

for all z and all increasing sequences of stopping rules (σn)n. Then, for any z, we obtain

(i) Ez g(Zτ(B0)) ≤ Ez g(Zτ(B1)) ≤ · · · ↑ Ez g(Zτ(F )),

(ii) Ez g(Zτ(F )) = v(z), i.e. τ(F ) is optimal.

Proof. The proof adapts the ideas of the proof of Theorem 1 of Irle (1980) to the Markovian
situation and the state space setting. We outline the basic steps. Details may be added by
comparison with the above reference.

(a) Consider sets B and B∗ as above. For σ ∈ T (B), set

σ ∗ = inf{n ≥ σ : Zn ∈ B∗}.
Then we can show that

Ez g(Zσ ∗) ≥ Ez g(Zσ ),

from which (i) immediately follows.
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(b) Using (a) we show in the next step that, for any stopping time σ , there exists τ ∈ T (F )

such that
Ez g(Zτ ) ≥ Ez g(Zσ ).

Such a τ is given by
τ = inf{n ≥ σ : Zn ∈ F }.

(c) In this step, we consider ρ, τ ∈ T (F ), such that ρ ≤ τ . We can prove that

Ez g(Zρ) ≥ Ez g(Zτ ).

(d) For the final step, let σ be any stopping time. Then by (b) there exists τ ∈ T (F ) such that

Ez g(Zσ ) ≤ Ez g(Zτ ).

By definition of τ0(F ) we have τ0(F ) ≤ τ ; hence, by (c), we obtain

Ez g(Zτ0(F )) ≥ Ez g(Zτ ) ≥ Ez g(Zσ ).

Remark 1. If Bk+1 = Bk for some k, then

Bk = F.

So, if the state space S is finite, i.e. |S| = n, then, necessarily,

F = Bn;
hence, the algorithm terminates in at most n steps.

Remark 2. Let
F ∗ = {z : g(z) = v(z)}.

It follows, by induction, that

F ∗ ⊆ Bk for all k; hence, F ∗ ⊆ F.

Since τ(F ) is optimal in the situation of Theorem 2, g(z) = v(z) for z ∈ F , showing that
F ⊆ F ∗ and

F = F ∗.

Theorem 2 thus provides a proof of the optimality of τ(F ∗) which is independent of the general
results of optimal stopping theory.

Remark 3. Suppose that we have already found a set B0 for which we know that

B0 ⊇ {z : g(z) = v(z)} = F.

So we only have to look for an optimal stopping time within T (B0). We may then start FII
with this B0 and obtain F ′ = ⋂

k Bk . The proof of Theorem 2 applies and we obtain τ(F ′) as
an optimal stopping time. As in Remark 2, it follows that F ′ = {z : g(z) = v(z)} = F .
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106 A. IRLE

Remark 4. To apply FII, we have to compute a sequence of sets

B0 ⊇ B1 ⊇ B2 ⊇ · · · .

At each step, we go from a certain subset B of the state space to the set B∗ given by

B∗ = {z : g(z) ≥ Ez g(Zτ1(B))} ∩ B.

For practical purposes, this can be done by simulating paths of the process (Zn)n, which provide
simulated values of g(Zτ1(B)) and Monte Carlo estimates for Ez g(Zτ1(B)). These estimates
can then be used in the step to obtain B∗.

In the proof of Theorem 2, the condition lim Ez g(Zσk
) = Ez g(Zσ ) for increasing sequences

(σk)k with lim σk = σ is used. We shall now show that this condition is not needed in the case
of finite S.

Corollary 1. Let S be finite. Then τ(F ) is optimal, i.e.

Ez g(Zτ(F )) = v(z), for all z.

Proof. As in Remark 1, we look at F ∗ ⊆ F and τ(F ∗). According to a well-known
result of the theory of optimal stopping for Markov chains (see Shiryayev (1978, Chapter 2,
Theorem 4)), we know that τ(F ∗) is optimal and almost surely finite for all z. Looking at
the proof of Theorem 2, it is immediate that we only have to obtain part (c) of the proof for
τ = τ(F ∗); hence, for Pz-almost surely finite τ . Furthermore (see Irle (1980)), this follows if
it can be shown that

Ez g(Zσ ) ≥ lim inf Ez g(Zσn),

for any increasing sequence σn with σ = lim σn ≤ τ . Noting that σ < ∞ Pz-almost surely,
we have

g(Zσ ) = lim g(Zσn), Pz -almost surely,

and
Ez g(Zσ ) = lim Ez g(Zσn)

by dominated convergence.

