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Pieri rules for skew dual immaculate
functions
Elizabeth Niese, Sheila Sundaram , Stephanie van Willigenburg ,
and Shiyun Wang

Abstract. In this paper, we give Pieri rules for skew dual immaculate functions and their recently
discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew
Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for
row-strict (dual) immaculate functions.

1 Introduction

Schur-like functions are a new and flourishing area since the discovery of qua-
sisymmetric Schur functions in 2011 [11], which led to numerous other similar
functions being discovered, for example, [1, 4, 6, 10, 14–17]. In essence, Schur-like
functions are functions that refine the ubiquitous Schur functions and reflect many
of their properties, such as their combinatorics [2, 9], their representation theory
[5, 7, 21, 22], and in the case of quasisymmetric Schur functions have already been
applied to resolve conjectures [13]. Of the various Schur-like functions to arise after
the quasisymmetric Schur functions, two were naturally related to them: the dual
immaculate functions [6] and the row-strict quasisymmetric Schur functions [17].
Recently, a fourth basis that interpolates between these latter two bases, the row-
strict dual immaculate functions, was discovered [19], thus completing the picture.
The representation theory of these functions was revealed in [20], in addition to the
fundamental combinatorics in [19]. In this paper, we extend the combinatorics to
uncover skew Pieri rules in the spirit of [3, 12, 23] for both row-strict and classical
dual immaculate functions.

More precisely, our paper is structured as follows. In Section 2, we establish a
right-action analogue of [12, Theorem 2.1] in Theorem 2.6. We then recall required
background for the Hopf algebras of quasisymmetric functions, QSym, and non-
commutative symmetric functions, NSym, in Section 3. Finally, in Section 4, we give
(left) Pieri rules for row-strict immaculate functions and row-strict dual immaculate
functions in Corollaries 4.3 and 4.5, respectively. Our final theorem is Theorem 4.7,
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2 E. Niese et al.

in which we establish Pieri rules for skew dual immaculate functions, and row-strict
skew dual immaculate functions.

2 The right-action skew Littlewood–Richardson rule for Hopf
algebras

We begin by recalling and deducing general Hopf algebra results that will be useful
later. Following Tewari and van Willigenburg [23], let H and H∗ be a pair of dual Hopf
algebras over a field k with duality pairing ⟨ , ⟩ ∶ H ⊗ H∗ → k for which the structure
of H∗ is dual to that of H and vice versa. Let h ∈ H, a ∈ H∗. By Sweedler notation,
we have coproduct denoted by Δh = ∑ h1 ⊗ h2, and similarly h1h2 = h1 ⋅ h2 denotes
product. We define the action of one algebra on the other one by the following:

h ⇀ a = ∑⟨h, a2⟩a1 ,(2.1)

a ⇀ h = ∑⟨h2 , a⟩h1 .(2.2)

Let S ∶ H → H denote the antipode map. Then for Δh = ∑ h1 ⊗ h2,

∑(Sh1)h2 = ε(h)1H = ∑ h1(Sh2),(2.3)

where ε and 1 denote counit and unit, respectively. Following Montgomery [18], we
can define the convolution product ∗ for f and g in H by

( f ∗ g)(a) = ∑⟨ f , a1⟩⟨g , a2⟩ = ⟨ f g , a⟩.

Then it follows that

⟨g , f ⇀ a⟩ = ⟨g f , a⟩.

Similarly, ⟨a ⇀ f , b⟩ = ⟨ f , ba⟩. Since H∗ is a left H-module algebra under ⇀, we
have that

h ⇀ (a ⋅ b) = ∑(h1 ⇀ a) ⋅ (h2 ⇀ b).

Lemma 2.1 [12] For g , h ∈ H and a ∈ H∗,

(a ⇀ g) ⋅ h = ∑(S(h2) ⇀ a) ⇀ (g ⋅ h1),

where S ∶ H → H is the antipode.