3. Applications

3.1. Time-dependent pay-offs

3.1.1. Generalities. We assume that we have a pay-off of the form

g(Zn, n), n = 0, 1, . . . ,

for a mapping g : S×{0, 1, . . .} → R. Then we may apply our result to the space–time Markov
process (Zn, n), n ≥ 0. The iterative step is going from B ⊆ S × {0, 1, . . .} to

B∗ = {(z, n) ∈ B : g(z, n) ≥ Ez g(Zτ1(B), n + τ1(B))}.
Note that, by going over to the space–time process, we can also treat inhomogeneous Markov
sequences in this manner.
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3.1.2. Finite horizon. In the case of a stopping problem with finite time horizon N and pay-off

g(Zn, n), n = 0, 1, . . . , N,

we may set
g(z, k) = −∞, for k = N + 1, N + 2, . . . .

Then, of course,
B∗ ⊆ S × {N, N + 1, . . .},

and the FII only considers stopping times which are less than or equal to N .

3.1.3. Linear costs. Consider, for some c > 0,

g(Zn, n) = f (Zn) − cn, n = 0, 1, . . . .

Then the condition defining B∗ becomes

f (z) − cn ≥ Ez g(Zτ1(B), n + τ1(B))

= Ez f (Zτ1(B)) − cn − c Ez τ1(B);
hence,

f (z) ≥ Ez f (Zτ1(B)) − c Ez τ1(B).

This reflects the well-known fact that the optimal stopping rule does not have explicit time
dependence for linear costs.

3.1.4. Discounting. Let, for some α > 0,

g(Zn, n) = αnf (Zn), n = 0, 1, . . . .

Then B∗ is defined by the condition

αnf (Z) ≥ Ez g(Zτ1(B), n + τ1(B))

= αn Ez ατ1(B)f (Zτ1(B)),

which becomes
f (z) ≥ Ez ατ1(B)f (Zτ1(B)),

again without explicit time dependence.

3.2. The monotone case

There is a class of simple optimal stopping problems for which the 1-stage look-ahead
stopping rule, which compares the current gain with the gain to be expected in the next step,
is optimal under certain conditions of regularity; see Chow et al. (1971). These so-called
monotone stopping problems have the following form in the Markovian setting. For our
sequence B0, B1, . . . , we have

B1 = {z : g(z) ≥ Ez g(Z1)},
and the 1-stage look-ahead rule is τ(B1). We speak of a monotone-case stopping problem if

Pz(Z1 ∈ B1) = 1, for all z ∈ B1.
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108 A. IRLE

This implies that
Pz(τ1(B

1) = 1) = 1, for all z ∈ B1;
hence,

B1 = B2 = F and τ(B1) = τ(F ).

So for monotone-case stopping problems, Theorem 2 and Corollary 1 show optimality of the
1-stage look-ahead rule.

The FII algorithm may also be described in terms of 1-stage look-ahead rules. We assume
that FII has arrived at some set Bk = B, which is assumed to be a recurrent set for this
discussion. We consider the restricted chain ZB having state space B and transition probabilities
Pz(Z

B
1 ∈ ·) = Pz(Zτ1(B) ∈ ·). Then B∗ = {z ∈ B : g(z) ≥ Ez g(ZB

1 )} and τ(B∗) is the 1-stage
look-ahead rule for ZB .

In some cases, FII may be performed analytically to find the optimal stopping time in explicit
form. The following example is of this type.

3.3. Example

We look at a stopping problem which arises in mathematical finance. It amounts to finding the
price of the American put option in a Cox–Ross–Rubinstein model. For some constant a > 1,
the stock price is modelled by a multiplicative random walk (Zn)n on the grid Z = {al : l ∈ Z}.
We have, for some p, 0 < p < 1,

Pz(Z1 = az) = p = 1 − Pz

(
Z1 = z

a

)
.

For a discounting factor α, 0 < α < 1, and some γ > 0, we consider the stopping problem for

g(Zn, n) = αn(γ − Zn)
+, n = 0, 1, . . . ,

where (·)+ denotes the positive part of its argument. As discussed in Section 3.1.4, the explicit
time dependence vanishes. The optimal stopping set F is a subset of the state space {al : l ∈ Z}
and the FII operates on this set.

We assume that E1 Z1 ≥ 1 and E1 log Z1 ≤ 0; see Beibel and Lerche (1997) for the
corresponding assumptions in the continuous-time analogue for geometric Brownian motion.
In particular, we have lim inf Zn = 0 Pz-almost surely for any z. It is obvious that

F ⊆ {al : al < γ },
so we start FII with

B0 = {al : al < γ } = {al : l ≤ k},
say; see Remark 3. The condition defining B1 = (B0)∗ is

γ − aj ≥ α[p(γ − aj+1) + (1 − p)(γ − aj−1)], for j < k,

or, equivalently,

γ (1 − α) ≥ aj (1 − α(pa + (1 − p)a−1)) = aj (1 − α E1 Z1).

Because E1 Z1 ≥ 1, this condition is fulfilled for any j < k. For j = k, the condition becomes

γ − ak ≥ Eak ατ1(B
0)(γ − Zτ1(B0))

+

= α[(1 − p)(γ − ak−1) + p(γ − ak) Eak+1 ατ ],
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where τ = inf{n : Zn = ak}. Obviously the distribution of τ with respect to Pak+1 is
independent of k and we write

e(α) = Eak+1 ατ .