As in Montgomery [18], define a right action by the following:

h ↼ a = ∑⟨h, a1⟩a2 ,(2.4)

a ↼ h = ∑⟨h1 , a⟩h2 .(2.5)

As before, it follows that ⟨g , f ↼ a⟩ = ⟨ f g , a⟩ and ⟨a ↼ f , b⟩ = ⟨ f , ab⟩.

Lemma 2.2 Let f ∈ H and a, b ∈ H∗. Then

f ↼ (a ⋅ b) = ∑( f1 ↼ a) ⋅ ( f2 ↼ b).
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Pieri rules for skew dual immaculate functions 3

Proof Let f , g ∈ H and a, b ∈ H∗. Then

⟨g , f ↼ (a ⋅ b)⟩ = ⟨ f g , ab⟩
= ⟨a ↼ ( f g), b⟩
= ∑⟨ f1 g1 , a⟩⟨ f2 g2 , b⟩
= ∑⟨g1 , f1 ↼ a⟩⟨g2 , f2 ↼ b⟩
= ∑⟨g , ( f1 ↼ a) ⋅ ( f2 ↼ b)⟩.

Thus, f ↼ (a ⋅ b) = ∑( f1 ↼ a) ⋅ ( f2 ↼ b). ∎

Lemma 2.3 Let a ∈ H∗. Then

ε(h) ⋅ 1H ↼ a = a

for any h ∈ H.

Proof Let a ∈ H∗ and h ∈ H. Then

ε(h) ⋅ 1H ↼ a = ∑⟨ε(h) ⋅ 1H , a1⟩a2 .

This is only nonzero when a1 = 1H∗ . ∎

Lemma 2.4 Let h ∈ H and a, b ∈ H∗. Then

a ⋅ (h ↼ b) = ∑ h1 ↼ ((S(h2) ↼ a) ⋅ b).

Proof Expand the sum using Lemma 2.2 and coassociativity, (Δ⊗ 1) ○ Δ(h) =
(1⊗ Δ) ○ Δ(h) = ∑ h1 ⊗ h2 ⊗ h3, to get

∑ h1 ↼ ((S(h2) ↼ a) ⋅ b) = ∑(h1 ↼ (S(h2) ↼ a)) ⋅ (h3 ↼ b)
= ∑(h1 ⋅ S(h2) ↼ a) ⋅ (h3 ↼ b) since H∗ is an H-module
= ((ε(h) ⋅ 1H) ↼ a) ⋅ (h ↼ b) by (2.3)
= a ⋅ (h ↼ b) by Lemma 2.3. ∎

Lemma 2.5 Let g , h ∈ H and a ∈ H∗. Then

h ⋅ (a ↼ g) = ∑(S(h2) ↼ a) ↼ (h1 ⋅ g).

Proof Let g , h ∈ H and a, b ∈ H∗. Then

⟨h ⋅ (a ↼ g), b⟩ = ⟨a ↼ g , h ↼ b⟩
= ⟨g , a ⋅ (h ↼ b)⟩
= ⟨g ,∑(h1 ↼ ((S(h2) ↼ a) ⋅ b)⟩ by Lemma 2.4
= ∑⟨g , h1 ↼ ((S(h2) ↼ a) ⋅ b)⟩
= ∑⟨h1 ⋅ g , (S(h2) ↼ a) ⋅ b⟩
= ∑⟨(S(h2) ↼ a) ↼ (h1 ⋅ g), b⟩. ∎
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4 E. Niese et al.

We can use the right action to obtain an algebraic Littlewood–Richardson formula
analogous to [12, Theorem 2.1] for those bases whose skew elements appear as the
right tensor factor in the coproduct.

Let {Lα} ⊂ H and {Rβ} ⊂ H∗ be dual bases with indexing set P. Then

Lα ⋅ Lβ = ∑
γ

bγ
α ,β Lγ Δ(Lγ) = ∑

α ,β
cγ

α ,β Lα ⊗ Lβ ,(2.6)

Rα ⋅ Rβ = ∑
γ

cγ
α ,β Rγ Δ(Rγ) = ∑

α ,β
bγ

α ,β Rα ⊗ Rβ ,(2.7)

where bγ
α ,β and cγ

α ,β are structure constants. We can also write

Δ(Lγ) = ∑
δ

Lδ ⊗ Lγ/δ Δ(Rγ) = ∑
δ

Rδ ⊗ Rγ/δ .(2.8)

Note that Lα ↼ Rβ = Rβ/α and Rβ ↼ Lα = Lα/β . Further,

Δ(Lα/β) = ∑
π ,ρ

cα
π ,ρ ,β Lπ ⊗ Lρ Δ(Rα/β) = ∑

π ,ρ
bα

π ,ρ ,β Rπ ⊗ Rρ .(2.9)

The antipode acts on Lρ by S(Lρ) = (−1)θ(ρ)Lρ∗ where θ ∶ P→ N and ∗ ∶ P→ P.

Theorem 2.6 For α, β, γ, δ ∈ P,

Lα/β ⋅ Lγ/δ = ∑
π ,ρ ,ν ,μ

(−1)θ(ρ)cα
π ,ρ ,βbν

π ,γbδ
μ ,ρ∗Lν/μ .

Proof We use Lemma 2.5 and the preceding facts about the product, coproduct,
and antipode maps on H and H∗ to obtain

Lα/β ⋅ Lγ/δ = Lα/β ⋅ (Rδ ↼ Lγ)
= ∑

π ,ρ
cα

π ,ρ ,β(S(Lρ) ↼ Rδ) ↼ (Lπ ⋅ Lγ)

= ∑
π ,ρ
(−1)θ(ρ)cα

π ,ρ ,β(Lρ∗ ↼ Rδ) ↼ (Lπ ⋅ Lγ)

= ∑
π ,ρ
(−1)θ(ρ)cα

π ,ρ ,β (Rδ/ρ∗ ↼ (∑
ν

bν
π ,γ Lν))

= ∑
π ,ρ ,ν

(−1)θ(ρ)cα
π ,ρ ,βbν

π ,γ(Rδ/ρ∗ ↼ Lν)

= ∑
π ,ρ ,ν ,μ

(−1)θ(ρ)cα
π ,ρ ,βbν

π ,γbδ
μ ,ρ∗(Rμ ↼ Lν)

= ∑
π ,ρ ,ν ,μ

(−1)θ(ρ)cα
π ,ρ ,βbν

π ,γbδ
μ ,ρ∗Lν/μ . ∎

3 The dual Hopf algebras QSym and NSym

We now focus our attention on the dual Hopf algebra pair of noncommutative
symmetric functions and quasisymmetric functions, and introduce our main objects
of study the (row-strict) dual immaculate functions.
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Pieri rules for skew dual immaculate functions 5

A composition α = (α1 , . . . , αk) of n, denoted by α ⊧ n is a list of positive integers
such that ∑k

i=1 α i = n. We call n the size of α and sometimes denote it by ∣α∣,
and call k the length of α and sometimes denote it by �(α). If α j1 = ⋯ = α jm = i,
we sometimes abbreviate this to im , and denote the empty composition of 0 by
∅. There exists a natural correspondence between compositions α ⊧ n and subsets
S ⊆ {1, . . . , n − 1} = [n − 1]. More precisely, α = (α1 , . . . , αk) corresponds to set(α) =
{α1 , α1 + α2 , . . . , α1 +⋯+ αk−1}, and conversely S = {s1 , . . . , sk−1} corresponds to
comp(S) = (s1 , s2 − s1 , . . . , n − sk−1). We also denote by Sc the set complement of S
in [n − 1].