Note that

e(α) = (1 − p)α + pαe(α)2 = 1

2pα
−

√
1

4p2α2 − 1 − p

p
;

see, for example, Feller (1957, Chapter XIV.4). Then the condition defining B1 = (B0)∗ takes
the form

γ (1 − [(1 − p)α + pαe(α)]) ≥ ak(1 − [(1 − p)αa−1 + pαe(α)]).
Thus,

B1 = B0 = {al : l ≤ k} if ak ≤ γ
1 − ((1 − p)α + pαe(α))

1 − ((1 − p)αa−1 + pαe(α))

and

B1 = {al : l ≤ k − 1} if ak > γ
1 − ((1 − p)α + pαe(α))

1 − ((1 − p)αa−1 + pαe(α))
.

Repeating this argument, we see that the optimal stopping region is given by

F =
{
al : al ≤ γ

1 − ((1 − p)α + pαe(α))

1 − ((1 − p)αa−1 + pαe(α))

}
.

4. Simulation studies

As the following examples will show, FII provides a viable algorithm for solving stopping
problems with infinite time horizon without approximating using finite time horizon problems.

This may also be seen as a possibility for the reverse approximation. Consider a problem with
a very large time horizon where backwards induction methods are no longer computationally
feasible. We may solve the corresponding infinite-horizon problem by using FII and use the
solution as an approximate solution for the large finite-horizon problem.

In the following examples we have an infinite time horizon with discounting. For each
iteration, 10 000 simulated paths in each state are generated. A PC with a 1900MHz processor
was used.

4.1. Examples – part 1

The state space of the chain (Zn)n is

{0, 1, . . . , 20} × {0, 1, . . . , 20}.
The pay-off function is

g(Zn, n) = αnf (Zn),

with
f (5, 5) = 10,

f (5, 15) = f (15, 15) = 0,

f (x, y) = 5 otherwise.
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Figure 1: Continuation points (circles) and stopping points (squares).
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Figure 2: Optimal values.

For the chain, we assume absorbtion at the points of minimal pay-off, i.e. at (5, 15) and (15, 15).
Otherwise, the transition probabilities are given as

P(x + 1, y | x, y) = 0.25,

P(x − 1, y | x, y) = 0.25,

P(x, y + 1 | x, y) = 0.25,

P(x, y − 1 | x, y) = 0.25,

with obvious modifications at the boundaries; for example P(1, y | 0, y) = 0.5 and
P(19, y | 20, y) = 0.5.

Example 1. We have a discount factor of α = 0.99, and termination after eight iterations in
90.33 seconds; see Figures 1 and 2.

Example 2. We have a discount factor of α = (0.98)1/20, and termination after 21 iterations
in 478.01 seconds; see Figures 3 and 4.
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Figure 3: Continuation points (circles) and stopping points (squares).
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Figure 4: Optimal values.

4.2. Examples – part 2

The state space of the chain (Zn)n is

{0, 1, . . . , 10} × {0, 1, . . . , 10}.
We assume absorbtion at the boundaries. Otherwise, the transition probabilities are given as

P(x + 1, y | x, y) = 0.7 × 0.6,

P(x − 1, y | x, y) = 0.7 × 0.4,

P(x, y + 1 | x, y) = 0.3 × 0.6,

P(x, y − 1 | x, y) = 0.3 × 0.4.

Example 3. We have a pay-off of f (x, y) = 0 at the boundaries and f (x, y) = (x + y − 5)+
otherwise. We have a discount factor of α = 0.9, and termination after five iterations in 17.59
seconds; see Figures 5 and 6.
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Figure 5: Continuation points (circles) and stopping points (squares).
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Figure 6: Optimal values.

Example 4. We have a pay-off of f (x, y) = 0 at the boundaries and f (x, y) = ((x+y−5)+)2

otherwise. We have a discount factor of α = 0.9, and termination after five iterations in 23.93
seconds; see Figures 7 and 8.

4.3. Discussion

If we look at Section 4.1 without discounting, i.e. α = 1, then the optimal stopping rule
obviously takes the following form. Stop in the states (5, 5), (5, 15), and (15, 15), and in the
eight neighbouring states of (5, 15) and (15, 15). Examples 1 and 2 show how the discount
factor α substantially enlarges the optimal stopping region. Even a discount factor very close
to 1, as in Example 2, leads to a stopping region which differs noticeably from that for α = 1.
We use α = 0.981/20, the 20 stemming from the size of the state space, but of course any other
α very close to 1 would lead to similar findings.

In Section 4.2, there is forced stopping at the boundaries and no stopping at interior points
with x + y ≤ 5. Examples 3 and 4 show how the square function pay-off enlarges the
continuation set. We point out that, in terms of option pricing, the pay-off is that of a call option
for two stocks with knock-out at the boundaries.
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Figure 7: Continuation points (circles) and stopping points (squares).
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Figure 8: Optimal values.
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