Given a composition α, its diagram, also denoted by α, is the array of left-justified
boxes with α i boxes in row i from the bottom. Given two compositions α, β we say
that β ⊆ α if β j ≤ α j for all 1 ≤ j ≤ �(β) ≤ �(α), and given α, β such that β ⊆ α, the
skew diagram α/β is the array of boxes in α but not β when β is placed in the bottom-
left corner of α. If, furthermore, β ⊆ α and α j − β j ∈ {0, 1} for all 1 ≤ j ≤ �(β) ≤ �(α),
then we call α/β a vertical strip.

Example 3.1 If α = (3, 4, 1), then ∣α∣ = 8, �(α) = 3, and set(α) = {3, 7}. Its dia-
gram is

α =

and if β = (2, 4), then

α/β =

is a vertical strip.

Definition 3.2 Given a composition α, a standard immaculate tableau T of shape α
is a bijective filling of its diagram with 1, . . . , ∣α∣ such that:
(1) The entries in the leftmost column increase from bottom to top.
(2) The entries in each row increase from left to right.
We obtain a standard skew immaculate tableau of shape α/β by extending the
definition to skew diagrams α/β in the natural way.

Given a standard (skew) immaculate tableau, T, its descent set is

Des(T) = {i ∶ i + 1 appears strictly above i in T}.
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6 E. Niese et al.

Example 3.3 A standard skew immaculate tableau of shape (3, 4, 1)/(1) is

T =
7
2 3 4 6

1 5

with Des(T) = {1, 5, 6}.

We are now ready to define our Hopf algebras and functions of central interest.
Given a composition α = (α1 , . . . , αk) ⊧ n and commuting variables {x1 , x2 , . . .}

we define the monomial quasisymmetric function Mα to be

Mα = ∑
i1<⋯<ik

xα1
i1
⋯xαk

ik

the fundamental quasisymmetric function Fα to be

Fα = ∑
i1≤⋯≤in

i j=i j+1⇒ j/∈set(α)

x i1⋯x in

the dual immaculate function S∗α to be

S
∗
α = ∑

T
Fcomp(Des(T))

and the row-strict dual immaculate function RS∗α to be

RS∗α = ∑
T

Fcomp(Des(T)c),

where the latter two sums are over all standard immaculate tableaux T of shape α.
These extend naturally to give skew dual immaculate and row-strict dual immaculate
functions S∗α/β [6] and RS∗α/β[19], where α/β is a skew diagram.

Example 3.4 We have that M(2) = x2
1 + x2

2 + x2
3 +⋯ and F(2) = x2

1 + x2
2 + x2

3 +⋯+
x1x2 + x1x3 + x2x3 +⋯ =S∗(2) = RS∗(12) from the following standard immaculate
tableau T with Des(T) = ∅.

T = 1 2

The set of all monomial or fundamental quasisymmetric functions forms a basis for
the Hopf algebra of quasisymmetric functions QSym, as does the set of all (row-strict)
dual immaculate functions. There exists an involutory automorphism ψ defined on
fundamental quasisymmetric functions by

ψ(Fα) = Fcomp(set(α c))

such that [19]

ψ(S∗α) = RS∗α
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Pieri rules for skew dual immaculate functions 7

for a composition α. This extends naturally to skew diagrams α/β to give

ψ(S∗α/β) = RS∗α/β .

Dual to the Hopf algebra of quasisymmetric functions is the Hopf algebra of
noncommutative symmetric functions NSym. Given a composition α = (α1 , . . . , αk) ⊧
n and noncommuting variables {y1 , y2 , . . .} we define the nth elementary noncommu-
tative symmetric function en to be

en = ∑
i1<⋯<in

y i1⋯y in

and the elementary noncommutative symmetric function eα to be

eα = eα1⋯eαk .

Meanwhile, we define the nth complete homogeneous noncommutative symmetric
function hn to be

hn = ∑
i1≤⋯≤in

y i1⋯y in

and the complete homogeneous noncommutative symmetric function hα to be

hα = hα1⋯hαk .

The set of all elementary or complete homogeneous noncommutative symmetric
functions forms a basis for NSym. The duality between QSym and NSym is given by

⟨Mα , hα⟩ = δαβ ,

where δαβ = 1 if α = β and 0 otherwise. This induces the bases dual to the (row-strict)
dual immaculate functions via

⟨S∗α ,Sα⟩ = δαβ ⟨RS∗α ,RSα⟩ = δαβ

and implicitly defines the bases of immaculate and row-strict immaculate functions.
While concrete combinatorial definitions of these functions have been established
[6, 19], we will not need them here. However, what we will need is the involutory
automorphism in NSym corresponding to ψ in QSym, defined by ψ(eα) = hα that
gives ψ(Sα) = RSα [19].

4 The Pieri rules for skew dual immaculate functions

A left Pieri rule for immaculate functions was conjectured in [6, Conjecture 3.7]
and proved in [8]. Given a composition α = (α1 , . . . , αk), we say that tail(α) =
(α2 , . . . , αk). If β ∈ Zk , then neg(α − β) = ∣{i ∶ α i − β i < 0}∣. Let sgn(β) = (−1)neg(β)

with neg(β) = ∣{i ∶ β i < 0}∣.
Following [8], we define Zs ,α to be a set of all β ∈ Zk such that:

(1) β1 +⋯+ βk = s and β1 +⋯+ β i ≤ s for all i < k.
(2) α i − β i ≥ 0 for all 1 ≤ i ≤ k and ∣i ∶ α i − β i = 0∣ ≤ 1.
(3) For all 1 ≤ i ≤ k,
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8 E. Niese et al.

• if α i > s − (β1 +⋯+ β i−1), then 0 ≤ β i ≤ s − (β1 +⋯+ β i−1),
• if α i < s − (β1 +⋯+ β i−1), then β i < 0, and
• if α i = s − (β1 +⋯+ β i−1), then either β i < 0 or β i = α i and β i+1 = ⋯ =

βk = 0.

Now we are ready to define the coefficients of the immaculate basis appearing in
the left Pieri rule.

Definition 4.1 [8] For a positive integer s and compositions α, γ with ∣α∣ − ∣γ∣ = s,
let 1 ≤ j ≤ k be the smallest integer such that α i = γ i−1 for all j < i ≤ k where j = k
when αk ≠ γk−1. Let j ≤ r ≤ k be the largest integer such that α j < α j+1 < ⋯ < αr . Let
α(i) = (α1 , . . . , α i). Then define

cγ
s ,α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn(α − γ), if �(γ) = �(α) and α − γ ∈ Zs ,α ,
sgn(α( j−1) − γ( j−1)), if �(γ) = �(α) − 1,

r − j is even, and
(α( j−1) − γ( j−1) , α j , 0, . . . , 0) ∈ Zs ,α ,

0, otherwise.

Theorem 4.2 [6, 8] Let m > 0 and α be a composition. Then

hmSα = ∑
β⊧∣α∣+m

β1≥m
0≤�(β)−�(α)≤1

ctail(β)
β1−m ,αSβ .

Applying ψ to both sides of the left Pieri rule in Theorem 4.2 immediately yields a left
Pieri rule for row-strict immaculate functions.

Corollary 4.3 Let m > 0 and α be a composition. Then

emRSα = ∑
β⊧∣α∣+m

β1≥m
0≤�(β)−�(α)≤1

ctail(β)
β1−m ,αRSβ .

Lemma 3.1 of [8] shows that for s ≥ 0, r > 0 and compositions α, β with ∣α∣ = ∣β∣ + s,

⟨Sα , F(s)S∗β⟩ = ⟨hrSα ,S∗(s+r ,β)⟩.

This leads to the following Pieri rule for dual immaculate functions.

Theorem 4.4 [8] Let s > 0 and α be a composition. Then

F(s)S∗α = ∑
β⊧∣α∣+s

0≤�(β)−�(α)≤1

cα
s ,βS

∗
β .

Again, applying ψ to both sides gives a Pieri rule for row-strict dual immaculate
functions.
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Pieri rules for skew dual immaculate functions 9

Corollary 4.5 Let s > 0 and α be a composition. Then

F(1s)RS
∗
α = ∑

β⊧∣α∣+s
0≤�(β)−�(α)≤1

cα
s ,βRS

∗
β .

We use these results together with Hopf algebra computations to construct a Pieri
rule for skew dual immaculate functions. Using the map ψ, this also gives a Pieri rule
for row-strict skew dual immaculate functions. But first, we have a small, yet crucial,
lemma.

Lemma 4.6 Let α and γ be compositions. Then Sγ ↼S∗α =S∗α/γ .

Proof Recall that if H = QSym and H∗ = NSym are our pair of dual Hopf algebras,
then we know ΔS∗α = ∑β S

∗
β ⊗S∗α/β and we have that

Sγ ↼S
∗
α = ∑

β
⟨Sγ ,S∗β⟩S∗α/β =S

∗
α/γ

since ⟨Sγ ,S∗β⟩ = δγβ , where δγβ = 1 if γ = β and 0 otherwise. ∎

We can now give our Pieri rule for (row-strict) skew dual immaculate functions.

Theorem 4.7 Let γ ⊆ α. Then

S
∗
(s)S

∗
α/γ = ∑

β/τ
(−1)∣γ∣−∣τ∣ ⋅ cα

∣β∣−∣α∣,β S
∗
β/τ ,

and hence by applying ψ to both sides

RS∗(s)RS
∗
α/γ = ∑

β/τ
(−1)∣γ∣−∣τ∣ ⋅ cα

∣β∣−∣α∣,β RS
∗
β/τ ,

where ∣β/τ∣ = ∣α/γ∣ + s, γ/τ is a vertical strip of length at most s, �(β) − �(α) ∈ {0, 1}
and cα

∣β∣−∣α∣,β is the coefficient of Definition 4.1. These decompositions are multiplicity-
free up to sign.

Proof Note that S∗(1s) = F(1s) and S∗(s) = F(s). Recall that

ΔFα = ∑
(β ,γ) with

β⋅γ=α or
β⊙γ=α

Fβ ⊗ Fγ ,(4.1)

where for β = (β1 , . . . , βk) and γ = (γ1 , . . . , γ l), β ⋅ γ = (β1 , . . . , βk , γ1 , . . . , γ l) is the
concatenation of β and γ, and β ⊙ γ = (β1 , . . . , βk−1 , βk + γ1 , γ2 , . . . , γ l) is the near-
concatenation of β and γ.

Then we have that

Δ(F(s)) =
s
∑
i=0

F(i) ⊗ F(s−i) .
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10 E. Niese et al.

Thus,

S
∗
(s)S

∗
α/γ =S

∗
(s)(Sγ ↼S

∗
α) by Lemma 4.6

= F(s)(Sγ ↼S
∗
α)

=
s
∑
i=0
(S(F(s−i)) ↼Sγ) ↼ (F(i)S

∗
α) by Lemma 2.5.

We first compute S(F(s−i)) ↼Sγ . Since it is well known that S(Fα) = (−1)∣α∣Fcomp(set(α)c)

we have that S(F(s−i)) = (−1)s−i F(1s−i). Furthermore, we can write the coproduct as

Δ(Sγ) = ∑
δ ,τ

bγ
δ ,τSδ ⊗Sτ .

Thus,

S(F(s−i)) ↼Sγ = (−1)s−i F(1s−i) ↼Sγ

= ∑
δ ,τ
(−1)s−i bγ

δ ,τ⟨F(1s−i) ,Sδ⟩Sτ

= ∑
δ ,τ
(−1)s−i bγ

δ ,τ⟨S
∗
(1s−i) ,Sδ⟩Sτ

= ∑
τ
(−1)s−i bγ

(1s−i),τSτ .

By the definition of product and coproduct on NSym, we have that

bγ
δ ,τ = ⟨ΔSγ ,S∗δ ⊗S

∗
τ ⟩ = ⟨Sγ ,S∗δ ⋅S∗τ ⟩.

To compute this for δ = (1s−i), we use Proposition 3.34 from [6] which states
that F⊥(1r)Sα = ∑β Sβ , where β ∈ Z�(α), αk − βk ∈ {0, 1} for all k and ∣β∣ = ∣α∣ − r.
The operator F⊥ is used throughout [6], and has the property that ⟨F⊥Sα ,S∗β⟩ =
⟨Sα , FS∗β⟩.

Thus,

bγ
(1s−i),τ = ⟨Sγ ,S∗(1s−i)S

∗
τ ⟩

= ⟨Sγ , F(1s−i)S
∗
τ ⟩

= ⟨F⊥(1s−i)Sγ ,S∗τ ⟩

= ⟨∑
β
Sβ ,S∗τ ⟩

= δβτ ,

where the sum is over all β such that β ∈ Z�(γ), γk − βk ∈ {0, 1} for all k, and
∣β∣ = ∣γ∣ − (s − i).
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Then using the above calculations, Theorem 4.4 and Lemma 4.6, we have that

S
∗
(s)S

∗
α/γ =S

∗
(s)(Sγ ↼S

∗
α)

=
s
∑
i=0
((S(F(s−i)) ↼Sγ) ↼ (F(i)S

∗
α))

=
s
∑
i=0

⎛
⎜⎜⎜⎜⎜⎜
⎝

(−1)(s−i) ∑
τ∈Z�(γ)

γk−τk∈{0,1}
∣τ∣=∣γ∣−(s−i)

Sτ

⎞
⎟⎟⎟⎟⎟⎟
⎠

↼
⎛
⎜⎜⎜
⎝

∑
β⊧∣α∣+i

0≤�(β)−�(α)≤1

cα
i ,βS

∗
β

⎞
⎟⎟⎟
⎠

=
s
∑
i=0

∑
τ ,β

τ∈Z�(γ)

γk−τk∈{0,1}
∣τ∣=∣γ∣−(s−i)

β⊧∣α∣+i
�(β)−�(α)∈{0,1}

(−1)(s−i) ⋅ cα
i ,β S

∗
β/τ

= ∑
β/τ
(−1)∣γ∣−∣τ∣ ⋅ cα

∣β∣−∣α∣,β S
∗
β/τ ,

where ∣β/τ∣ = ∣α/γ∣ + s, γ/τ is a vertical strip of length at most s, and �(β) − �(α) ∈
{0, 1}. ∎

Example 4.8 Let us compute S∗(2) ⋅S∗(1,2,1)/(1,1).
First, we need to compute all compositions β ⊧ 4 + i for i ∈ {0, 1, 2} and �(β) = 3

or 4. We list all possible choices for β as the set

A = {(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1),
(2, 1, 1, 1), (1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1), (1, 1, 1, 3),
(1, 1, 2, 2), (1, 1, 3, 1), (1, 2, 1, 2), (1, 2, 2, 1), (1, 3, 1, 1), (2, 1, 1, 2),
(2, 1, 2, 1), (2, 2, 1, 1), (3, 1, 1, 1), (1, 1, 4), (1, 2, 3), (1, 3, 2), (1, 4, 1),
(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)}.

Next, we need to find τ by removing a vertical strip of length at most s = 2 from
γ = (1, 1). We list all options for τ as the set B = {∅, (1), (1, 1)}.

By Theorem 4.7, now we expand S∗(2) ⋅S∗(1,2,1)/(1,1) by finding all valid pairs (β, τ)
such that ∣β/τ∣ = 4. Thus,

S
∗
(2) ⋅S∗(1,2,1)/(1,1) = c(1,2,1)

0,(1,1,1,1)S
∗
(1,1,1,1) + c(1,2,1)

0,(1,1,2)S
∗
(1,1,2)

+ c(1,2,1)
0,(1,2,1)S

∗
(1,2,1) + c(1,2,1)

0,(2,1,1)S
∗
(2,1,1)

− c(1,2,1)
1,(1,1,1,2)S

∗
(1,1,1,2)/(1) − c(1,2,1)

1,(1,1,2,1)S
∗
(1,1,2,1)/(1)

− c(1,2,1)
1,(1,2,1,1)S

∗
(1,2,1,1)/(1) − c(1,2,1)

1,(2,1,1,1)S
∗
(2,1,1,1)/(1)

− c(1,2,1)
1,(1,1,3)S

∗
(1,1,3)/(1) − c(1,2,1)

1,(1,2,2)S
∗
(1,2,2)/(1)
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− c(1,2,1)
1,(1,3,1)S

∗
(1,3,1)/(1) − c(1,2,1)

1,(2,1,2)S
∗
(2,1,2)/(1)

− c(1,2,1)
1,(2,2,1)S

∗
(2,2,1)/(1) − c(1,2,1)

1,(3,1,1)S
∗
(3,1,1)/(1)

+ c(1,2,1)
2,(1,1,1,3)S

∗
(1,1,1,3)/(1,1) + c(1,2,1)

2,(1,1,2,2)S
∗
(1,1,2,2)/(1,1)

+ c(1,2,1)
2,(1,1,3,1)S

∗
(1,1,3,1)/(1,1) + c(1,2,1)

2,(1,2,1,2)S
∗
(1,2,1,2)/(1,1)

+ c(1,2,1)
2,(1,2,2,1)S

∗
(1,2,2,1)/(1,1) + c(1,2,1)

2,(1,3,1,1)S
∗
(1,3,1,1)/(1,1)

+ c(1,2,1)
2,(2,1,1,2)S

∗
(2,1,1,2)/(1,1) + c(1,2,1)

2,(2,1,2,1)S
∗
(2,1,2,1)/(1,1)

+ c(1,2,1)
2,(2,2,1,1)S

∗
(2,2,1,1)/(1,1) + c(1,2,1)

2,(3,1,1,1)S
∗
(3,1,1,1)/(1,1)

+ c(1,2,1)
2,(1,1,4)S

∗
(1,1,4)/(1,1) + c(1,2,1)

2,(1,2,3)S
∗
(1,2,3)/(1,1)

+ c(1,2,1)
2,(1,3,2)S

∗
(1,3,2)/(1,1) + c(1,2,1)

2,(1,4,1)S
∗
(1,4,1)/(1,1)

+ c(1,2,1)
2,(2,1,3)S

∗
(2,1,3)/(1,1) + c(1,2,1)

2,(2,2,2)S
∗
(2,2,2)/(1,1)

+ c(1,2,1)
2,(2,3,1)S

∗
(2,3,1)/(1,1) + c(1,2,1)

2,(3,1,2)S
∗
(3,1,2)/(1,1)

+ c(1,2,1)
2,(3,2,1)S

∗
(3,2,1)/(1,1) + c(1,2,1)

2,(4,1,1)S
∗
(4,1,1)/(1,1) .

We can compute all the coefficients cα
∣β∣−∣α∣,β using Definition 4.1, and most of them

turn out to be zero. Hence, we have the following expansion after simplification:

S
∗
(2) ⋅S∗(1,2,1)/(1,1) =S

∗
(1,2,1) −S

∗
(1,1,2,1)/(1) −S

∗
(2,2,1)/(1) +S

∗
(2,1,2,1)/(1,1)

+S
∗
(3,2,1)/(1,1).
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